
Let`s Make it Fun: Gamifying and Formalizing Code Review

Naomi Unkelos-Shpigel and Irit Hadar
Department of Information Systems, University of Haifa, Haifa, Israel

Keywords: Code Review, Formal Method, Collaboration, Gamification.

Abstract: Code review is a highly important task in the software development lifecycle. However, some of the
characteristics of code review hinder practitioners’ performance of this task. Code review is considered to be
tedious and uninteresting, and includes challenging human aspects, such as collaboration among stakeholders.
Despite the many concerns that need to be taken into consideration when performing code review, a
comprehensive, formal definition thereof is yet to be determined. In a previous research, a set of formal
guidelines for code review was presented, in the context of performing this task in a gamified environment.
In this ongoing research, we explore whether the field of software engineering provides a formal definition
for code review, and whether a formal definition is needed. The preliminary findings of this research indicate
that while the field does provide several definitions for code review, in all that concerns the human aspect of
this task, a formal definition is in order. As a response for this need, we present a framework of the task of
code review toward its formalization, embedding gamification for motivation enhancement.

1 INTRODUCTION

Code review has been long known as highly
important for ensuring software quality (Fagan,
1967). Performing code review is typically perceived
as a tedious, undesired task, which presents several
challenges to the required collaboration and
knowledge transfer between reviewers and
programmers. As such, this task has the potential to
benefit from motivation enhancement strategies. In
recent years, gamification has been used in various
tasks in order to motivate participants to take part in
the task, and to enhance the quality of the process and
products (Minelli et al., 2015). Lately, several
attempts have been made for implementing this
approach in the context of software engineering
(Marshburn and Henry, 2013). Gamification is
defined as “the integration of game mechanics in non-
game environments to increase audience engagement,
loyalty and fun” (Deterding et al., 2011). In order to
use game elements correctly to enhance a process, a
deep understanding of this process and motivation
factors of participants is in order.

The aim of this ongoing research is to develop a
formal framework for the code review process, with
gamification elements embedded in the process, in
order to motivate practitioners to participate in, and
significantly contribute to peer code review.

2 LITERATURE REVIEW

2.1 Code Review

Defined by Fagan (1967), code review includes all
manual line-to-line inspections, also called code
inspection or code scrutiny. Research on code review
aims to achieve a shorter and more effective review
process, including developing tools for monitoring
code review, its risks and challenges (Porter et al.,
1995). These risks and challenges include insufficient
collaboration between programmers and code
reviewers, and gaps in the required shared understanding
of the purpose of the code review (Bacchelli and Bird,
2013). Relevant strategies were offered for supporting
code review, e.g., automating the code review process
[ibid], and a tool enabling programmers to track
significant code changes during code reviews (Zhang et
al., 2014). However, these solutions refer only to the
artefacts of code review; they do not encourage
reviewers or programmers to participate in the code
review or distribute lessons learned to other
programmers and reviewers in the firm.

Several attempts took place in order to focus code
review on deeper and more continuous inspection of
the artifact (Farchi and Ur, 2008). The notion of
having a homeworkless process, where the reviewer
can focus on the quality of the outcomes rather than
on searching for micro-defects in the code, represents

Unkelos-Shpigel, N. and Hadar, I.
Let‘s Make it Fun: Gamifying and Formalizing Code Review.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 391-395
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

391

a modern approach in which the role of code reviewers
is grasped as quality assurance managers rather than
bug detectors (ibid). Additional reinforcement to this
approach can be found in recent research works, for
example the research conducted by (Bacchelli and
Bird, 2013), where practitioners were asked on how
they perceived the code review process. The main
findings suggest that practitioners see code review as
a way to enhance the quality of code and transfer
knowledge, rather than just fixing minor code faults.

Another important finding is that according to
practitioners, performing code review promotes team
awareness to code quality, and transparency of the
coding process. Most importantly, code review helps
all the involved parties to feel shared ownership of the
code; workers and managers feel that the code is being
examined by an expert on a regular basis, which helps
them to be less protective about their code (ibid).
Practitioners are encouraged to use tools that perform
automated code review in which the minor bugs and
faults are found, for static code review, and to perform
peer code review for better understanding and shared
ownership of the code. However, there is no standard
or conventional guideline for performing this type of
code review.

Our research is aimed to understand how code
review can be formalized and performed via shared
tools, for encouraging practitioners to take part in
collaborative code review and ensuring that all parties
have an accurate and complete understanding of their
role in this process.

2.2 Gamification

Gamification is aimed at increasing enjoyment of
tasks by integrating game mechanics in non-game
environments. This has been proven to increase
engagement, loyalty and fun (Deterding et al., 2011).
Gamification of computer-supported applications
addresses the use of techniques taken from games in
order to encourage users’ active participation and
contribution. In recent years, various gamification
elements have been embedded in different information
systems and applications in general, and in some
cases, in applications intended for the use of software
engineers in particular.

Gamification was used, for example, to encourage
students into doing software testing, in a system called
"Secret Ninja Testing," (Bell et al. 2011), where
students were presented with quests using characters
from various action movies, and were asked to act as
these characters while solving testing problems. They
reported that the system helped the students to be
exposed to the complete lifecycle of software

development, and encouraged students to choose
software engineering as a major in their studies. An
effort to encourage students to use version control was
also made using gamification, where a social software
application was used, mainly using the notification
feature (Singer and Schneider, 2012). The researchers
reported that using the social features was helpful for
many students in achieving an overall understanding
of their project.

Research was also conducted in the context of
using gamification starting at early stages of software
development. Dubois and Tamburrelli (2013)
identified three types of activities needed to be
performed when engaging gamification into software
engineering: analysis, integration, and evaluation, and
found that students performing these activities had
better results in software engineering. Another
research showed that using gamification in virtual
teams during requirement elicitation assisted the
teams to locate experts and share their knowledge
(Marshburn and Henry, 2013).

Recently, gamification has also been used in
practice, for example, to praise software developers
when the code they wrote was productive (Minelli et
al., 2015), and to encourage practitioners to practice
white box testing (Xie et al., 2015). In agile
development, gamification was used to encourage the
use of code conventions (Prause and Jarke, 2015).

3 AN EXPLORATORY INQUIRY
ON CODE REVIEW
PRACTICES

As a preliminary evaluation of the motivation for the
research, we posted a set of two questions in several
professional LinkedIn groups, in order to understand
how practitioners are guided to perform code review
in industry. The questions were: "Do you have any
defined procedures or instructions on your code
review process? Is it the same in all teams? Please
elaborate."

Twenty-two software practitioners responded to
these questions, providing interesting insights on the
code review process. Their answers reflected several
perceptions about code review, presented here with
some examples from their original quotes:
• Code review involves using static (automatic)

code analysis, for detecting simple bugs and
faults:
"Stash [an automatic tool] gives us an audit trail

of code reviews. This also means that we can

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

392

guarantee that all the code that makes it to production
has been reviewed. However, I'm not convinced that
our code review process necessarily makes our code
'better'."

"The usage of the automatic code-review [static
code analysis] tools are very helpful for performing
tedious code-reviewing like code styling, coding rules
or even checking known best/anti practices."

• Code review should include experts performing
code review:
"Not everyone can be a reviewer, it's a team

decision."
"The single most important aspect is who runs the

review, and how they do it. It's a learnable skill."
"Our [code review] process also means delayed

integration because code sits on a branch waiting to
be reviewed. This causes a whole bunch of other
issues."

The latter quote demonstrates situations in which
these experts are not immediately available to
perform the code review.
• The expected contribution of peer code review:

"[Using automatic tools for code review as part of
the process] frees up the [peer] code review to be
more about what you are trying to achieve rather than
are you using camel case or not, or whatever other
rules you have set up."

"Your reviewers are more interested in ‘is this the
right way and place to provide the solution’ rather
than have you coded correctly."
• Various types of reviews:

"The procedure or process on how to do the code
review vary a lot, from ad hoc reviews to very formal
and heavy process."

"Our group pair programs, so we don't do a lot of
formal reviews. We do play a lot of code ping pong
while pairing."

To conclude, the respondents indicated the
importance of code review, including both static and
peer review. However, in all their answers, they
indicated they do not have a formal procedure for
performing peer code review, but rather only informal
work instructions. In cases of pair programming, the
code review is not considered as such, but a certain
type of peer review does in fact take place. In some
other cases, the participants indicated that code that
needs to be reviewed, sometimes gets stuck, waiting
for review.

The preliminary study was insightful, as it

indicated that indeed there is a need for a formal
definition of the process, in all the aspects that
involve the interaction between the programmer of
the code (who asks for a review), the reviewer, and
the additional practitioners in the firm, who could
benefit from receiving information and lessons
learned from the review.

4 A FORMAL DEFINITION OF
CODE REVIEW

Building on the basic definition for gamifying code
review presented in (Unkelos-Shpigel and Hadar,
2015), the following gamification includes the steps
– Create, Ask for review, Review, Extend knowledge
(CARE). All the participants can create code to be
reviewed, send it for review, receive the review, and
finally, choose whether they want to contribute the
information from the review and lessons learned to
others in the firm.

We differ between novices and experts in the
gamified process, as experts are less motivated to
participate in the code review process - as they
contribute knowledge rather than consuming it.The
game follows these sequential rules, according to the
rules of flow and group flow (ibid):
1. Each novice programmer is assigned with an initial

score of zero. The reviewer – an expert programmer
– is assigned with a higher initial score.

2. In addition to the individual scores, there is also a
team score managed, which is updated according
to the individually rewarded tasks.

3. When the code is ready, the programmers ask for
a review, and are immediately rewarded with
points.

4. The reviewer reviews the relevant segment of the
code. If the reviewer approves the code, she is
granted with points as well. Additional score is
given for writing a review, which helps the
programmer to improve the code. For bug
detection, the reviewer will be rewarded extra
points for each bug found.

5. The reviewers can also choose to share their
review comments with members of other teams,
raising both individual and team score. An
additional mechanism is needed to evaluate the
quality of the shared information, and its
contribution to other stakeholders in the project.

6. The programmer can share tips and lessons
learned from the review with other programmers
as well, raising both individual and team score.

Let‘s Make it Fun: Gamifying and Formalizing Code Review

393

7. The programmers are also given badges according
to their individual scores. The badge indicates
their level in the game, labelled kilo, mega, or
giga, etc., according to the number of points they
earned.

8. Each team has its own profile, where all members
of the team can view information about the team
score and their relative ranking among all teams.
The teams are rewarded each month according to
their scores. The reward can be in the form of
monetary incentive or other rewards (e.g.,
breakfast with a high management representative
or coupons for fun activities).

9. If other programmers or reviewers use the know-
knowledge and tips shared, the individual who
wrote and/or shared this knowledge gets
additional points.
The main actions in the code review process are

illustrated in Figure 1.We modeled the process in
BPMN, since we address code review as a business
process.

5 SUMMARY AND FUTURE
RESEARCH STEPS

In this ongoing research, we develop a collaborative
gamified framework for performing code review. We
discovered in our preliminary exploration that peer

review is indeed performed in practice, but has no
formally defined or even agreed upon process. We
used game mechanisms and embedded them in the
process so to create a collaborative framework and
enhanced individual and team motivation, where code
is written and substantially reviewed, later enabling
to distribute to others the knowledge created in this
process.
In the next research steps we intend to perform
interviews and distribute questionnaires among
developers. During the research and the evolution of
the gamified framework and environment, we will
approach additional developers, including from
virtual social networks such as designated groups in
LinkedIn. We plan to elicit their perceptions about
our prototype, and their opinions about its potential
effect on their performance, user satisfaction, and
additional measures. Finally, we will implement our
proposed solution in a case study in order to measure
the actual behavioural change resulting from working
with the defined code review process and the
gamified environment.

REFERENCES

Bacchelli A., and Bird C. 2013. Expectations, outcomes,
and challenges of modern code review, In Proceedings
of the 2013 International Conference on Software
Engineering, pp. 712-721. IEEE Press.

Figure 1: BPMN specification of the code review process.

COLAFORM 2016 - Special Session on Collaborative Aspects of Formal Methods

394

Bell, J., Sheth, S., and Kaiser, G. 2011. Secret ninja testing
with HALO software engineering. In Proceedings of
the 4th international workshop on Social software
engineering, ACM, pp. 43-47.

Deterding, S., Khaled, R., Nacke, L., and Dixon, D. 2011.
Gamification: Toward a Definition. In CHI 2011
gamification Workshop Proceedings, pp.12-15.

Dubois, D. J., and Tamburrelli, G. 2013. Understanding
Gamification Mechanisms for Software Development.
In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ACM, pp. 659-
662.

Fagan, M. 1967. Design and code inspections to reduce
errors in program development, IBM Systems Journal,
15(3), pp.182–211.

Farchi, E., and Ur, S. 2008. Selective Homeworkless
Reviews. In Software Testing, Verification, and
Validation, 2008 1st International Conference on, pp.
404-413. IEEE.

Hadar, I. 2013. When Intuition and Logic Clash: The Case
of the Object Oriented Paradigm, Science of Computer
Programming, 78, pp. 1407-1426.

Marshburn, D. G., and Henry, R. M. 2013. Improving
Knowledge Coordination in Early Stages Of Software
Development Using Gamification. In Proceedings of
The Southern Association For Information Systems
Conference. Savannah, Ga, USA.

Minelli, R., Mocci, A. and Lanza, M., 2015, May. Free
hugs: praising developers for their actions.
In Proceedings of the 37th International Conference on
Software Engineering, 2, pp.555-558. IEEE press.

Porter, A. A., Votta Jr, L. G., and Basili, V. R. 1995.
Comparing detection methods for software
requirements inspections: A replicated experiment.
Software Engineering. In IEEE Transactions on, 21(6),
pp. 563-575.

Prause, C. R., and Jarke, M. 2015, August. Gamification for
enforcing coding conventions. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering. pp. 649-660. ACM.

Singer, L. and Schneider, K., 2012, June. It was a bit of a
race: Gamification of version control. In Games and
Software Engineering (GAS), 2012 2nd International
Workshop on, pp. 5-8. IEEE.

Unkelos-Shpigel N. and Hadar, I. 2015. Gamifying
Software Development Environments Using Cognitive
Principles: The Case of Code Review. 8th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE 2015).

Xie, T., Bishop, J., Horspool, R. N., Tillmann, N., and De
Halleux, J.2015. CrowdSourcing code and process via
code hunt. In CrowdSourcing in Software Engineering
(CSI-SE), 2015 IEEE/ACM 2nd International
Workshop on (pp. 15-16). IEEE.

Zhang, T. Song M. and Kim, M. 2014. Critics: an
interactive code review tool for searching and
inspecting systematic changes. In Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 755-758,
ACM.

Let‘s Make it Fun: Gamifying and Formalizing Code Review

395

