
Scalable Versioning for Key-Value Stores

Martin Haeusler
University of Innsbruck, Department of Computer Science, Technikerstaße 21a, Innsbruck, Austria

Keywords: Key-Value Store, Versioning, Historization, Persistence.

Abstract: Versioning of database content is rapidly gaining importance in modern applications, due to the need for re-
liable auditing, data history analysis, or due to the fact that temporal information is inherent to the problem
domain. Data volume and complexity also increase, demanding a high level of scalability. However, imple-
mentations are rarely found in practice. Existing solutions treat versioning as an add-on instead of a first-class
citizen, and therefore fail to take full advantage of its benefits. Often, there is also a trade-off between perfor-
mance and the age of an entry, with newer entries being considerably faster to retrieve. This paper provides
three core contributions. First, we provide a formal model that captures and formalizes the properties of the
temporal indexing problem in an intuitive way. Second, we provide an in-depth discussion on the unique
benefits in transaction control which can be achieved by treating versioning as a first-class citizen in a data
store as opposed to treating it as an add-on feature to a non-versioned system. We also introduce an index
model that offers equally fast access to all entries, regardless of their age. The third contribution is an open-
source implementation of the presented formalism in the form of a versioned key-value store, which serves as
a proof-of-concept prototype. An evaluation of this prototype demonstrates the scalability of our approach.

1 INTRODUCTION

In recent years, the importance of versioning and his-
torization concepts has increased considerably. Mod-
ern applications face many challenges in the imple-
mentation of features involving temporal data, such as
auditing, traceability of changes and data history anal-
ysis, which are very difficult to implement on appli-
cation level without dedicated support from the stor-
age backend. There are also concrete problems where
time is an inherent aspect of the processed data, such
as in Geo Information Systems for road planning (Shi
and Shibasaki, 2000) and spatio-temporal tracking of
wildlife (Urbano and Cagnacci, 2014).

In order to meet these requirements, much ef-
fort has been put into the inclusion of temporal as-
pects in databases. Early work in this area dates back
about 30 years when Snodgrass published his book
Temporal Databases (Snodgrass, 1986). Up until
now, several authors have proposed numerous, some-
times radically different, approaches (Ramaswamy,
1997), (Lomet et al., 2006), (Felber et al., 2014).
In 2012, IBM conducted an internal study (Saracco
et al., 2012), discovering that development time of a
business application that incorporates temporal infor-
mation decreases by up to 90% if a database with ver-
sioning capabilities is used. However, even though

the SQL 2011 Standard (ISO, 2011) introduced ex-
plicit support for versioning and temporal features,
few database vendors actually implement them. The
few existing implementations usually come as an add-
on, as for example in SQL Server (Lomet et al.,
2006), or by using trigger-based workarounds on reg-
ular non-versioned tables. Existing approaches can-
not take full advantage of versioning, due to the
fact that they were designed as non-versioned stores.
Also, performance often deteriorates considerably
when historical data instead of current information is
requested (Lomet et al., 2006). As we are going to
show in this paper, implementing versioning as a first-
class citizen offers many advantages which cannot be
achieved by treating it as an extension to an existing,
non-versioned database. Furthermore, our approach
offers the same performance for all data items, regard-
less of their timestamps.

In this paper, we present a generic approach
for transaction time versioning (Jensen et al., 1998)
(sometimes also referred to as system time versioning
(ISO, 2011)), covering the entire end-to-end process,
from formal foundations to implementation1. Our
proof-of-concept prototype is called ChronoDB and is

1This work was partially funded by the research project QE
LaB - Living Models for Open Systems (FFG 822740).

Haeusler, M.
Scalable Versioning for Key-Value Stores.
DOI: 10.5220/0005938700790086
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 79-86
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

79



presented in detail in Section 3. We work with a key-
value data model, as it is a simple format that doesn’t
distract from the versioning concepts. Just like the
popular B-Tree structure, it is generic and expressive
enough to be used as a backing store for many record
formats, including tables, documents or graphs. How-
ever, as we are going to explain in more detail in Sec-
tion 6, the intended usage of ChronoDB is to act as a
storage backend for a graph database.
The remainder of this paper is structured as follows.
In Section 2, we provide the formal foundations of our
approach. Section 3 contains implementation consid-
erations for the formalism. We continue with an eval-
uation of the presented material in Section 4 and a
discussion on related work in Section 5, before con-
cluding the paper with an outlook to future work in
Section 6 and a summary in Section 7.

2 FORMAL FOUNDATION

Salzberg and Tsotras identified three key capabilities
which have to be supported by a data store in or-
der to provide the full temporal feature set (Salzberg
and Tsotras, 1999), restricted to timestamps instead
of time ranges:

• Pure-Timeslice Query: Given a point in time
(e.g. date & time), find all keys that existed at
that time.

• Range-Timeslice Query: Given a set of keys and
a point in time, find the value for each key which
was valid at that time.

• Pure-Key Query: Given a set of keys, for each
key find the values that comprise its history.

We use these three core capabilities as the functional
requirements for our formalization approach. For
practical reasons, we futhermore require that inserted
entries never have to be modified again. In this way,
we can achieve a true append only store. In order to
maintain the traceability of changes over time (e.g.
for auditing purposes), we also require that the his-
tory of a key must never be altered, only appended.

The key idea behind our formalism is based on the
observation that temporal information always adds an
additional dimension to a dataset. A key-value for-
mat has only one dimension, which is the key. By
adding temporal information, the two resulting di-
mensions are the key, and the time at which the value
was inserted. Therefore, a matrix is a very natural
fit for formalizing the versioning problem, offering
the additional advantage of being easy to visualize.
The remainder of this section consists of definitions

which define the formal semantics of our solution, in-
terleaved with figures and (less formal) textual expla-
nations.

Definition 1. Temporal Data Matrix
Let T be the set of all timestamps with T ⊆ N. Let S
denote the set of all non-empty strings and K be the
set of all keys with K ⊆ S . Let B define the set of all
binary strings with B⊆ {0,1}∗∪{null} and ε ∈ B be
the empty binary string with ε 6= null. We define the
Temporal Data Matrix D ∈ B∞×∞ as:

D : T ×K→ B
We define the initial value of a given Temporal Data
Matrix D as:

Dt,k := ε ∀t ∈ T,∀k ∈ K

In Definition 1 we define a Temporal Data Matrix,
which is a key-value mapping enhanced with tempo-
ral information. Note that the number of rows and
columns in this matrix is infinite. In order to retrieve
a value from this matrix, a key string and a timestamp
are required. We refer to such a pair as a Temporal
Key. The matrix can contain a bit array in every
cell, which can be interpreted as the serialized rep-
resentation of an arbitrary object. The formalism is
therefore not limited to any particular value type. The
dedicated null value (which is different from all other
bitstrings and also different from the ε values used to
initialize the matrix) will be used as a marker that in-
dicates the deletion of an element later in Definition 3.

In order to guarantee the traceability of changes,
entries in the past must not be modified, and new en-
tries may only be appended to the end of the history,
not inserted at an arbitrary position. We use the notion
of a dedicated now timestamp for this purpose.

Definition 2. Now Operation
Let D be a Temporal Data Matrix. We define the func-
tion now : B∞×∞→ T as:

now(D) = max({t|k ∈ K,Dt,k 6= ε}∪{0})
Definition 2 introduces the concept of the now time-
stamp, which is the largest (i.e. latest) timestamp at
which data has been inserted into the store so far, ini-
tialized at zero for empty matrices. This particular
timestamp will serve as a safeguard against temporal
inconsistencies in several functions. We continue by
defining the temporal counterparts of the put and get
operations of a key-value store.

Definition 3. Temporal Write Operation
Let D be a Temporal Data Matrix. We define the func-
tion put : B∞×∞×T ×K×B→ B∞×∞ as:

put(D, t,k,v) = D′

with v 6= ε, t > now(D) and

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

80



D′i, j :=

{
v if t = i∧ k = j
Di, j otherwise

The write operation put replaces a single entry in a
Temporal Data Matrix by specifying the exact coordi-
nates and a new value for that entry. All other entries
remain the same as before. Please note that, while v
must not be ε in the context of a put operation (i.e.
a cell cannot be “cleared”), v can be null to indicate
a deletion of the key k from the matrix. Also, we re-
quire that an entry must not be overwritten. This is
given implicitly by the fact that each put advances
the result of now(D), and further insertions are only
allowed after that timestamp. Furthermore, write op-
erations are not permitted to modify the past in order
to preserve consistency and traceability, which is also
asserted by the condition on the now timestamp. This
operation is limited in that it allows to modify only
one key at a time. In the implementation, we will
generalize it to allow simultaneous insertions in sev-
eral keys via transactions.
Definition 4. Temporal Read Operation
Let D be a Temporal Data Matrix. We define the func-
tion get : B∞×∞×T ×K→ B as:

get(D, t,k) :=





Dt,k if Dt,k 6∈ {ε,null}
Du,k if Dt,k ∈ {ε,null}∧∃u≥ 0
ε otherwise

with t ≤ now(D) and

u := max({x|x ∈ T,x < t,Dx,k 6∈ {ε,null}}∪{−1})
The function get first attempts to return the value at
the coordinates specified by the key and timestamp.
If that position is empty, we scan for the entry
in the same row with the highest timestamp and
a non-empty value, considering only entries with
lower timestamps than the request timestamp. In the
formula, we have to add−1 to the set from which u is
chosen to cover the case where there is no other entry
in the row. If there is no such entry (i.e. u = −1),
we return the empty binary string, otherwise we re-
turn the entry with the largest encountered timestamp.

This process is visualized in Figure 1. In this fig-
ure, each row corresponds to a key, and each column
to a timestamp. The depicted get operation is work-
ing on timestamp 5 and key ’d’. As D5,d is empty, we
attempt to find the largest timestamp smaller than 5
where the value for the key is not empty, i.e. we move
left until we find a non-empty cell. We find the result
in D1,d and return v1. This is an important part of the
versioning concept: a value for a given key is assumed
to remain unchanged until a new value is assigned to
it at a later timestamp. This allows any implementa-
tion to conserve memory on disk, as writes only occur

time

keys

0 1 2 3 4 5 6 7 ...

a

b

c

d

e

f

...

get t=5, k='d'

v0 v1

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

ε ε ε ε εε
ε ε ε ε ε ε

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

Figure 1: Performing a get operation on a Temporal Data
Matrix.

if the value for a key has changed (i.e. no data dupli-
cation is required between identical revisions). Also
note that we do not need to update existing entries
when new key-value pairs are being inserted, which
allows for pure append only storage. In Figure 1, the
value v1 is valid for the key ’d’ for all timestamps be-
tween 1 and 5 (inclusive). For timestamp 0, the key
’d’ has value v0. Following this line of argumentation,
we can generalize and state that a row in the matrix,
identified by a key k ∈ K, contains the history of k.
This is formalized in Definition 5. A column, iden-
tified by a timestamp t ∈ T , contains the state of all
keys at that timestamp, with the additional considera-
tion that value duplicates are not stored as they can be
looked up in earlier timestamps. This is formalized in
Definition 6.

Definition 5. History Operation
Let D be a Temporal Data Matrix, and t be a time-
stamp with t ∈ T, t ≤ now(D). We define the function
history : B∞×∞×T ×K→ 2T as:

history(D, t,k) := {x|x ∈ T,x≤ t,Dx,k 6= ε}
In Definition 5, we define the history of a key k up
to a given timestamp t in a Temporal Data Matrix D
as the set of timestamps less than or equal to t that
have a non-empty entry for key k in D. Note that the
resulting set will also include deletions, as null is a
legal value for Dx,k in the formula. The result is the
set of timestamps where the value for the given key
changed. Consequently, performing a get operation
for these timestamps with the same key will yield dif-
ferent results, producing the full history of the tempo-
ral key.

Definition 6. Keyset Operation
Let D be a Temporal Data Matrix, and t be a time-
stamp with t ∈ T, t ≤ now(D). We define the function
keyset : B∞×∞×T → 2K as:

keyset(D, t) := {x|x ∈ K,get(D, t,x) 6= ε}

Scalable Versioning for Key-Value Stores

81



time

keys

0 1 2 3 4 5 6 7 ...

a

b

c

d

e

f

...

ε ε ε ε ε ε ε
ε ε ε ε ε

ε ε ε εε
ε ε ε ε ε

ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

null

keyset / version at t=5

v0

v1 v2

v3 v4

v5

Figure 2: Performing a keyset or version operation on a
Temporal Data Matrix.

As shown in Definition 6, the key set in a Tempo-
ral Data Matrix changes over time. We can retrieve
the key set at any desired time by providing the ap-
propriate timestamp t. Note that this works for any
timestamp in the past, in particular we do not require
that a write operation has taken place precisely at t
in order for the corresponding key(s) to be contained
in the key set. In other words, the precise column of t
may consist only of ε entries, but the key set operation
will also consider earlier entries which are still valid
at t. The version operation introduced in Definition
7 operates in a very similar way, but returns tuples
containing keys and values, rather than just keys.

Definition 7. Version Operation
Let D be a Temporal Data Matrix, and t be a time-
stamp with t ∈ T, t ≤ now(D). We define the function
version : B∞×∞×T → 2K×B

version(D, t) := {〈k,v〉|
k ∈ keyset(D, t),v = get(D, t,k)}

Figure 2 illustrates the key set and version operations
by example. In this scenario, the key set (or version)
is requested at timestamp t = 5. We scan each row
for the latest non-ε entry, and add the corresponding
key of the row to the key set, provided that a non-ε
right-most entry exists (i.e. the row is not empty) and
is not null (value was not removed). In this example,
keyset(D,5) would return {a,c,d}, assuming that
all non-depicted rows are empty. b and f are not in
the key set, because their rows are empty (up to and
including timestamp 5), and e is not in the set because
its value was removed at timestamp 4. If we would
request the key set at timestamp 3 instead, e would
be in the key set. The operation version(D,5) returns
{〈a,v0〉,〈c,v2〉,〈d,v4〉} in the example depicted in
Figure 2. The key e is not represented in the version
because it did not appear in the key set.

Table 1: Mapping capabilities to operations.

Capability Realization in formalism
Pure-Timeslice Equivalent to keyset operation
Range-Timeslice One get operation per given key
Pure-Key One history operation per given key

With the given set of operations, we are able to an-
swer all three kinds of temporal queries identified by
Salzberg and Tsotras (Salzberg and Tsotras, 1999), as
indicated in Table 1. Due to the restrictions imposed
onto the put operation (see Definition 3), data cannot
be inserted before the now timestamp (i.e. the his-
tory of an entry cannot be modified). Since the valid-
ity range of an entry is determined implicitly by the
empty cells between changes, existing entries never
need to be modified when new ones are being added.
The formalization therefore fulfills all requirements
stated at the beginning of this section.

3 IMPLEMENTATION

We implemented the concepts presented in Section
2 in a prototype called ChronoDB. It is a fully
ACID-compliant, process-embedded, temporal key-
value store written in Java. The intended use of
ChronoDB is to act as the storage backend for a graph
database, which is the main driver behind numerous
design and optimization choices. The full source code
is freely available under a GPL license2.

3.1 Implementing the Matrix

As the formal foundation includes the concept of a
matrix with infinite dimensions, a direct implemen-
tation is not feasible. However, a Temporal Data
Matrix is typically very sparse. Instead of storing a
rigid, infinite matrix structure, we focus exclusively
on the non-empty entries and expand the underlying
data structure as more entries are being added.

There are various approaches for storing ver-
sioned data on disk (Lomet and Salzberg, 1989; Eas-
ton, 1986; Nascimento et al., 1996). We reused ex-
isting, well-known and well-tested technology for our
prototype instead of designing custom disk-level data
structures. The temporal store is based on a regular
B+-Tree (Salzberg, 1988). We make use of the imple-
mentation of B+-Trees provided by MapDB3. In order
to form an actual index key from a Temporal Key, we
concatenate the actual key string with the timestamp

2https://github.com/MartinHaeusler/chronos/tree/master/
chronodb

3http://www.mapdb.org/

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

82



(left-padded with zeros to achieve equal length), sep-
arated by an ’@’ character. Using the standard lexi-
cographic ordering of strings, we receive an ordering
as shown in Table 2. This implies that our B+-Tree
is ordered first by key, and then by timestamp. The
advantage of this approach is that we can quickly de-
termine the value of a given key for a given timestamp
(i.e. get is reasonably fast), but the keyset (see Defini-
tion 6) is more expensive to compute.

Table 2: Ascending Temporal Key ordering by example.

Order Temporal Key Key String Timestamp
0 a@0123 a 123
1 a@0124 a 124
2 a@1000 a 1000
3 aa@0100 aa 100
4 b@0001 b 1
5 ba@0001 ba 1

The put operation appends the timestamp to the
user key and then performs a regular B+-Tree inser-
tion. The temporal get operation requires retrieving
the next lower entry with the given key and time-
stamp. This is similar to regular B+-Tree search, ex-
cept that the acceptance criterion for the search in the
leaf nodes is “less than or equal to” instead of “equal
to”, provided that nodes are checked in descending
key order. MapDB already provides this functionality.
After finding the next lower entry, we need to apply
a post-processing step in order to ensure correctness
of the get operation. Using Table 2 as an example, if
we requested aa@0050, the result of the “next lower
search” is a@1000. The key string in this temporal
key (a) is different from the one which was requested
(aa). In this case, we can conclude that the key aa did
not exist up to the requested timestamp (50), and we
return null instead of the retrieved result.

Due to the way we set up the B+-Tree, adding a
new revision to a key (or an entirely new key) has
the same runtime complexity as inserting an entry
into a regular B+-Tree. Temporal search also has the
same complexity as regular B-Tree search, which is
O(log(n)), where n is the number of entries in the
tree. From the formal foundations onward, we assert
by construction that our implementation will scale
equally well when faced with one key and many ver-
sions, many keys with one revision each, or any dis-
tribution in between. This is also consistent with our
experimental results, which will be presented in Sec-
tion 4. An important property of our data structure
setup is that, regardless of the versions-per-key dis-
tribution, the data structure never degenerates into a
list, maintaining an access complexity of O(log(n))
by means of regular B+-Tree balancing without any
need for additional algorithms.

Server OLAPWclientOLTPWclient

query

result
c

query

result

startWTX

endWTX

c

c

c

startWTX

delay

c

modify

result

Server OLAPWclientOLTPWclient

query+ts

resultc

query+ts

result

startWTX

endWTX

c

c

c

startWTX

modify+ts

c

delay

result

endWTX

endWTX

accept

accept

NoWversioning,WpessimisticWlocking WithWversioningW&WpessimisticWlocking

Figure 3: Transaction control with and without versioning.

3.2 Transaction Control

Consistency and reliability are two major goals in
ChronoDB, therefore we offer full ACID transactions
with the highest possible read isolation level (serial-
izable, see (ISO, 2011)). Figure 3 shows an example
with two sequence diagrams with identical transac-
tion schedules. A database server is communicating
with an Online Analytics Processing (OLAP (Codd
et al., 1993)) client that owns a long-running transac-
tion (indicated by the gray bars). The process involves
messages (arrows) sending queries with timestamps
and computation times (blocks labeled with “c”) on
both machines. Then, a regular Online Transaction
Processing (OLTP) client wants to make changes to
the data which is analyzed by the OLAP client. The
left figure shows what happens in a non-versioned
scenario with pessimistic locking. The server needs
to lock the relevant contents of the database for the
entire duration of the OLAP transaction, otherwise
we risk inconsistencies due to the incoming OLTP
update. We need to delay the OLTP client until
the OLAP client releases the transaction. Modern
databases use optimistic locking and data duplication
techniques to mitigate this issue, but the core problem
remains: the server needs to dedicate resources (e.g.
locks, RAM. . . ) to client transactions over their en-
tire lifetime. With versioning, the OLAP client sends
the query plus the request timestamp to the server.
This is a self-contained request, no additional infor-
mation or resources are needed on the server, and yet
the OLAP client achieves full isolation over the en-
tire duration of the transaction, because it always re-
quests the same timestamp. While the OLAP client
is processing the results, the server can safely al-
low the modifications of the OLTP client, because it
is guaranteed that a valid modification will only ap-
pend to the history. The data at timestamp on which
the OLAP client is working is immutable. Client-

Scalable Versioning for Key-Value Stores

83



side transactions are merely containers for transient
change sets and metadata, most notably the timestamp
on which the transaction is working. Security con-
siderations aside, they can be created (and disposed)
without involving the server. This does not solve the
problem of write conflicts on the same key-value pair
and timestamp, which we currently resolve in a “first
come first served” fashion, rejecting the other con-
flicting transaction.

3.3 Disadvantages & Open Issues

A disadvantage of our approach (which we share with
many other techniques, such as (Lomet et al., 2006)
and (Ramaswamy, 1997)) is that each get query, even
though it returns a single value, shares many char-
acteristics with range queries. Therefore, we can-
not make use of techniques that would allow for bet-
ter performance, but are applicable only for point
searches (e.g. hashing techniques). We are restricted
to tree structures that allow for quick identification
of neighboring nodes. Therefore, the actual perfor-
mance of our versioning concept implementation is
tied very closely to the performance of the underly-
ing tree structure. Storing all entries in a single tree
provides many advantages, but also implies that the
search time for a key will increase as new versions are
added to other keys, because the tree as a whole grows
larger. We intend to mitigate this problem in the fu-
ture by splitting the key set into segments, where each
segment is represented by its own tree. We aknowl-
edge the fact that the keyset operation is very costly
in our data structure, as its general direction (given a
version find all keys) is exactly opposed to our index
structure (given a key find a version). We are cur-
rently investigating the possibility of applying sec-
ondary indices to alleviate this problem, as the abil-
ity to query entries by attributes (e.g. find all per-
sons where the attribute “name” contains “Eva”) in
many cases replaces the need for the keyset opera-
tion. Range queries on the timestamp are expensive
as well, which is a direct consequence of the design,
as the system was built to handle interactions on sin-
gle timestamps as transparently as possible.

4 EVALUATION

In Section 2 we provided an argumentation why the
distribution of temporal entries over keys and ver-
sions does not have an impact on performance. In
other words, our implementation performs equally
well when faced with 1 key with many versions, many
keys with one version each, or any other distribution

Figure 4: Distribution of entries over Keys and Versions.

in between these two extremes.
Figure 4 shows a box plot for 5 such distributions.

For this experiment, a dataset of 100.000 entries was
generated randomly, subject to the distributions indi-
cated on the X-Axis. The corner case with V : 0%
implies that all keys have exactly one revision each.
K : 0% means that there is exactly one key, and all
other entries represent revisions of that key. On the
resulting state, 1000 temporal get operations were ex-
ecuted, which were random in both the requested key
and the associated timestamp (within the bounds of
the dataset). The aggregated execution time of these
operations is depicted on the Y-Axis. The experiment
was repeated 500 times for each distribution, result-
ing in the given box plots. The entire process was ex-
ecuted without any caching in ChronoDB itself. The
box plots clearly show that there is no definitive re-
lationship between the distribution of entries and the
access time of read operations, in particular there is
no consistent linear growth in any direction. We at-
tribute the existing minor differences to implementa-
tion details of the underlying B+-Tree, disk caches on
the hardware and operating system level, as well as
operating system background processes.

Figure 5: Access times for increasing number of Versions.

We claimed earlier that our versioning approach
is scalable for a large number of keys, but also for a
large number of versions. Based on the results pre-
sented in Figure 4, we argue that our versioning tech-
nique is as scalable as the underlying B+-Tree struc-
ture. What is still left to be discussed is the progres-
sion of the increase in access time, as more versions
are being added to a key. Figure 5 displays this par-
ticular scenario. A single key-value pair was inserted
into the store, and revisions were added gradually.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

84



The X-Axis displays the number of versions in the
store for that particular key. The Y-Axis shows the
time for 1000 get calls on that key, at random times-
tamps (within the range of the dataset), at the base
(i.e. initial) revision, and at the head revision, re-
spectively. The experiment was repeated 500 times
for each data point. The results clearly indicate the
logarithmic growth in access time, as the number of
versions increases. In particular, the access time does
not increase linearly with the number of versions. In
contrast to the approach presented in (Lomet et al.,
2006), there is almost no difference in response times
when different versions are requested, regardless of
the timestamp. Head and base revisions are retrieved
faster on average is due to the fact that their timestamp
is known precisely, whereas for random timestamps,
the next-lower search in the B+-Tree may trigger an
additional disk access. These results are consistent
with Figure 4, as they represent a more detailed view
on a similar scenario as the right-most box plot.

All presented results were measured on a ma-
chine running Windows 10 (64bit) with an Intel Core
i7-5820K processor (3.30GHz), a Crucial MX200
500GB SATA SSD drive and 2GB of RAM avail-
able to the Java Virtual Machine, provided by JDK
1.8.0 66.

5 RELATED WORK

Our work is inspired by the publication by Ra-
maswamy (Ramaswamy, 1997). Both our and Ra-
maswamy’s work solve the same problems. We even
make use of the same data structure, a B+-Tree, and
employ a similar approach for constructing the keys
for the tree. In contrast to Ramaswamy, we do not ex-
plicitly index time ranges on disk. The time range
in which a value is valid for a given key is deter-
mined implicitly in our approach, as a value for a key
is valid until it is overwritten by another value. Un-
like Ramaswamy, we do not need to modify existing
entries in our data structure when new entries are be-
ing added. Also, deletions of entries do not impact
our data structure in any different way than inserts or
modifications, which was an issue in Ramasway’s so-
lution.

The work of Felber et al. (Felber et al., 2014) is
a recent representative of techniques that use explicit
version identifiers. For each key, a list of versions is
stored as the value. Using the version identifier (i.e.
the index in the list), any version can be accessed.
While this approach is acceptable for cases where the
data stored in each key is unrelated from other keys
(e.g. documents), it is not possible to reconstruct a

consistent view of all key-value pairs at a given ver-
sion, because version lists grow independently of each
other. By using timestamps, we are able to corellate
histories of different keys. Due to the way we laid
out our B+-Tree, our approach never degenerates into
linear search on disk, even in cases with extremely
unbalanced distributions of keys and versions.

The project ImmortalDB is an effort to integrate
transaction time versioning concepts into Microsoft
SQL Server (Lomet et al., 2006). This is done by
linking each entry with its predecessor using point-
ers, creating a history chain in the process. The bene-
fit of this implementation is that the performance of
queries on the latest version is almost the same as
for an unversioned table, but it degenerates in a linear
fashion as the requested timestamp is moved further
into the past, because the history chain has to be tra-
versed linearly. This is the exact opposite behaviour
of ChronoDB, which offers equal performance on all
versions without linear search, but has lower perfor-
mance on the head revision when a large history is
present. Because of the fact that SQL Server was de-
signed as a non-versioned store, ImmortalDB cannot
take advantage of the benefits in transaction manage-
ment identified in Section 3.

Database systems like Cassandra (Lakshman and
Malik, 2010) and Dynamo (DeCandia et al., 2007)
also incorporate temporal aspects. These systems use
temporal information to resolve conflicts in the data
that arise from the principle of eventual consistency.
They do not allow to explicitly query past states of the
stored data, and we therefore do not consider them to
be versioned stores. However, implementing our for-
malism on top of them in a middleware layer may be
feasible and will be subject to future research.

6 FUTURE WORK

Our implementation of the concepts presented in Sec-
tion 2 provides scalable versioning in a key-value
store. Such a store is conceptually simple, but of-
ten inconvenient for programmers to use when com-
plex data structures have to be mapped to a key-value
representation in application code. For that reason,
we started developing a graph computing frontend
for ChronoDB, which implements the popular Apache
TinkerPop API4 and will be the first implementation
to feature versioning support, named ChronoGraph.
Projects such as Titan5 have already demonstrated
that persisting graphs into a key-value store back-
end is a feasible way to achieve high performance.
4https://tinkerpop.incubator.apache.org/
5http://thinkaurelius.github.io/titan/

Scalable Versioning for Key-Value Stores

85



With Gremlin, the integrated query language provided
by TinkerPop, we can also provide a powerful query
mechanism to client developers, completely hiding
the key-value store in the background. With Chrono-
Graph, it will be possible for the first time in any Tin-
kerPop implementation to analyze the history of any
given graph element (vertex or edge), as well as run-
ning a given Gremlin query on any past graph state.

Further research on ChronoDB will include how
caching with temporal aspects can be implemented.
We are also investigating potential opportunities for
taking advantage of our versioning concept in order
to distribute the content of our store over several ma-
chines. Secondary indexing in a versioned environ-
ment is also a subject of our ongoing research, as well
as lightweight branching (as seen in traditional ver-
sion control systems, e.g. Git or SVN).

7 SUMMARY & CONCLUSION

In this paper we presented a concept for scalable ver-
sioning in key-value stores. We motivated the prob-
lem at hand by pointing out concrete use cases found
in literature such as road planning in Global Informa-
tion Systems and wildlife tracking, as well as describ-
ing the advantages to be gained from versioned data
stores in general software engineering. Our first con-
tribution is the formalization of the transaction time
versioning problem in the form of a Temporal Data
Matrix, which provides precise semantics of all oper-
ations and an intuitive way of visualizing even com-
plex temporal scenarios. We also provided a map-
ping to the three kinds of temporal queries found
in (Salzberg and Tsotras, 1999), demonstrating that
our set of operations is comprehensive. The sec-
ond contribution of this paper is the in-depth discus-
sion on the practical aspects of the presented the-
ory, in particular with respect to an implementation,
index structures and transaction management. The
third and final contribution is the open-source project
ChronoDB which implements the presented concepts,
serving as a proof-of-concept prototype. We also used
ChronoDB to evaluate the practical feasibility of the
presented concepts through experiments.

REFERENCES

Codd, E. F., Codd, S. B., and Salley, C. T. (1993). Providing
olap (on-line analytical processing) to user-analysts:
An it mandate. Codd and Date, 32.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian,

S., Vosshall, P., and Vogels, W. (2007). Dynamo:
amazon’s highly available key-value store. In ACM
SIGOPS Operating Systems Review, volume 41, pages
205–220. ACM.

Easton, M. C. (1986). Key-sequence data sets on indelible
storage. IBM Journal of Research and Development,
30(3):230–241.

Felber, P., Pasin, M., Riviere, E., Schiavoni, V., Sutra, P.,
Coelho, F., et al. (2014). On the Support of Versioning
in Distributed Key-Value Stores. In 33rd IEEE SRDS
2014, Nara, Japan, October 6-9, 2014, pages 95–104.

ISO (2011). SQL Standard 2011 (ISO/IEC 9075:2011).
Jensen, C. S., Dyreson, C. E., Böhlen, M., Clifford, J.,

Elmasri, R., Gadia, S. K., et al. (1998). Tempo-
ral Databases: Research and Practice, chapter The
consensus glossary of temporal database concepts —
February 1998 version, pages 367–405. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Lakshman, A. and Malik, P. (2010). Cassandra: a decen-
tralized structured storage system. ACM SIGOPS Op-
erating Systems Review, 44(2):35–40.

Lomet, D., Barga, R., Mokbel, M., and Shegalov, G. (2006).
Transaction time support inside a database engine. In
Proceedings of the 22nd ICDE, pages 35–35.

Lomet, D. and Salzberg, B. (1989). Access Methods for
Multiversion Data. SIGMOD Rec., 18(2):315–324.

Nascimento, M., Dunham, M., and Elmasri, R. (1996). M-
IVTT: An index for bitemporal databases. In Wag-
ner, R. and Thoma, H., editors, Database and Expert
Systems Applications, volume 1134 of Lecture Notes
in Computer Science, pages 779–790. Springer Berlin
Heidelberg.

Ramaswamy, S. (1997). Efficient indexing for con-
straint and temporal databases. In Database Theory-
ICDT’97, pages 419–431. Springer.

Salzberg, B. (1988). File Structures: An Analytic Approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Salzberg, B. and Tsotras, V. J. (1999). Comparison of ac-
cess methods for time-evolving data. ACM Computing
Surveys (CSUR), 31(2):158–221.

Saracco, C., Nicola, M., and Gandhi, L. (2012). A matter
of time: Temporal data management in DB2 10. IBM
developerWorks.

Shi, Z. and Shibasaki, R. (2000). GIS Database Revision–
The Problems and Solutions. International Archives of
Photogrammetry and Remote Sensing, 33(B2; PART
2):494–501.

Snodgrass, R. T. (1986). Temporal databases. IEEE Com-
puter, 19:35–42.

Urbano, F. and Cagnacci, F. (2014). Spatial Database
for GPS Wildlife Tracking Data: A Practical Guide
to Creating a Data Management System with Post-
greSQL/PostGIS and R. Springer Science & Business
Media.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

86


