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1 RESEARCH PROBLEM 

The term Technical Debt (TD) is being increasingly 
used to discuss technical compromises admitted by 
the development team during the phases of the 
software life cycle. Thus, this metaphor defines the 
Trade-off between internal tasks you choose do not 
perform at present, and the risk of causing future 
problems  (Izurieta et al., 2012). Currently, this may 
include immature software artifacts such as issues in 
the software design and in the software architecture, 
incomplete or insufficient documentation, 
incomplete design specification, insufficient code 
comment, lack of adequate testing, or inadequate 
technology (Alves et al., 2014). 

The identification of TD is the first step to 
effectively manage TD, it is necessary to identify 
TD items in the project before prioritizing them and 
select those which should be paid or not (Guo et al., 
2014). The term “TD item” represents an instance of 
TD for the purpose of this study. 

Recent systematic reviews (Li et al., 2014) 
(Alves et al., 2016) reported that code quality 
analysis techniques have been frequently studied to 
support the identification of TD. In this sense, 
automatic analysis tools have used software metrics 
extracted from the source code to identify TD items 
by comparing values of software metrics to 
predefined thresholds (Mendes et al., 2015).  

Li et al. (Li et al., 2014) analyzed and classified 
29 different tools. Only one (FxCop) takes .NET 
assemblies as input, one (RE-KOMBINE) takes 
requirements and solutions as input, and one (CLIO) 
takes compiled binaries as input. Most 86% of the 
tools take source code as input, some of these tools 
are mentioned as follows: (i) SIG Software Analysis 
Toolkit is used to calculate code properties to 
identify code TD (Nugroho et al., 2011), (ii) 
Resource Standard Metrics calculates source code 
metrics and analyzing code quality to find style 

violations and logic problems. This tool can identify 
design and code TD, and (iii) CodeVizard is a tool 
for detecting design TD thought code smells 
identification (Zazworka and Ackermann, 2010).  

Although these tools and techniques have shown 
useful to extract structural information and support 
the automated management of some types of debt, 
they do not cover its real meaning and human factors 
(e.g., tasks commented as future work), taking aside 
them on it (Zazworka et al., 2013) (Potdar and 
Shihab, 2014). Thus, they may not point to a 
relevant TD or not report a piece of code which is 
really considered a TD by developers. Besides, some 
types of debt are undetectable by tools and may not 
be directly identified using only metrics collected 
from the source code (Farias et al., 2015). 

In this sense, pieces of code that need to be 
refactored to improve the quality of the software 
may continue unknown. In order to complement the 
TD identification with more contextual and 
qualitative data, human factors and the developers’ 
point of view should be considered. 

2 OUTLINE OF OBJECTIVES 

2.1 General Objective 

Our objective is to propose an approach to support 
and automate the identification and management of 
different TD types through code comment analysis 
by considering the developers’ point of view. 

2.2 Complementary Objectives 

 Perform a systematic mapping study with the 
aim of investigating how research is being 
conducted in the mining software repositories 
field. This allowed us to identify the main 
approaches with focus on comment analysis; 
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 Analyze and categorize contextualized terms, 
combinations, and patterns to understand how 
they may be combined to support the 
identification and management of different TD 
types through the comments analysis; 

 Create a structure that systematically allows 
combining terms providing a large vocabulary to 
support the TD identification; 

 Develop an automated tool in order to quickly 
analyze developer’s comments embedded in 
source codes; 

 Propose and plan a family of experiments. From 
them, we intend to evaluate and evolve our 
approach with the purpose of characterizing its 
overall accuracy and factors affecting the 
identification of TD through code comment 
analysis. 

 Improve our proposed model, vocabulary, and tool; 

3 STATE OF THE ART 

3.1 Code Comments 

Comments are a generic type of task annotation 
where developers insert documentation directly into 
source code (Storey et al., 2008). These annotations 
are richness of semantic information written in 
natural language. 

Despite there are different syntaxes and types of 
comments according to the programming language, 
they are divided into two categories: (i) inline 
comments, which only permit the insertion of one 
line of comment, and (ii) block comments, which 
permit the insertion of several lines. Developers write 
comments in a sublanguage of English using a limited 
set of verbs and tenses, and personal pronouns are 
almost not used (Davis and Bowen, 2001). 

Code comments and the source code itself are an 
important documentation to help the software 
comprehension (Souza et al., 2006). These 
descriptions may reveal important information, such 
as the reason for adding new lines to source code, 
knowing about the progress of a collective task, or 
even why relevant changes were performed. Thus, 
comments may be used to describe issues that may 
require work in the future, notice emerging problems 
and what decisions need to be taken about them 
(Maalej and Happel, 2010) (Shokripour et al., 2013). 

3.2 Code Comment Analysis 

When the source code is well commented, we can 
understand what a piece of code does, what issues it 

has, and whether it needs to be fixed or improved, 
without needing to analyze its implementation. In 
general, comments are used by developers to 
understand unfamiliar software because comments 
are written in natural language (Freitas et al., 2012). 
Comments provide an important set of information 
which may help to understand software features, and 
make easier software comprehension. 

In fact, comments have been used to describe 
issues that may require future work, emerging 
problems and decisions taken about those problems 
(Maalej and Happel, 2010). These descriptions 
facilitate human readability and provide additional 
information that summarizes the developer context. 

In this sense, authors have conducted 
experiments using code comments as data source in 
several research works in order to discuss and 
analyze their importance on the software 
comprehension. 

In (Storey et al.,, 2008) the authors described an 
empirical study that explored how code comments 
play a role in how developers deal with software 
maintenance tasks, investigating how comments 
may improve processes and tools that are used for 
managing these tasks. In similar approach, (Maalej 
and Happel, 2010) analyzed the purpose of work 
descriptions and code comments aiming to discuss 
how automated tools can support developers in 
creating them.  

Some research works from Mining Software 
Repository (MSR) have focused on code comments. 
Yang and Tan (Yang and Tan, 2012) proposed an 
approach that analyses the word context in code 
comments. The main idea is to discover semantically 
related words. Many words that are semantically 
related in software development process are not 
semantically related in English. In this same sense, 
Howard et al. (Howard et al., 2013) also presented 
an approach to augment natural language thesauri 
with code-related terms. 

(Freitas et al., 2012) presents an approach to 
locate problem domain concepts on comments, and 
identify the relevant code chunks associated with 
them. The authors also introduce Darius, a tool to 
implement their proposal for Java programs. Darius 
identifies and extracts inline, bock, and Javadoc 
comments and provides some metrics. They 
concluded that higher level source entities tend to 
have comments oriented for problem domain 
information, whereas comments of lower level 
source entities tend to include more program domain 
information. 

In other work, Gupta et al. (Gupta et al., 2013) 
suggested a Part-of-speech tagging of program 
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identifiers to understand how a program element is 
named. Considering identifiers and comments, 
(Salviulo et al., 2014) performed an experiment with 
students and young professional developers in order 
to understand how they perceive comments and 
identifier names. 

3.3 Using Code Comments to Identify 
TD 

More recently, code comments have been explored 
with the purpose of identifying TD. Potdar and 
Shihab (Potdar and Shihab, 2014) analyzed code 
comments to identify text patterns and TD items. For 
that, the authors used the srcML toolkit (Maletic et 
al., 2002), a command line tool that parses source 
code into XML file, to extract the comments. In this 
step, the authors considered all types of comments. 
This decision may bring a lot of unnecessary effort 
because it considers comments that are not important 
to TD scope, such as license and Auto-generated 
comments. After the data extraction, the authors 
identified comments that indicate TD.  

They read more than 101K code comments, and 
organized 62 text patterns that were used to quantify 
how much TD exist in four different projects 
(Eclipse, Chromium OS, ArgoUML, and Apache 
http). Their findings show that 2.4 - 31.0% of the 
files in a project contain self-admitted TD. In 
addition, the most used text patterns were: (i) “is 
there a problem” with 36 instances in the Eclipse, 
(ii) “hack” with 17 instances in the ArgoUML, and 
(iii) “fixme” with 20 instances in the Apache, and 
761 instances in the Chrominum OS. 

In another TD identification approach, 
Maldonado and Shihab (Maldonado and Shihab, 
2015) evolved the work of Potdar and Shihab 
(Potdar and Shihab, 2014), proposing four simple 
filtering heuristics to eliminate comments that are 
not likely to contain technical debt. For that, they 
read 33K code comments from five open source 
projects (Apache Ant, Apache Jmeter, ArgoUML, 
Columba, and JFreeChart). Their findings showed 
that self-admitted technical debt can be classified 
into five main types: design debt, defect debt, 
documentation debt, requirement debt, and test debt. 
According to the authors, the most common type of 
self-admitted TD is design debt (between 42% and 
84% of the classified comments). 

In the same sense, Farias et al. (Farias et al., 
2015) proposed a model aiming to support the 
detection of different types of debt through code 
comment analysis. 

These research works provide preliminary 

indication that comments can be effectively used to 
support TD identification. However, the factors that 
may affect its accurate usage are still unknown. 

4 METHODOLOGY 

Research works in software engineering have widely 
been conducted with focus on quantitative analysis. 
In general, this type of study analyzes treatment of 
variables, control groups, and statistical data  
(Wohlin et al., 2012). 

Differently from quantitative analysis, qualitative 
one appears to be unusual in software engineering 
approaches. Using this method is possible to achieve 
aspects behind the problem under study, analyze 
data, and suggest conclusions to which other 
methods would be blind (Segal et al., 2005).  

In order to include the combining of quantitative 
and qualitative approaches as complementary 
methods, we will use triangulation methodology to 
analyze how code comment analysis supports the 
TD identification. 

Triangulation is a research strategy described as 
a convergent methodology with multiple 
operationalisms (Campbell and Fiske, 1959). The 
main idea is to analyze evidences from different 
sources, be collected using different methods, have 
different forms, be analyzed using different 
methods, or come from a different study altogether 
(Shull et al., 2008). In this methodology, researchers 
can improve conclusions on their judgments through 
collecting and analysis of different data considering 
the same phenomenon (Jick 1979). 

4.1 Overview 

Figure 1 presents an overview of the research. We 
explore code comments using a systematic mapping 
study, and a family of experiment in order to 
propose methods and techniques to support the 
identification and management of different TD 
types. With the results of the studies, we expected 
advance the set of knowledge on how improve the 
TD identification process through code comment 
analysis. We briefly describe each step following the 
numbers of Figure 1. 

To begin with, we performed a systematic 
mapping study (1) in order to understand the mining 
software repositories area and to identify its current 
targets and gaps, regarding mainly source codes and 
comments analysis (Farias et al., 2016). We 
identified some important studies on usage of 
comments  for  software  comprehension,  and  some 
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Figure 1: Overview of Research. 

techniques and tools used to extract and analyze 
comments. 

Second, we developed a Contextualized 
Vocabulary Model for identifying TD on code 
comments (CVM-TD) (2). CVM-TD uses word 
classes and code tags to support TD identification. 
The model provides a structure that systematically 
allows combining terms creating a large vocabulary 
on TD (Farias et al., 2015). 

Next, our work proposes a family of experiment 
called FindTD composed by five experiments, two 
exploratory studies, and three controlled 
experiments.  A family of experiments involves not 
only replications, but variations among the 
experiments (Basili et al., 1999). In this respect, we 
intend to perform experimental variations in order to 

evaluate and evolve our set of knowledge on the 
proposed model and techniques to identify TD using 
code comments. 

In the first experiment (FindTD I), an exploratory 
study (3) was performed to characterize the feasibility 
of the proposed model to support the detection of TD 
through code comments analysis. For that, we 
developed a tool to extract comments from the software 
code, the eXcomment. This tool extracts and filters 
candidate comments from source code using the 
contextualized vocabulary provided by the model. 

Following, the promising initial outcomes 
motivated us to further evaluate CVM-TD with other 
data sources. Thus, we performed a controlled 
experiment (FindTD II) (4). Therefore, in this 
evaluation we extend Farias et al. (Farias et al., 
2015) with an additional quantitative study. We 
analyzed the use of CVM-TD with the purpose of 
characterizing its overall accuracy when classifying 
candidate comments and factors that influence the 
analysis of the comments to support the 
identification of TD in terms of accuracy. For each 
candidate comment listed in a form, the participants 
chose "Yes" or "No", and their level of confidence 
on their answer. They used an ordinal scale of one to 
four to represent the confidence. Besides, for each 
comment marked as yes, they should highlight the 
pieces of text that was decisive for giving this 
answer (set of comment patterns). 

Our findings indicate that CVM-TD provided 
promising results considering the accuracy values. We 
observed that many comments had high agreement, and 
almost 60% of comments filtered by terms that belong 
to the vocabulary (candidate comments) proposed in 
(Farias et al., 2015) were identified as good indicators 
of TD (Farias et al., 2016). 

Next, we designed FindTD III (6) from insights 
of FinTD II, by changing the setup and controlling 
other variables. Our main goal in this experiment is 
to analyze the set of comment patterns identified and 
classified in previous experiment. We intend to carry 
out a qualitative analysis in order to improve the 
model and the vocabulary, identifying the most 
important patterns, and the relationship between 
comment patterns and TD types. To do this, we will 
perform a coding to group patterns into different 
comment indicators. 

Coding is a method that enables researchers to 
organize and group similar data into categories or 
themes, attaching labels or codes to different 
segments - the beginning of themes.  Information 
from different sources can be easily sorted and 
compared. A theme is an outcome of coding, 
categorization, and analytic reflection, not 
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something that is, in itself coded   (Cruzes and Dyba, 
2011) (Ellsberg and Heise, 2005). 

This experiment will provide us inputs to 
improve CVM-TD, resulting a new release of the 
contextualized vocabulary. We also intend to 
develop new features in eXcomment. This feature is 
associated with the new vocabulary to quickly 
support the interpretation of comments (7). 

After this study, we planned to perform a controlled 
experiment (8). In this experiment, besides evaluating 
the new release of the contextualized vocabulary and 
tool, we expect to compare the overall accuracy when 
classifying candidate comments between two groups, 
one using the tool to analyze comments and another 
one without the tool. 

In FindTD V (9), we expected to perform an 
exploratory study in the software industry. In this 
study, we purpose to compare patterns and TD items 
identified into open source code and closed code 
developed in an industrial environment. 

The last one is the FindTD VI (10). We intend to 
compare our approaches to different tools that use 
metrics extracted from the source code to identify 
TD items. 

Our methodology might set some limitations on 
what can be experimented. The first considers the 
power of the proposed vocabulary. It is possible that 
the set of terms and combinations used by our model 
and vocabulary are simply too many to be studied. 
An alternative would be to limit the studies to a very 
specific context and software. Other risk involves 
the effort to carry out all studies because of the 
difficulty of performing experiments in this area. 

5 EXPECTED OUTCOME 

In the context of our empirical investigation, we are 
interested in findings that help us to comprehend 
how code comments analysis can support the 
identification and management of different TD 
types, considering the developers’ point of view. 

We hope to develop a rich contextualized 
vocabulary and a tool to support the TD 
identification through comment analysis. We believe 
this approach can improve methods of identifying 
and classifying TD items, analyzing code comments.   

6 STAGE OF THE RESEARCH  

In accordance with proposed methodology described 
in Section 4 and shown in Figure 1, we purpose a 

systematic mapping study and a family of 
experiment in order to discuss our goals. Figure 1 is 
broken down into two parts. The tasks that have 
already performed were organized on top of the 
figure (part A), and the tasks that will be performed 
in the future were organized on bottom of the figure 
(part B). 

In this sense, we have:  (i) performed the 
systematic mapping study, (ii) developed a 
Contextualized Vocabulary Model, (iii) performed 
the first exploratory study and its analysis, (iv) 
performed the first controlled experiment and its 
analysis, and (v) designed the FindTD III and carried 
out the experiment. Currently, we are analyzing data 
from this study, using qualitative methods. 
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