
Combining Invariant Violation with Execution Path Classification for
Detecting Multiple Types of Logical Errors and Race Conditions

George Stergiopoulos1, Panayiotis Katsaros2, Dimitris Gritzalis1 and Theodore Apostolopoulos1

1Information Security & Critical Infrastructure Protection Laboratory, Dept. of Informatics,
Athens University of Economics & Business, 76 Patission Ave., GR-10434, Athens, Greece

2Dept. of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

Keywords: Code Classification, Logical Errors, Dynamic Invariants, Source Code, Execution Path, Assertions, Vulnera-
bility, Exploit, Automatic, Analysis, Information Gain, Fuzzy Logic.

Abstract: Context:Modern automated source code analysis techniques can be very successful in detecting a priori de-
fined defect patterns and security vulnerabilities. Yet, they cannot detect flaws that manifest due to erroneous
translation of the software’s functional requirements into the source code. The automated detection oflogical
errors that are attributed to a faulty implementation of applications’ functionality, is a relatively uncharted
territory. In previous research, we proposed a combination of automated analyses for logical error detection.
In this paper, we develop a novel business-logic oriented method able to filter mathematical depictions of soft-
ware logic in order to augment logical error detection, eliminate previous limitations in analysis and provide a
formal tested logical error detection classification without subjective discrepancies. As a proof of concept, our
method has been implemented in a prototype tool called PLATO that can detect various types of logical errors.
Potential logical errors are thus detected that are ranked using afuzzy logic systemwith two scales character-
izing their impact: (i) aSeverity scale, based on the execution paths’ characteristics andInformation Gain, (ii)
a Reliability scale, based on the measured program’sComputational Density. The method’s effectiveness is
shown using diverse experiments. Albeit not without restrictions, the proposed automated analysis seems able
to detect a wide variety of logical errors, while at the same time limiting the false positives.

1 INTRODUCTION

The sum of all functional requirements of an appli-
cation reflect the intended program behavior; that is,
what the programmer wants his code to do and what
not to do. During software development, functional
requirements are translated into source code. Asoft-
ware error or fault is the difference between a com-
puted, observed, or measured value and the true, spec-
ified or theoretically correct value or condition inside
the software code (Peng and Wallace, 1993). A(soft-
ware) vulnerabilityis a weakness in a system or appli-
cation that is subject to exploitation or misuse (Scar-
fone et al., 2008). It is also defined as a mistake in
software that can be leveraged to gain access, violate
a reasonable security policy or force software to ex-
hibit unintended behavior (CVE, 2015).

Research on automated detection of software er-
rors and vulnerabilities has mainly focused on static
analysis and software model checking techniques that
are effective in detecting a priori specified errors
(e.g. Time Of Check - Time Of Use errors, null

pointer dereferences etc.), bad coding patterns and
some types of exploitable vulnerabilities (e.g. unsan-
itized input data, buffer overflows etc.). Yet, errors
related to the intended program functionality, which
are broadly calledlogical errors, are not a priori
known. In a code auditing process, they cannot be an-
alyzed as pattern-specific errors since they are rather
application-specific. At the level of the program’s ex-
ecution flow, these errors will cause execution diver-
sions that manifest as unintended program behaviour
(Felmetsger et al., 2010).

Since logical errors in anApplication under
Test(AUT) are essentially execution deviations from
its intended functionality, their automated detection
needs to be based on some model of the AUT’s op-
erational logic. Such a model can be inferred in
the form of likely invariants from the dynamic anal-
ysis of official executions of the AUT’s functional-
ity (i.e. execution of scenarios).Dynamic invariants
are properties that are likely true at a certain point or
points of the program and, in effect, reveal informa-
tion about the goal behaviour, the particular imple-
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mentation and the environment (inputs) under which
the program runs (Ernst et al., 2007). Our method for
the automated detection of logical errors extends pre-
vious research (Felmetsger et al., 2010) (Stergiopou-
los et al., 2012) (Stergiopoulos et al., 2013)(Ster-
giopoulos et al., 2014) (Stergiopoulos et al., 2015b)
(Stergiopoulos et al., 2015a) by combining methods
utilized in vulnerability detection, albeit not for log-
ical errors. The same combination of tools was used
in the aforementioned articles, but there are important
differences and at the end, only basic concepts from
those works are kept. In PLATO, dynamic invari-
ants are evaluated using different techniques. The tool
is now capable of analyzing the full range of instru-
mented invariants, while keeping spurious invariants
to a minimum using a new classification system that
uses the Information Gain algorithm. Its present ver-
sion implements two new formal classifiers, which re-
place the previously used empirical, text-based rules.
Classification functions are trained using data collec-
tions of known code vulnerabilities from the National
Institute of Standards and Technology (NIST) to clas-
sify source code paths using information gain algo-
rithms.

Overall, the main contributions of this article are
summarized as follows:

1. We show how most types of information flow de-
pendent logical errors can be detected by classi-
fying invariant violations and their corresponding
execution paths based on information gain. Dan-
gerous source code methods recorded by major
databases are used as indicators of risk, according
to their appearance in real-world vulnerabilities.
PLATO’s logical error detections are classified in
two different groups of sets as follows:

• the Severity sets, quantifying the danger level
of an execution pathπ (the impact of an error,
if it were to manifest on pathπ during execu-
tion). Severity is based on an algorithm which
uses Information Gain for classification from
data mining.

• the Reliability sets, quantifying a pathπ with an
invariant violation based on the size and com-
plexity of the code traversed by pathπ.

2. To test the diversity of errors that can be detected,
we develop and evaluate the PLATO tool on dif-
ferent AUTs containing logical errors that mani-
fest different types of vulnerabilities: (i) A multi-
threaded airline control ticketing system; previ-
ously used in a controlled experimentation with
program analysis. (ii) An aggregated AUT test-
bed that aims to evaluate PLATO’s Severity clas-
sification system using multiple vulnerable code

examples from NIST’s source code vulnerability
suite (Boland and Black, 2012). The choice of the
experimental scenarios was based on analyzing
real-world source code containing the most com-
mon types of logical errors recorded in software
development, according to (Martin and Barnum,
2008) and specifically (cwe, 2016).

2 RELATED WORK

Recent developments in debugging techniques also
focus on the detection of logical errors, but they do
not aim to a fully automated program analysis. Delta
debugging (Zeller, 2002) is a state-altering technique
that systematically narrows the difference between
the states of a failed program run from the states of
a failure-free run, down to a small set of variables.
The intuition is that any difference between the two
execution paths could be the failure cause. Predi-
cate switching is a variant of delta debugging (Zhang
et al., 2006) that alters predicate truth values during
of a program execution. Given a failing execution,
the goal is to find the predicate that, if switched from
false to true or the opposite, it causes the program
to execute successfully. A limitation of state-altering
techniques is that they do not address the problem of
semantic consistency; there is no guarantee that by
altering a state the new execution path will still be a
valid program run (Baah, 2012). A second limitation
is the usability of this technique, since the program
has to re-run after every single state alternation. In
our approach for detecting logical errors, state alter-
nation is avoided through the use of dynamic invari-
ants along with a one-time symbolic execution of the
AUT.

In (Doupé et al., 2011), the authors focus exclu-
sively on the detection of specific flaws found in web
applications, whereas in (Balzarotti et al., 2007) web
applications are analyzed for multi-module vulnera-
bilities using a combination of analysis techniques.
However, both works do not address the problem of
profiling the source code behavior or detecting logi-
cal errors per se.

In (Godefroid et al., 2005), authors present DART
for automatically testing software that combines (1)
automated extraction of interface using static source-
code parsing, (2) automatic generation of a test driver
to perform random testing and simulate a general en-
vironment and (3) dynamic analysis of how the pro-
gram behaves under random testing and automatic
generation of new test inputs to direct execution along
alternative program paths. DART detects errors such
as program crashes, assertion violations, and non-
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termination. Although detections from DART and
from our approach will certainly occasionally over-
lap, still DART cannot detect logical flaws that do
not lead to one of the aforementioned errors (e.g. a
program crash). If AUT execution terminates nor-
mally, DART cannot understand semantic differences
in functionality during similar executions. Our ap-
proach utilizes a basic notion and theory of this pa-
per, namely the fact that ”directed search usually pro-
vides much better code coverage than a simple ran-
dom search” (Godefroid et al., 2005). Our approach
uses directed dynamic monitoring of executions to
provide functionality coverage and extract dynamic
invariants that can adequately describe functionality.
Certain types of logical errors in web applications can
be detected with the approach discussed in (Felmets-
ger et al., 2010). A set of likely invariants that char-
acterize the execution of the AUTs is inferred using
the Daikon tool (Ernst et al., 2007)(dai, 2015). The
Daikon results are then used in JPF (Păsăreanu and
Visser, 2004)(jpf, 2015) to model-check the behav-
ior of the AUT over symbolic input. Our approach
can be applied on any type of standalone applica-
tion (even GUI applications), with no predefined map-
pings of inputs, which can range over infinite domains
(in (Felmetsger et al., 2010), analysis is restricted to
a web.xml file). To cope with this difference, input
vectors and information flows are derived by monitor-
ing user executions. Variants of our method were pre-
sented previously in (Stergiopoulos et al., 2012) and
(Stergiopoulos et al., 2013). In (Stergiopoulos et al.,
2012), we specifically targeted logical errors in GUI
applications. We described a preliminary deployment
of a Fuzzy Logic ranking system to mitigate the pos-
sibility of false positives and we applied the method
on lab test-beds. In (Stergiopoulos et al., 2013), the
Fuzzy Logic ranking system was formally defined
and further developed. In this work, the classification
mechanism that was proposed and evolved in (Ster-
giopoulos et al., 2012), (Stergiopoulos et al., 2013)
and in (Stergiopoulos et al., 2014) changes to a dif-
ferent approach that experiments indicate to be capa-
ble to analyze real-world applications instead of test-
beds and simple GUI AUTs while limiting subjectiv-
ity in detection classification, due to formal classifica-
tion mechanisms and different invariant filtering tech-
niques than the previous approaches. Specifically, the
current classification method is based on well-known
data mining techniques for source code classification
((Ugurel et al., 2002)), trained upon a internationally
accepted dataset of example vulnerabilities (NIST’s
Juliet Suite (Boland and Black, 2012)) for danger-
ous source code and corresponding inferred invari-
ants. Previous methodologies followed (Felmetsger

et al., 2010) and contributed an empirical classifica-
tion mechanism and test variations. (Stergiopoulos
et al., 2015b) was the first publication to detect logical
errors in real-world SCADA high-level software over
the MODBUS protocol, but neither its classification
system used any formal method, nor tests were thor-
ough enough to adequately present a detection range.

3 ANALYSIS BUILDING BLOCKS

In this section, the main building blocks of PLATO’s
methodology are described, namely: (i) how the be-
haviour of an AUT is modeled using likely dynamic
invariants, (ii) how the obtained likely invariants are
verified through symbolically executing the AUT and
(iii) how the results are classified using fuzzy logic
to measure the impact and the size/complexity of the
affected code, for each detection.

3.1 Overview

In this subsection, we will walk readers through key
intuitions of the presented methodology before div-
ing deeper into more technical aspects. Generally, the
entire method is comprised of three steps:

• Software-under-Test is executed while Daikon’s
agent is monitoring its memory and code. Daikon
then produces logical rules for variables called in-
variants the can describe software business logic.

• Invariants are filtered by PLATO based on a
data classification algorithm that utilizes a for-
mal mathematical technique calledInformation
Gain to keep only invariants that refer to ”danger-
ous” aspects of the software-under-test business
logic. PLATO discards the rest. ThisSeverity
method for filtering invariants according to ma-
chine learning and data classification algorithms
is the biggest novelty of this publication.

• Selected invariants are then inserted inside the
software-under-test source code in the form of
code assertions.

• NASA’s JPF symbolically executes the newly in-
strumented code, trying to traverse as many valid
execution paths as possible, while a listener is
checking for invariant assertion violations or en-
forcements (i.e. if they hold true or not in numer-
ous execution flows).

• If same invariant is found to be both enforced
and violated in different versions of the same sub-
execution flow, PLATO flags this event as a logi-
cal error detection.
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3.2 Dynamic Invariants for Profiling the
Behavior of the Source Code

The functionality of an AUT is captured in the form
of dynamic invariants, generated by the Daikon tool
(Ernst et al., 2007)(dai, 2015). These invariants
are logical rules for variables (e.g.p!=null or
var=="string") that hold true at certain point(s) of
a program in all monitored executions. As far as
PLATOs tests is concerned, Daikons monitoring is a
type of functional testing. Functionality test suites
aim to verify that the AUT behaves correctly from
a business perspective and functions according to its
business requirements. A business requirement is ”a
condition or capability to which a system must con-
form” (Zielczynski, 2006). It is a specific business be-
haviour of an application as observed by a user. Func-
tional test cases are used to validate the way an AUT
performs in accordance to those requirements.

The generated dynamic invariants can reflectthe
intended functionality of the AUT, if they are derived
from monitored executions of representative use-case
scenarios. To achieve adequate coverage during func-
tional testing, we adopt two typical rules of thumb:

First, we require a test case for each possible flow
of events inside a use case (this corresponds to a dia-
gram path in a UML use case diagram (Zielczynski,
2006)).

Second, we test as many variations (i.e. combi-
nations of input) of each test case as possible (Ziel-
czynski, 2006); i.e. we ”fuzz” the UML’s input data
to cover multiple input scenarios. Experience has
showed that no hardcore fuzzing is needed here, just
indicative data input cases. These input variations are
hidden in the statements or conditions that guide ac-
tions and activities in the AUT (business rules).

The validity of the inferred dynamic invariants
(i.e. the inferred program behaviour) is tested against
as many execution paths of the AUT as possible, using
symbolic execution of the AUT. Intuitively, if there is
an execution path, which violates a (combination of)
dynamic invariant(s), then a logical error may exist,
which affects the variable(s) referred in the invariant.

3.3 Symbolic Execution for Verifying
Dynamic Invariants

PLATO converts the likely invariants into Java asser-
tions and instruments them into the source code. For
example, let us consider that the invariantp!=null
holds true when the execution flow enters a method.
In this case, PLATO creates the assertion[assert
(p!=null);] and instruments it at the beginning

of that method, just before any other method exe-
cution. Likely dynamic invariants are filtered ac-
cording to two filtering criteria: invariants concern-
ing variables which affect the execution flow and in-
variants related to source code methods which are
tied to known application vulnerabilities (Martin and
Barnum, 2008)(Harold, 2006). For the former, we
particularly focus on the conditional expressions in
branches and loops. The latter is implemented by us-
ing a taxonomy that classifies source code methods
according to their danger level. This taxonomy is em-
bedded in PLATO and is based on the taxonomies
presented in (Martin and Barnum, 2008), the Ora-
cle’s Java Taxonomy (Gosling et al., 2014)(jap, 2015)
and reports from code audits (Hovemeyer and Pugh,
2004). More information on this taxonomy is pro-
vided in Section 4.2.1 which covers technical details.

Daikon’s invariants are then cross-checked with
a set of finite execution paths and their variable
valuations for each tested path. For this purpose,
PLATO obviously needs execution paths that ade-
quately cover the functionality of the AUT. PLATO
leverages NASA’s JPF tool to execute the AUT sym-
bolically. Specifically, we developed an extension lis-
tener for Java Symbolic PathFinder’s (SPF) to col-
laborate with PLATO, named PlatoListener. SPF
symbolically executes Java byte-code programs (jpf,
2015). One of its main features is automated genera-
tion of test inputs to explore a high number of differ-
ent execution paths of an AUT. Our PlatoListener re-
alized a listener extension able to monitor AUT states
and paths during SPF’s constraint solving and path
traversal. This way it managed to evaluate invariant
assertions as instrumented and executed through the
model checker.

3.4 Fuzzy Logic Classification of
Detections

It is not true that all the logical errors can divert
the programs’ execution to exploitable states and that
they have comparable impact on the functionality of
an AUT. Thus, similarly to a code auditor’s reasoning,
PLATO classifies detections using a fuzzy set theory
approach combined with two advanced classification
functions. Every assertion violation along with a exe-
cution path are classified into two different groups of
sets:

• theSeveritysets, which quantify the danger level
of the execution path, i.e. the impact that an ex-
ploitable error would have, if it would be mani-
fested on that path;

• theReliability sets, which quantify the overall re-
liability of an execution path based on the size and
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the complexity of the code traversed in it (a code
metric is used named Cyclomatic Density).

With this fuzzy logic approach, we also aim to
confront two inherent problems in automated logical
error detection: the large data sets of the processed
AUT execution paths. PLATO helps the code audi-
tor to focus only to those path transitions that appear
having high ratings in the classification system.

3.4.1 Severity

For an execution pathπ, Severity(π) measuresπ’s
membership degree in a Severity fuzzy set that re-
flects how dangerous is a flaw if it were to manifest
in path π, i.e. its relativeimpact. Execution path
π is weighted based on how its transitions and cor-
responding executed source code methods affect the
program’s execution: if there are transitions in the
path that are known to manifest exploitable behaviour,
thenπ is considered dangerous and is assigned higher
Severity ranks.

Definition 1. Given the execution pathπ, we define

Severity(π) = ν ∈ [1,5]

to measure the severity ofπ on a Likert-type scale
from 1 to 5.

Likert scales are a convenient way to quantify
facts (Albaum, 1997) that, in our case, refer to a pro-
gram’s flow. If an exploitable behaviour were to man-
ifest in an execution path, the scale-range captures
the intensity of its impact in the program’s control
flow. In order to weight paths, Severity is based on the
Statistical Information Gain, a measure used to clas-
sify execution paths in one out of five Severity cate-
gories that are ranked from one to five. Categories are
then grouped into Fuzzy Logic sets using labels:high
severity (4-5),medium(3) or low (1 or 2).

3.4.2 Measuring Severity of Execution Paths
using its Statistical Information Gain

Our Severity classification approach is based on the
Expected Information Gain(aka Expected Entropy
Loss) statistical measure (Abramson, 1964) that has
been successful in feature selection for information
retrieval (Etzkorn and Davis, 1997). Information Gain
has been used before by Glover et al. (Glover et al.,
2001) and Ugurel et al. (Ugurel et al., 2002) for clas-
sifying source code. Here, we use it to classify execu-
tion paths and their corresponding source code meth-
ods into danger levels.

To measure the Expected Information Gain of an
execution path, we need characteristics (features) to
look for. PLATO uses a taxonomy of dangerous

source code methods. These methods are recorded
to be tied to known vulnerability types (Martin and
Barnum, 2008),(nvd, 2015). The taxonomy is divided
into 5 subsets of source code methods that act as sets
of attributes to classify execution paths. Each sub-
set’s code methods are considered to have the same
impact level (i.e. they are known to be involved in
similar types of vulnerabilities). Each set is charac-
terized by a number on the Likert scale (1 to 5) de-
picting the danger level of its source code methods:
Set 1 contains the least dangerous methods while Set
5 contains the most dangerous source code methods,
known to be involved in many critical vulnerabili-
ties. For example, theSystem.exec() source code
method is known to be tied to OS injection vulnerabil-
ities (Martin and Barnum, 2008). Thereforeexec() is
grouped in Set 5 of the taxonomy. Severity ratings are
applied by classifying each execution path into one of
these five Severity sets of attributes which correspond
to specific impact levels.

In the following paragraphs, we provide a brief de-
scription of this theory (Abramson, 1964). LetPr(C)
be the probability of a transition in the path that in-
dicates that the path is considered dangerous.Pr(C)
is quantified as the ratio of the dangerous source code
methods over the total number of methods in the path.
Let f be the event that a specific source code method
or statement exists in the path. We also denote byC
and f the negations ofC andf.

Theprior entropy eis the probability distribution
that expresses how certain we are that an execution
path is considered dangerous, before featuref is taken
into account:

e=−Pr(C) lgPr(C)−Pr(C) lgPr(C) (1)

wherelg is the binary logarithm (logarithm to the base
2). The posterior entropy, when featuref has been
detected in the path is

ef =−Pr(C| f ) lgPr(C| f )−Pr(C| f ) lgPr(C| f ) (2)

whereas the posterior entropy, when the feature is ab-
sent is

ef =−Pr(C| f ) lgPr(C| f )−Pr(C| f ) lgPr(C| f ) (3)

Thus, the expected overall posterior entropy (EOPE)
is given by

EOPE= ef Pr( f )+ef Pr( f ) (4)

and the expected Information Gain (EIG) for a given
featuref is

EIG= e−ef Pr( f )−ef Pr( f ) (5)

The higher the EIG for a given set of attributes of
source code methodsf, the more certain we are that
this setf best describes the execution path.
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Table 1: Severity classification examples - Data input methods.

Rank Example of classified methods Set of Attributes
Low javax.servlet.http.Cookie (new Cookie()) Set 1 (Level 1)
Low java.lang.reflection.Field.set() Set 2 (Level 2)
Medium java.io.PipedInputStream (new PipedInputStream())Set 3 (Level 3)
High java.io.FileInputStream (new FileInputStream()) Set 4 (Level 4)
High java.sql.PreparedStatement.prepareStatement() Set 5 (Level 5)

Similarly to (Ugurel et al., 2002), EIG is calcu-
lated based on ratios between source code methods
in a path that are considered dangerous (e.g. meth-
ods executing data, likeexec()) and the total num-
ber of source code methods executed in the transi-
tions of each execution path. The taxonomy of Java
source code methods acts as the sets of attributes (cor-
responding to the eventf in the above equations). Ex-
ample source code methods of the taxonomy and their
classification into sets of attributes are given in Ta-
ble 1 below. Different classification ranks reflect the
different danger level. More technical details on the
taxonomy are given in Section 4.2.1.

Severity (π) basically tells us which set of at-
tributes best characterizes a pathπ; the one that ex-
hibits the highest overall EIG. Since each set of at-
tributesf is tied to a specific impact (danger) level,
then this level also indicates the danger level of the
corresponding execution path.

3.4.3 Reliability

As a measuring function, Reliability is used to clas-
sify execution paths into Reliability sets. It quantifies
how reliable an execution path is by computing the
likelihood that an exploitable behavior is manifested
in a variable usage.

Definition 2. Given the execution pathπ, with a set
of state variables, we define Reliability as

Reliability(π) = ν ∈ [1,5]

to measure the reliability ofπ on a Likert scale from
1 to 5.

Similarly to theSeverityfunction, our fuzzy logic
system classifies execution paths in categories:high
severity (4-5),medium(3) or low (1 or 2).

3.4.4 Measuring code Reliability with
Cyclomatic Density

The inherent risk or risk build-up of an AUT is
connected to its source code’s complexity (Chhabra
and Bansal, 2014). A broadly accepted measure is
the well-knownCyclomatic Complexity(Bray et al.,
1997) that measures the maximum number of linearly
independent circuits in a program’s control flow graph

(Gill and Kemerer, 1991). The original McCabe met-
ric is defined as

V(G) = e−n+2

whereV(G) is the cyclomatic complexity of the flow
graphG of a program,e is the number of edges andn
is the number of nodes in the graph. McCabe showed
that V(G) can be computed by applying the following
steps (Hansen, 1978):

1. increment by one for every IF, CASE or other al-
ternate execution construct;

2. increment by one for every DO, DO-WHILE or
other repetitive construct;

3. add two less than the number of logical alterna-
tives in a CASE;

4. add one for each logical operator (AND, OR) in
an IF.

However, Cyclomatic Complexity does not take
into consideration the size of the analyzed code. Re-
search conducted in the Software Assurance Technol-
ogy Center of NASA has showed that the most effec-
tive evaluation of the inherent risk of an AUT should
be based on a combination of the (cyclomatic) com-
plexity and the code’s size (Rosenberg and Hammer,
1998). Modules with both a high complexity and a
large size tend to have the lowest reliability. Mod-
ules with smaller size and high complexity are also a
reliability risk, because they feature very terse code,
which is difficult to change or to be modified.

To this end, PLATO implements heuristics that as-
sign Reliability ratings to execution paths through a
cyclomatic density analysis. The proposed method is
based on McCabe’s algorithm and the computation
of the Cyclomatic Densityfor each execution path.
TheCyclomatic Densityis the ratio of the Cyclomatic
Complexity to the logicallines-of-code, which mea-
sures the number of executable “statements” in the
path (some statements are excluded like for example
a variable assignment) (McC, 2015). This ratio repre-
sents the normalized complexity of the source code of
an execution pathπ and it is considered a statistically
significant single-value predictor of code’s maintain-
ability (Rosenberg and Hammer, 1998)(McC, 2015).
The higher the Cyclomatic density value, the denser
the logic. Thus, low output values from the Reliability
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classification function reflect reliable paths, whereas
high values reflect complex, error-prone code. Re-
lated research (Rosenberg and Hammer, 1998)(McC,
2015) proposes that Cyclomatic Density values for
the code to be simple and comprehensible should be
in the range of .14 to .42 .

Table 2: Reliability categories based on Cyclomatic Density
values.

Rank Example of classified methodsLvl
Safe Cycl.Density<= 0.1 1

Safe
Cycl.Density>0.1 &&
Cycl.Density<= 0.2 2

Average Cycl.Density>0.2 &&
Cycl.Density<= 0.3 3

ErrorProne Cycl.Density>0.3 &&
Cycl.Density<= 0.4 4

ErrorProne Cycl. Density>0.4 5

Each path is assigned a density value. The higher
the value, the more complex the logic of the traversed
code is and therefore more likely to have logical er-
rors lurking in its transitions (Rosenberg and Ham-
mer, 1998)(McC, 2015). Table 2 depicts the classifi-
cation categories for execution paths that can be ap-
plied using the Reliability classification function.

3.4.5 Risk: Combining Severity and Reliability
Ratings

According to OWASP, the standard risk formulation
is an operation over the likelihood and the impact of
a finding (Martin and Barnum, 2008):

Risk= Likelihood∗ Impact

We adopt this notion of risk to enhance the logical
error classification approach. For each execution path
, an estimate of the associated risk is computed by
combiningSeverity(π) andReliability(π). Aggrega-
tion operations combine several fuzzy sets to produce
a single fuzzy set. The Risk rank of an execution path
π is calculated using Fuzzy Logic’s IF-THEN rules.
An example is given in Figure 1.

The fuzzy logic classification system uses the fol-
lowing membership sets for ranks 1 to 5. For each
pair (a, b), a depicts the rank value and b depicts
the membership percentage of that rank in the corre-
sponding set. For example, Severity-Medium = (2.5,
1) means that an output rank of 2.5 is a member if the
Medium Severity set with 100% (1) certainty. This
way PLATO plots ranks 1 to 5 into membership sets.
The rest of all intermediate values are plotted based
on the mathematical equation defined by these points
(a, b):

1. TheSeverityset: partitions the [1..5] impact
scale to groups Low, Medium and High as: Low

=(0,1) (3,0), M =(1.5,0) (2.5,1) (3.5,0), H =(3,0) (5,
1).

2. TheReliability set: partitions the [1..10] time
scale to groups Early, Medium, Late and Very Late
periods as: Low =(0, 1) (1, 1) (3,0), Medium =(0, 0)
(3, 1) (5, 0), High =(0,0) (5,1).

By using the pre-computed tables with all ex-
pected values for Severity and Reliability, it is now
possible to assess the fuzzy estimation of the Risk val-
ues, for a given logical error detection.

Risk calculations are performed as follows: Ini-
tially, the appropriate IF-THEN rules are invoked and
generate a result for each rule. Then these results are
combined to output truth values. Each IF-THEN re-
sult is, essentially, a membership function and truth
value controlling the output set, i.e. the linguistic
variables Severity and Reliability. The membership
Percentages concerning Risk indicate the Risk group
(Low, Medium or High) that a logical error belongs
to.

Table 3 shows the fuzzy logic output for Risk,
based on the aggregation of Severity and Reliability.

Table 3: Severity x Reliability = R - Risk sets.

Sev/ty
Rel/ty Low Medium High

Safe Low Low Medium
Medium Low Medium High

Error-Prone Medium High High

Risk, Severity and Reliability ratings are supple-
mentary to invariant violations and do not provide the
basic mechanism for logical error detection; they just
provide a more clear view for the code auditor. Also,
high Severity rankings have more weight than Relia-
bility rankings. Rightmost maximum is found to have
closer-to-the-truth ranking results since Severity rat-
ings take into consideration source code methods exe-
cuted inside path transitions whilst Reliability ratings
provide only a generic view of the execution path’s
overall complexity.

The Fuzzy Logic system has been implemented
using the jFuzzyLogic library (Cingolani and Alcala-
Fdez, 2012).

4 A METHOD TO DETECT
LOGICAL ERRORS IN SOURCE
CODE

4.1 The Method’s Workflow

The analysis building blocks described in section 3
and implemented in PLATO are part of our workflow
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Figure 1: Example of a Fuzzy Logic rule.

for logical error detection with the following steps:

1. Use Case Scenarios.We assume the existence
of a test suite with use case scenarios that exer-
cises the functionality of the AUT. The selected
use-case scenarios must cover the intended AUT’s
functionality to a sufficient degree. This can be
quantified by appropriate coverage metrics.

2. For each use-case scenario, adynamic analysis
with the Daikon tool is performed. A set of in-
ferred dynamic invariants is obtained that charac-
terize the functionality of the AUT based on the
executed use case scenarios.

3. Daikon invariants are loaded in PLATO and are
processed as follows:

• The inferred dynamic invariantsare filtered
by PLATO, in order to use only those refer-
ring to high-risk transitions, i.e. (i) statements
that affect the program’s execution flow, and
(ii) source code methods that are connected to
the manifestation of exploitable behaviour (e.g.
method System.exec() for executing OS com-
mands with user input).

• PLATO instruments the AUT code with the
critical dynamic invariants, which are embed-
ded into the code as Java assertions (Martin and
Barnum, 2008).

The instrumented source code is symboli-
cally executed in NASA’s JPF tool with our
PlatoListener extension. A sufficiently large
number of feasible execution paths has to be cov-
ered, far more than the initial use case scenarios
covering the intended functionality. JPF relies on
thePlatoListener so as to check for existing as-
sertion violations and then flags the invariants in-
volved.

4. PLATO gathers PlatoListener detections
and classifieseach of them into Severity and Re-
liability levels. A Risk value is then computed
using Fuzzy Logic. The more suspicious an in-
variant violation and its corresponding execution
path is, the higher it scores in the Risk scale.

PLATO accepts input from Daikon (step 2) and
automates the analysis of the source in step 3. Fi-
nally, the PlatoListener is used in step 4 for monitor-
ing JPF’s symbolic execution.

4.2 Classifying Execution Paths

Following Oracle’s JAVA API and the related
documentation in ((Harold, 2006)(Gosling et al.,
2014)(jap, 2015)), three categories of Java source
code methods are proposed for the classification of
execution paths with respect to their Severity and Re-
liability values. Severity ranking is based on (i) In-
put Vectors and (ii) potentially exploitable methods
(sinks). Reliability ranking is based on (iii) Control
Flow checks (e.g. if-statements).

4.2.1 A Taxonomony of Source Code Methods
for Severity Calculations

About 159 Java methods were reviewed and then
grouped into sets depicting danger levels. These sets
are used as features in the Information Gain algorithm
to compute the Severity rating of execution paths.
Classified source code methods were gathered from
NIST’s Software Assurance Reference Dataset suites
(SARD) (Boland and Black, 2012), a set of known
security flaws together with source code test-beds.

Five sets of attributes are proposed, correspond-
ing to five danger levels from 1 to 5. The taxonomy
was based on rankings of bugs and vulnerabilities
recorded in NIST’s National Vulnerability Database
(NVD) (nvd, 2015), the U.S. government repository
of standards based vulnerability management data.
NVD provides scores that represent the innate charac-
teristics of each vulnerability using the CVSS scoring
system (nvd, 2015), which is an open and standard-
ized method for rating IT vulnerabilities.

Thus, each source code method in the taxonomy
is assigned to the set of attributes representing the ap-
propriate danger level. The correct set of attributes is
inferred based on the CVSS scores in the NVD repos-
itory. This was implemented using the following al-
gorithm:

1. For each source code method, we checked the
lowest and highest ratings of NVD vulnerabilities
that use this source code method1.

2. The characteristics of the identified vulnerabilities
are then inputed in the CVSS 3.0 scoring calcula-
tor 2, in order to calculate the lowest and highest
possible vulnerability scores.

1Bugs were gathered from the NVD repository:
https://web.nvd.nist.gov/view/vuln/search-advanced

2https://www.first.org/cvss/calculator/3.0
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3. Each source code method was then added in a set
of attributes corresponding to the result of previ-
ous step. Source code methods detected in vul-
nerabilities with scores 7 or above were grouped
in Set 5. Methods with score 6 to 7 in Set 4, those
with score 5 to 6 in Set 3, those with score 4 to 5
in Set 2 and those with score 1 to 4 in Set 1.

Example: Thejava.lang.Runtime.exec() source
code method (jap, 2015) is widely-known to be used
in many OS command injection exploits. NVD vul-
nerabilities recorded using this source code method
have an impact rating ranging from 6.5 up to 10 out
of 10. Using the characteristics of these records, the
CVSS scoring calculator outputted a rating of high
(7) to very high (10). This was expected, because
exec() is often used to execute code with application
level privileges. Thus, theSystem.exec() method
was classified in PLATO’s taxonomy in the very high
(5/5) danger level category.

Tables 4 and 5 provide examples for various types.
For the full taxonomy, the reader can access the link
at the end of this article.

Table 4: Example group - Input Vector Methods taxonomy.

java.io.BufferedReader.readLine()
java.io.ByteArrayInputStream.read()
java.lang.System.getenv()

Table 5: Example group - Sink methods taxonomy.

java.lang.Runtime.exec()
java.sql.Statement.executeQuery()
java.lang.System.setProperty()
java.io.File (new File())

4.2.2 Statements and Methods for Reliability
Calculations

Computing the Cyclomatic Density of a source code
is tied to the number of execution-branch statements
inside the code. Thus, Reliability calculations take
into consideration Java statements that affect the pro-
gram’s control flow.

• Control Flow Statements
According to (Harold, 2006) and (Felmetsger
et al., 2010), boolean expressions determine the
control flow. Such expressions are found in the
statements shown in Figure 2.

All source code methods from the mentioned
types were gathered from the official Java documen-
tation (jap, 2015)(Harold, 2006) and are used for the
computations of the Cyclomatic Density algorithm of
Section 3.4.4.

Figure 2: Example types of methods and statements in-
cluded in PLATO’s taxonomy.

5 EXPERIMENTAL RESULTS

The choice of the experimental scenarios was based
on analyzing real-world source code containing the
most common types of logical errors recorded in soft-
ware development, according to (Martin and Barnum,
2008) and specifically (cwe, 2016).

We are not aware of any commercial, stand-alone
suite or open-source revision(s) of software with a re-
ported set of existing logical errors to use as a test-
ing ground. Also, testing is restricted by JPF’s lim-
itations in symbolically executing software. For this
reason, our experiments were selected as to contain
real-world implementations of source code with dif-
ferent types of logical flaws often detected in real-
world code audits, in an effort to prove that diverse
types of logical errors can be detected and ranked ef-
fectively.

5.1 Experiment 1: Real-world Airline
Test from the SIR Object Database

The Software-artifact Infrastructure Repository (SIR)
(Rothermel et al., 2006) is a repository of software ar-
tifacts that supports controlled experimentation with
program analysis and software testing techniques (Do
et al., 2005), (Wright et al., 2010).

Our method was tested against a real-world AUT
from the SIR repository, which exhibits the character-
istics of a multithreaded activity requiring arbitration.
The AUT was a multi-threaded Java program for an
airline to sell tickets. The fact that this is a known
and well-documented error that can be detected using
different techniques (e.g. model checking) does not
cancel the goal of this experiment, which was to show
that our method can also detect logical errors that re-
sult in race conditions. This particular race condi-
tion is not detected through model checking but rather
through an inferred invariant violation, thus providing
that invariant violation method can be used to detect
the subset of logical errors that produce race condi-
tions.

The Logical Error. The logical error manifested
in this example leads to a race condition causing the
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airline application to sell more tickets than the avail-
able airplane seats. Each time the program sells a
ticket, it checks if the agents had previously sold all
the seats. If yes, the program stops the processing
of additional transactions. VariableStopSales indi-
cates that all the available tickets were sold and that
issuing new tickets should be stopped. The logical er-
ror manifests whenStopSales is updated by selling
posts and, at the time more tickets are sold by the run-
ning threads (agents). The AUT’s code is shown in
Figure 3.

Figure 3: SIR AUT example code able to create i threads
(agents) which sell tickets.

PLATO’s analysis for this test returned the results
shown in Figure 4. We now present in detail the
results obtained in the different steps of our workflow:

Step 1-2.There is only one function point to test.

• Single test-case: Functionality has only one flow
of events (multithreaded server accepting ticket
sale information and registering them).

• Numerous test-case variations: Infinite possible
variations for input (number of seats and cushion
to limit maximum saling of tickets).

Thus, we executed 20 variations of the test-case
for the airline server functionality, while trying to uti-
lize boundary values as input. Daikon monitored in-
puts ranging from 1 seat with 1 sailing agent limit up
to 1000 seats with 1000 agents and extracted the fol-
lowing invariant amongst others:

Num Of Seats Sold <= this.Maximum Capacity

Step 3.Dynamic invariants were instrumented in
the source code and the software was symbolically
executed in JPF. An assertion violation was detected
for the methodrunBug(): two executions were
found where the mentioned invariant was enforced
and violated respectively, thus implying a possible
logical error.

Step 4. Our method classified the path in which
the invariant assertion was violated with aSeverity =
5 score and aReliability = 3 , thus yielding atotal
Risk value of 4.5.

5.2 Experiment 2: Multiple Execution
Path Classification for Logical
Errors

To test the proposed classification method imple-
mented inside PLATO, we needed to execute it on an
appropriate test suite. We had two options: Either
utilize open-source applications or ”artificially made”
programs, common in benchmarking various source
code analysis tools. Both options have positive and
negative characteristics.

To this end, we endorsed the National Security
Agency’s (NSA) comparison results from (Agency,
2011) and (Agency, 2012), which state that ”the ben-
efits of using artificial code outweigh the associ-
ated disadvantages” when testing source code analy-
sis tools. Therefore, we created a test-bed application
based on the source code provided by NIST’sJuliet
Test Casesuite, a formal collection of artificially-
made programs (Boland and Black, 2012) packed
with well-known and recorded exploits. The Juliet
Test Suite is ”a collection of over 81.000 synthetic
C/C++ and Java programs with a priori known flaws.
The suites Java tests contain cases for 112 different
CWEs (exploits)” (Boland and Black, 2012). Each
test case focuses on one type of flaw, but some tests
contain multiple flaws. Each test has abad()method
in each test-program that manifests an exploit. A
good() method is essentially a safe way of coding
(true negative).

For our purposes we created an test suite that is,
essentially, an aggregation of multiple Juliet test filled
with various vulnerabilities of different danger-level;
ranging from medium information leakage to serious
OS execution injection. The test suit had both true
positives and true negatives. The CWE types of vul-
nerabilities that manifested inside the analyzed test
suite, as defined in NIST’s formal CWE taxonomy
(CVE, 2015), were: CWE-840 (business logic er-
rors), CWE-78 (OS Command Injection) and CWE-
315 (Cleartext Storage of Sensitive Information in a
Cookie).

Test scores and Information Gain output for dan-
gerous source code methods detected in execution
paths are provided at Table 6. We can see from ta-
ble 6 that PLATO’s classification system yielded an
overallSeverity Rank = 3 out of 5for the aggregated
test suite but ranked specific individual paths with a
Severity Rank = 5 out of 5.Interestingly, the execu-
tion paths that scored the highest were manifesting the
most dangerous vulnerability of all flaws present in
the AUT (CWE-79, OS command injection). This can
be seen from the fact that te most dangerous (Rank 4)
source code methods detected in dangerous paths in-
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Figure 4: Airline sales: No of inferred invariants, chosen assertions and violations.

Table 6: Experiment 2: Information Gain classification.

Entire Source code - Prior Entropy 0.402179
Entire Source code - Prior Severity 3
Entropy Loss for println(Rank 2) 0.162292
Entropy Loss for readLine(Rank 4) 0.242292
Entropy Loss for addCookie(Rank 2) 0.162292
Entropy Loss for exec(Rank 4) 0.242292
Entropy Loss for getPassword(Rank 2) 0.162292
Entropy Loss for getUserName Rank 2)0.162292

side the AUT presented the highest Gain (0.2423) on
both occasions; thus scoring higher than all the rest.
As seen in table 6, the first highest-ranked method is
the exec() (Rank 4) method which is a sink utilized
for OS command injection exploits.

PLATO’s Severity mechanism (i) detected all
paths prone to vulnerabilities due to the use of dan-
gerous source code methods, and (ii) successfully
ranked them to appropriate danger-levels based on
their flaws; thus effectively representing their danger-
level. We should underline here that this experiment
was executed in order to demonstrate the classifica-
tion capabilities of the Severity function. Data pro-
vided refer only to the classification mechanism.

6 CONCLUSIONS

Although detection rate was close to 100% success,
still, the sample upon which PLATO was tested re-
mains small to claim such a high average detection
rate. The applicability of the method presented de-
pends on how thoroughly the input vectors and dy-
namic invariants are analyzed. Yet, publications in
software engineering during the last years (Bastani
et al., 2015) (Barr et al., 2015) continue indicate that
Daikon is able to capture information flows and gen-
eral execution logic behind the source code, if exe-
cuted properly. The second most difficult problem

in logical error detection, namely classifying infor-
mation flows and invariant violations according to
their impact on business logic, seems manageable if
we utilize formal classification of these flows using
functional characteristics from common experience
in software development (e.g. method and libraries
known to be error prone). This what PLATO does: It
can classify likely invariants and their violations by
utilizing a formal classifier, trained by NIST’s source
code error and vulnerability suite.

State explosion remains a major issue, since it is a
problem inherited by the used analysis techniques, al-
beit now it seems manageable since we leverage JPF’s
memory management and implement all invariants as
assertions instead of trying to analyze them in mem-
ory. Although not tested in really large applications
due to JPF’s aforementioned restrictions, our test re-
sults imply this. We are in the process of developing
a fully-functional meta-tool that will be able to ana-
lyze any type of application by using targeted code
analysis.

6.1 Advantages and Limitations

One of our method’s limitations is the need for in-
put data from live execution of AUTs, while Daikon
infers the likely dynamic invariants. This is an inher-
ent problem in all empirical methods, since empiri-
cal approaches rely on repetitive observations to form
rules. Our method does not model the business logic
of AUTs using formal methods, but is rather depen-
dent on the soundness of the likely dynamic invariants
provided by Daikon and the various executions of the
AUT. If PLATO were to examine AUTs of thousands
of source code lines in entirety, problems would arise,
mostly due to JPF’s inability to handle large, com-
plex applications and also due to state explosion. Still,
JPF is the best symbolic execution software currently
available. Future test-beds can include more complex
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utilization of JPF by creating an automated configu-
ration mechanism to ”tweak” JPF per test-case and
break testing into multiple executions.

Although empirical methods are often criticized
for the lack of sound foundations in software engi-
neering, it is obvious that, in order for a tool to detect
flaws in the logic of applications, it needs to model
knowledge that reflects intended functionality.

Also, (provided that it is executed in the correct
manner and that it covers the entire functionality of
an AUT) Daikon’s output does reflect the AUT’s in-
tended functionality, since its dynamic invariants are
properties that were true over the observed executions
(Ernst et al., 2007). PLATO’s results enforce this no-
tion.

Based on the above notion and our tests, we drew
some significant conclusions:

• PLATO can indeed detect logical errors in ap-
plications using reasonable limits in the size and
complexity of AUTs, something no other tool can
claim at the time this article was written.

• Results have shown that this method goes beyond
logical error detection and can provide valid de-
tections of other types of flaws. The unexpected
detection of race conditions in one of our experi-
ments, although it was an unintended side effect,
proved this to be the case. As shown in previous
results, limiting a variables value in an airplane
ticket store not only led to a logical error that was
essentially a race condition flaw, but also to a log-
ical vulnerability that could lead the airline to sell
more tickets that its seats.

• Logical errors must be detected using productive
reasoning and not inductive because logical er-
rors can manifest in widely different contexts. For
example, a race condition can lead to a logical
vulnerability and is indeed a subtype of logical
programming errors, but it can also lead to other
types of errors (null pointer exception, division
by zero etc.) or even to no errors at all. In-
stead, PLATO’s deductive approach, not only de-
tects different types of logical errors but also pro-
vides insight on the impact of each error.
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