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Abstract: This paper deals with distributed matrix multiplication. Each player owns only one row of both matrices and
wishes to learn about one distinct row of the product matrix, without revealing its input to the other play-
ers. We first improve on a weighted average protocol, in order to securely compute a dot-product with a
quadratic volume of communications and linear number of rounds. We also propose a protocol with five com-
munication rounds, using a Paillier-like underlying homomorphic public key cryptosystem, which is secure in
the semi-honest model or secure with high probability in the malicious adversary model. Using ProVerif, a
cryptographic protocol verification tool, we are able to check the security of the protocol and provide a coun-
termeasure for each attack found by the tool. We also give a randomization method to avoid collusion attacks.
As an application, we show that this protocol enables a distributed and secure evaluation of trust relationships
in a network, for a large class of trust evaluation schemes.

1 INTRODUCTION

Secure multiparty computations (MPC), introduced
by Yao (Yao, 1982) with the millionaires’ problem,
has been intensively studied during the past thirty
years. The idea of MPC is to allow n players to jointly
compute a function f using their private inputs with-
out revealing them. In the end, they only know the
result of the computation and no more information.
Depending on possible corruptions of players, one
may prove that a protocol may resist against a col-
lusion of many players, or that it is secure even if at-
tackers try to maliciously modify their inputs. Mostly
any function can be securely computed (Ben-Or et al.,
1988) and many tools exist to realize MPC proto-
cols. They comprise for instance the use of a Trusted
Third Party (Du and Zhan, 2002), the use of Shamir’s
secret sharing scheme (Shamir, 1979), or more re-
cently the use of homomorphic encryption (Goethals
et al., 2005). It is also possible to mix these tech-
niques (Damgård et al., 2012).

Our goal is to apply MPC to the a distributed eval-

∗This work was partially supported by “Digital trust”
Chair from the University of Auvergne Foundation, by
the HPAC project (ANR 11 BS02 013), the ARAMIS
project (PIA P3342-146798) and the LabEx PERSYVAL-
Lab (ANR-11-LABX-0025).

uation of trust, as defined in (Jøsang, 2007; Dumas
and Hossayni, 2012). There, confidence is a combi-
nation of degrees of trust, distrust and uncertainty be-
tween players. Aggregation of trusts between players
on a network is done by a matrix product defined on
two monoids (one for the addition of trust, the other
one for multiplication, or transitivity): each player
knows one row of the matrix, its partial trust on its
neighbors, and the network as a whole has to com-
pute a distributed matrix squaring. Considering that
the trust of each player for his colleagues is private,
at the end of the computation, nothing but one row of
the global trust has to be learned by each player (i.e.,
nothing about private inputs should be revealed to oth-
ers). Thus, an MPC protocol to resolve this problem
should combine privacy (nothing is learned but the
output), safety (computation of the function does not
reveal anything about inputs) and efficiency (Lindell,
2009). First, we need to define a MPC protocol which
allows us to efficiently compute a distributed matrix
product with this division of data between players.
The problem is reduced to the computation of a dot
product between vectors U and V such that one player
knows U and V is divided between all players.
Related Work. Dot product in the MPC model has
been widely studied (Du and Atallah, 2001; Amir-
bekyan and Estivill-Castro, 2007; Wang et al., 2008).

Dumas, J-G., Lafourcade, P., Orfila, J-B. and Puys, M.
Private Multi-party Matrix Multiplication and Trust Computations.
DOI: 10.5220/0005957200610072
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, pages 61-72
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

61



However, in these papers, assumptions made on data
partitions are different: there, each player owns a
complete vector, and the dot product is computed be-
tween two players where; in our setting, trust evalu-
ation should be done among peers, like certification
authorities. For instance, using a trusted third party
or permuting the coefficients is unrealistic. Now,
computing a dot product with n players is actually
close to the MPWP protocol of (Dolev et al., 2010),
computing a mean in a distributed manner: comput-
ing dot products is actually similar to computing a
weighted average where the weights are in the known
row, and the values to be averaged are privately dis-
tributed. In MPWP the total volume of communica-
tion for a dot product is O

(
n3
)

with O (n) commu-
nication rounds. Other generic MPC protocols ex-
ist, also evaluating circuits, they however also require
O
(
n3
)

computations and/or communications per dot-
product (Bendlin et al., 2011; Damgård et al., 2012).
Contributions. We provide the following results:
• A protocol P-MPWP, improving on MPWP,

which reduces both the computational cost, by al-
lowing the use of Paillier’s cryptosystem, and the
communication cost, from O

(
n3
)

to O
(
n2
)
.

• An O (n) time and communications protocol Dis-
tributed and Secure Dot-Product (DSDPi) (for i
participants) which allows us to securely compute
a dot product UV , against a semi-honest adver-
sary, where one player owns a vector U and where
each player knows one coefficient of V .

• A parallel variant that performs the dot-product
computation in parallel among the players, lim-
its the total number of rounds. This is extended
to a Parallel Distributed and Secure Matrix-
Multiplication (PDSMMi) family of protocols.

• A security analysis of the DSDP protocol using
a cryptographic protocol verification tool, here
ProVerif (Blanchet, 2001; Blanchet, 2004). This
tool allows us to define countermeasures for each
found attack: adapted proofs of knowledge in or-
der to preserve privacy and a random ring order,
where private inputs are protected as in a wiretap
code (Ozarow and Wyner, 1984) and where the
players take random order in the protocol to pre-
serve privacy with high probability, even against a
coalition of malicious insiders.

• Finally, we show how to use these protocols for
the computation of trust aggregation, where clas-
sic addition and multiplication are replaced by
more generic operations, defined on monoids.
In Section 2, we thus first recall some multi-party

computation notions. We then introduce in Section 3
the trust model based on monoids. In Section 4, we
present our quadratic variant of MPWP and a linear-

time protocol in Section 5. We then give the asso-
ciated security proofs and countermeasures in Sec-
tion 6 and present parallelized version in Section 7.
Finally, in Section 8, we show how our protocols can
be adapted to perform a private multi-party trust com-
putation in a network.

2 BACKGROUND

We use a public-key homomorphic encryption
scheme where both addition and multiplication are
considered. There exist many homomorphic cryp-
tosystems, see for instance (Mohassel, 2011, § 3)
and references therein. We need the following
properties on the encryption function E (accord-
ing to the context, we use EPubB, or E1 or just
E to denote the encryption function, similarly for
the signature function, D1 or DprivB): computing
several modular additions, denoted by Add(c1;c2),
on ciphered messages and one modular multipli-
cation, denoted by Mul(c;m), between a ciphered
message and a cleartext. That is, ∀m1,m2 ∈
Z/mZ: Add(E(m1);E(m2)) = E(m1 + m2 mod m)
and Mul(E(m1);m2) = E(m1m2 mod m). For in-
stance, Paillier’s or Benaloh’s cryptosystems (Pail-
lier, 1999; Benaloh, 1994; Fousse et al., 2011)
can satisfy these requirements, via multiplication
in the ground ring for addition of enciphered mes-
sages (Add(E(m1);E(m2)) = E(m1)E(m2) mod m),
and via exponentiation for ciphered multiplication
(Mul(E(m1);m2) = E(m1)

m2 mod m), we obtain the
following homomorphic properties:

E(m1)E(m2) = E(m1 +m2 mod m) (1)
E(m1)

m2 = E(m1m2 mod m) (2)

Since we consider the semantic security of the
cryptosystem, we assume that adversaries are prob-
abilistic polynomial time machines. In MPC, most
represented intruders are the following ones:
• Semi-honest (honest-but-curious) Adversaries: a

corrupted player follows the protocol specifica-
tions, but also tries to gather as many information
as possible in order to deduce some private inputs.

• Malicious Adversaries: a corrupted player that
controls the network and stops, forges or listens
to messages in order to gain information.

3 MONOIDS OF TRUST

There are several schemes for evaluating the transitive
trust in a network. Some use a single value represent-
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ing the probability that the expected action will hap-
pen; the complementary probability being an uncer-
tainty on the trust. Others include the distrust degree
indicating the probability that the opposite of the ex-
pected action will happen (Guha et al., 2004). More
complete schemes can be introduced to evaluate trust:
Jøsang introduces the Subjective Logic notion which
expresses beliefs about the truth of propositions with
degrees of ”uncertainty” in (Jøsang, 2007). Then the
authors of (Huang and Nicol, 2010) applied the asso-
ciated calculus of trust to public key infrastructures.
There, trust is represented by a triplet, (trust, dis-
trust, uncertainty) for the proportion of experiences
proved, or believed, positive; the proportion of expe-
riences proved negative; and the proportion of expe-
riences with unknown character. As uncertainty =
1−trust−distrust, it is sufficient to express trust with
two values as 〈trust,distrust〉. In e.g. (Foley et al.,
2010) algorithms are proposed to quantify the trust
relationship between two entities in a network, using
transitivity and reachability. For instance, in (Dumas
and Hossayni, 2012) the authors use an adapted power
of the adjacency matrix to evaluate the trust using
all existing (finite) trust paths between entities. We
show in the following of this section, that powers of
this adjacency matrix can be evaluated privately in a
distributed manner, provided than one disposes of an
homomorphic cryptosystem satisfying the homomor-
phic Properties (1) and (2).

3.1 Aggregation of Trust

Consider Alice trusting Bob with a certain trust de-
gree, and Bob trusting Charlie with a certain trust de-
gree. The sequential aggregation of trust formalizes
a kind of transitivity to help Alice to make a decision
about Charlie, that is based on Bob’s opinion. In the
following, we first consider that the trust values are
given as a pair 〈a,b〉 ∈D2, for D a principal ideal ring:
for three players P1, P2 and P3, where P1 trusts P2 with
trust value 〈a,b〉 ∈D2 and P2 trusts P3 with trust value
〈c,d〉 ∈ D2 the associated sequential aggregation of
trust is a function F : D2×D2→ D2, that computes

the trust value over the trust path P1
〈a,b〉→ P2

〈c,d〉→ P3
as 〈a,b〉F〈c,d〉= 〈ac+bd,ad +bc〉. Similarly, from
Alice to Charlie, there might be several ways to per-
form a sequential aggregation (several paths with ex-
isting trust values). Therefore it is also possible to
aggregate these parallel paths with the same mea-
sure, in the following way: for two disjoint paths

P1
〈a,b〉→ P3 and P1

〈c,d〉→ P3, the associated parallel ag-
gregation of trust is a function z :D2×D2→D2, that
computes the resulting trust value as: 〈a,b〉z〈c,d〉=
〈a+ c−ac,bd〉. We prove the following Lemma.

Lemma 1. 〈a,b〉 is invertible for z if and only if (b
is invertible in D) and (a = 0 or a−1 is invertible).

Proof. As 〈a+ 0− a.0, b.1〉=〈a,b〉, 〈0,1〉 is neutral
for z. Then, for b invertible, if a = 0, then 〈0,b−1〉 is
an inverse for 〈0,b〉. Otherwise, for a− 1 invertible,
〈a(a−1)−1,b−1〉z〈a,b〉 = 〈a,b〉z〈a(a−1)−1,b−1〉
= 〈a+a(a−1)−1−a2(a−1)−1,bb−1〉 = 〈0,1〉.
Similarly, if 〈a,b〉z〈c,d〉= 〈0,1〉, then bd = 1 and b
is invertible. Then also (a−1)c = a. Finally if a 6= 0
and a− 1 is a zero divisor, there exists λ 6= 0 such
that λ(a− 1) = 0, thus λ(a− 1)c = 0 = λa, but then
λ(a−1)−λa =−λ = 0. As this is contradictory, the
only possibilities are a = 0 or a−1 invertible.

3.2 Multi-party Private Aggregation

For E an encryption function, we define the natural
morphism on pairs, so that it can be applied to trust
values: E(〈a,b〉) = 〈E(a),E(b)〉.We can thus extend
homomorphic properties to pairs so that the parallel
and sequential aggregation can then be computed ho-
momorphically, provided that one entry is in clear.

Lemma 2. With an encryption function E, satisfying
the homomorphic Properties (1) and (2), we have:

Mul(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉F〈c,d〉)
= 〈E(a)cE(b)d ,E(a)dE(b)c〉

Add(E (〈a,b〉) ;〈c,d〉) = E (〈a,b〉z〈c,d〉)
= 〈E(a)E(c)E(a)−c,E(b)d〉

Moreover, those two functions can be computed on an
enciphered 〈a,b〉, provided that 〈c,d〉 is in clear.

Proof. From the homomorphic properties of the en-
cryption functions, we have: E(a)cE(b)d = E(ac+
bd), E(a)dE(b)c = E(ad + bc), E(a)E(c)E(a)−c =
E(a+c+a(−c)) and E(b)d =E(bd). For the compu-
tation, both right hand sides depend only on ciphered
values E(a), E(b), and on clear values c and d (E(c)
can be computed with the public key, from c).

This shows, that in order to compute the aggre-
gation of trust privately, the first step is to be able to
compute dot-products privately.

4 FROM MPWP TO P-MPWP

4.1 MPWP Description

The MPWP protocol (Dolev et al., 2010) is used to
securely compute private trust values in an additive
reputation system between n players. Each player
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Pi (excepted P1, assumed to be the master player)
has a private entry vi, and P1 private entries are
weights ui associated to others players. The goal is
to compute a weighted average trust, i.e., ∑n

i=2 ui ∗ vi.
The idea of MPWP is the following: the first player
creates a vector TV containing her private entries
ciphered with her own public key using Benaloh’s
cryptosystem, i.e., TV = [E1(w2), . . . ,E1(wn)]. Then,
P1 also sends a (n− 1)× (n− 1) matrix M, with
all coefficients initialized to 1 and a variable A = 1.
Once (M,TV,A) received, each player computes:
A = A ∗E1(ui)

vi ∗E1(zi), where zi is a random value
generated by Pi. At the end, the first player gets
D1(A) = ∑n

i=2 uivi + zi. Then, the idea is to cut the zi
values in n−1 positive shares such that zi = ∑n

j=2 zi, j.
Next, each zi, j is ciphered with the public key of Pj,
the result is stored into the ith column of M, and M is
forwarded to the next player. In a second phase, play-
ers securely remove the added random values to A,
from M = (mi, j) = (E j(zi, j)): each player Pj, except
P1, computes her PSS j = ∑n

i=2 D j(mi, j) = ∑n
i=2 zi, j

by deciphering all values contained in the jth row
of M; then they send γ j = E1(PSS j) to P1, their
PSSi ciphered with the public key of P1. At the
end, P1 retrieves the result by computing Trust =
D1(A) − ∑n

j=2 D1(γ j) = D1(A) − ∑n
j=2 PSS j =

D1(A)−∑n
j=2 ∑n

i=2 zi, j = D1(A)−∑n
i=2 zi = ∑n

i=2 uivi.

4.2 P-MPWP: A lighter MPWP

P-MPWP is a variant of MPWP with two main differ-
ences: first Paillier’s cryptosystem is used instead of
Benaloh’s, and, second, the overall communications
cost is reduced from O

(
n3
)

to O
(
n2
)

by sending parts
of the matrix only. All steps of P-MPWP but those
clearly identified in the following are common with
MPWP, including the players’ global settings. Since
P-MPWP is using a cryptosystem where players can
have different modulus, some requirements must be
verified in the players’ settings. First of all, a bound B
needs to be fixed for the vectors’ private coefficients:

∀i,0≤ ui ≤ B,0≤ vi ≤ B (3)

With Benaloh, the common modulus M must be
greater than the dot product, thus at most:

(n−1)B2 < M. (4)

Differently, with Paillier, each player Pi has a differ-
ent modulus Ni. Then, by following the MPWP pro-
tocol steps, at the end of the first round, P1 obtains
A = ∏n

i=2 E1(ui)
vi ∗E1(zi). In order to correctly de-

cipher this coefficient, if the players’ values, as well
as their random values zi, satisfy the bound (3), her
modulo N1 must be greater than (n−1)(B2 +B). For

others players, there is only one deciphering step, at
the second round. They received (n− 1) shares all
bounded by B. Hence, their modulus Ni need only be
greater than (n− 1)B. These modulus requirements
are summarized in the following lemma:

Lemma 3. Let n> 3 be the number of players. Under
the bound (3), if ∀i,0≤ zi ≤ B and if also the modulus
satisfy (n−1)(B2 +B)< N1 and (n−1)B < Ni, ∀i =
2, . . . ,n, then at the end of P-MPWP, P1 obtains Sn =
∑n

i=2 ui ∗ vi.

Now, the reduction of the communications cost in
P-MPWP, is made by removing the exchange of the
full M matrix between players. At the zi, j shares com-
putation, each Pi directly sends the jth coefficient to
the jth player instead of storing results in T . In the
end, each player Pi receives (n− 1) values ciphered
with his public key, and he can compute the PSSi by
deciphering and adding each received values, exactly
as in MPWP. Thus, each player sends only O (n) val-
ues, instead of O

(
n2
)
. All remaining steps can be

executed as in MPWP.
Both Paillier’s and Benaloh’s cryptosystems pro-

vides semantic security, thus the security of P-MPWP
is not altered. Moreover, since a common bound is
fixed a priori on private inputs, P-MPWP security can
be reduced to the one in MPWP with the common
modulo M between all players (Michalas et al., 2012).
Finally, since all exploitable (i.e., clear or ciphered
with the dedicated key) information exchanged rep-
resents a subset of the MPWP players’ knowledge, if
one is able to break P-MPWP privacy, then one is also
able to break it in MPWP.

5 A LINEAR DOT PRODUCT
PROTOCOL

5.1 Overview with Three Players

We first present in Figure 1 our DSDP3 protocol (Dis-
tributed and Secure Dot-Product), for 3 players. The
idea is that Alice is interested in computing a dimen-
sion 3 dot-product S = uT · v, between her vector u
and a vector v whose coefficients are owned by dif-
ferent players. The other players send their coeffi-
cients, encrypted, to Alice. Then she homomorphi-
cally multiplies each one of these by her ui coeffi-
cients and masks the obtained uivi by a random value
ri. Then the other players can decrypt the resulting
uivi + ri: with two unknowns ui and ri they are not
able to recover vi. Finally the players enter a ring
computation of the overall sum before sending it to
Alice. Then only, Alice removes her random masks

SECRYPT 2016 - International Conference on Security and Cryptography

64



to recover the final dot-product. Since at least two
players have added u2v2 + u3v3, there is at least two
unknowns for Alice, but a single equation.

We need that after several decryptions and
re-encryptions, and removal of the random val-
ues ri, S is exactly ∑uivi. The homomor-
phic Properties (1) and (2) only guaranty that
D(Add(Mul(E(vi);ui);ri)) = viui + ri mod Ni, for
the modulo Ni of the cryptosystem used by player Pi.
But then these values must be re-encrypted with an-
other player’s cryptosystem, potentially with another
modulo. Finally Alice also must be able to remove
the random values and recover S over Z. On the one
hand, if players can share the same modulo M = Ni
for the homomorphic properties then decryptions and
re-encryptions are naturally compatible. This is pos-
sible for instance in Benaloh’s cipher. On the other
hand, in a Paillier-like cipher, at the end of the pro-
tocol, Alice will actually recover S4 = ((u2v2 + r2)
mod N2 + u3v3 + r3) mod N3. He can remove r3,
via S3 = S4− r3 mod N3, but then S3 = ((u2v2 + r2)
mod N2+u3v3) mod N3. Now, if vectors coefficients
are bounded by say B, and if the third modulo is
larger than the second, N3 > N2 + B2, the obtained
value is actually the exact value over the naturals:
S3 = (u2v2 + r2) mod N2 +u3v3. Then Alice can re-
move the second random value, this time modulo N2:
S2 = (u2v2 + u3v3) mod N2, where now N2 > 2B2

suffices to recover S = S2 ∈ N. We generalize this
in the following section.

5.2 General Protocol with n Players

We give the generalization DSDPn, of the protocol of
Figure 1 for n players in Algorithm 1 hereafter. For
this protocol to be correct, we use the previously de-
fined bound (3) on the players’ private inputs. Then,
for n players, there are two general cases: First, if all
the players share the same modulo M = Ni for all i
for the homomorphic properties, then Alice can also
use M to remove the ri. Then, to compute the correct
value S, it is sufficient to satisfy the bound (4). Sec-
ond, for a Paillier-like cipher, differently, the modulo
of the homomorphic properties are distinct. We thus
prove the following Lemma 4.

Lemma 4. Under the bound (3), and for any ri, let
M2 =(u2v2+r2) mod N2 and Mi =(Mi−1+uivi+ri)
mod Ni, for i = 2 . . .n− 1. Let also Sn+1 = Mn and
Si = (Si+1− ri) mod Ni for i = n . . .2. If we have:
{

Ni−1 +(n− i+1)B2 < Ni, for all i = 3..n
(n−1)B2 < N2

(5)

then S2 = ∑n
i=2 uivi ∈ N.

Algorithm 1: DSDPn Protocol: Distributed and Secure Dot-
Product of size n.
Require: n ≥ 3 players, two vectors U and V such

that P1 knows complete vector U , and each play-
ers Pi knows component vi of V , for i = 1 . . .n;

Require: Ei (resp. Di), encryption (resp. decryption)
function of Pi, for i = 2 . . .n.

Ensure: P1 knows the dot-product S =UTV .
1: for i = 2 . . .n do {Pi : ci = Ei(vi); Pi

ci→ P1}
2: for i = 2 . . .n do
3: P1 : ri

$← Z/NiZ
4: P1 : αi = cui

i ∗Ei(ri) so that αi = Ei(uivi + ri)

5: P1
α2→ P2

6: for i = 2 . . .n−1 do P1 :
αi+1→ Pi

7: P2 : ∆2 = D2(α2) so that ∆2 = u2v2 + r2
8: P2 : β3 = α3 ∗E3(∆2) so that β3 = E3(u3v3+r3+

∆2); P2
β3→ P3

9: for i = 3 . . .n−1 do
10: Pi : ∆i = Di(βi) so that ∆i = ∑i

k=2 ukvk + rk
11: Pi : βi+1 = αi+1 ∗ Ei+1(∆i) so that βi+1 =

Ei+1(ui+1vi+1 + ri+1 +∆i); Pi
βi+1→ Pi+1

12: Pn : ∆n = Dn(βn); Pn : γ = E1(∆n); Pn
γ→ P1

13: return P1 : S = D1(γ)−∑n−1
i=1 ri +u1v1.

Proof. By induction, we first show that Si = Mi−1 +
∑n

j=i u jv j, for i = n..3: indeed Sn = (Mn − rn)

mod Nn = (Mn−1 + unvn) mod Nn. But Mn−1 is
modulo Nn−1, so (Mn−1 + unvn) < Nn−1 + B2, and
then (5) for i = n, ensures that Nn−1 + B2 < Nn
and Sn = Mn−1 + unvn ∈ N. Then, for 3 ≤ i <
n, Si = (Si+1 − ri) mod Ni = (Mi + ∑n

j=i+1 u jv j −
ri) mod Ni = (Mi−1 + uivi + ri + ∑n

j=i+1 u jv j − ri)

mod Ni = (Mi−1 +∑n
j=i u jv j) mod Ni, by induction.

But (3) enforces that Mi−1 +∑n
j=i u jv j < Ni−1 +(n−

i+ 1)B2 and (5) also ensures the latter is lower than
Ni. Therefore Si = Mi−1+∑n

j=i u jv j and the induction
is proven. Finally, S2 = (S3− r2) mod N2 = (M2 +
∑n

j=3 u jv j− r2) mod N2 = (∑n
j=2 u jv j) mod N2. As

∑n
j=2 u jv j < (n− 1)B2, by (5) for i = 2, we have

S2 = ∑n
j=2 u jv j ∈ N.

This shows that the DSDPn protocol of Algo-
rithm 1 can be implemented with a Paillier-like un-
derlying cryptosystem, provided that the successive
players have increasing modulo for their public keys.

Theorem 1. Under the bounds (3), and under Hy-
pothesis (4) with a shared modulus underlying cipher,
or under Hypothesis (5) with a Paillier-like underly-
ing cipher, the DSDPn protocol of Algorithm 1 is cor-
rect. It requires O (n) communications and O (n) en-
cryption and decryption operations.
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Alice (P1) Bob (P2) Charlie (P3)

c2 = EpubB(v2) c3 = EpubC(v3)c2oo
c3oo

α2 = cu2
2 ∗EpubB(r2)

α3 = cu3
3 ∗EpubC(r3) α2, α3 //

∆2 = DprivB(α2) {now ∆2 is (v2u2 + r2)}
β3 = α3 ∗EpubC(∆2) β3 //

∆3 = DprivC(β3)

{now ∆3 is (v3u3 + r3)+(v2u2 + r2)}
γ = EpubA(∆3)γoo

S = DprivA(γ)− r2− r3 +u1v1 {now S is u1v1 +u2v2 +u3v3}

Figure 1: DSDP3: Secure dot product of vectors of size 3 with a Paillier-like asymmetric cipher.

Proof. First, each player sends his ciphered entry
to P1, then homomorphically added to random val-
ues, ri. Then, Pi (i ≥ 2) deciphers the message re-
ceived by Pi−1 into ∆i. By induction, we obtain
∆i = ∑i

k=2 ukvk + rk. This value is then re-enciphered
with next player’s key and the next player share is ho-
momorphically added. Finally, P1 just has to remove
all the added randomness to obtain S = ∆n−∑n

i=2 ri+
u1v1 = ∑n

i=1 uivi. For the complexity, the protocol
needs n− 1 encryptions and communications for the
ci; 2(n− 1) homomorphic operations on ciphers and
n− 1 communications for the αi; n− 1 decryptions
for the ∆i; n− 1 encryptions, homomorphic opera-
tions and communications for the βi; and finally one
encryption and one communication for γ. Then P1
needs O (n) operations to recover S.

6 SECURITY OF DSDP

We study the security of DSDPn using both mathe-
matical proofs and automated verifications. We first
demonstrate the security of the protocol for semi-
honest adversaries. Then we incrementally build its
security helped by attacks found by ProVerif, an au-
tomatic verification tool for cryptographic protocols.

6.1 Security Proofs

The standard security definition in MPC models (Lin-
dell, 2009) covers actually many security issues, such
as correctness, inputs independence, privacy, etc. We
first prove that under this settings, computation of the
dot product is safe.

Lemma 5. For n≥ 3, the output obtained after com-
puting a dot product where one player owns complete
vector U, and where each coefficient vi of the second
vector V is owned by the player Pi, is safe.

Proof. After executing DSDPn with n ≥ 3, P1 re-
ceived the dot product of U and V . Therefore, it owns
only one equation containing (n−1) unknown values
(coefficients from v2 to vn). Then, he cannot deduce
other players’ private inputs.

Then, proving the security relies on a comparison
between a real-world protocol execution and an ideal
one. The latter involves an hypothetical trusted third
party (T T P) which, knowing only the players’ private
inputs, returns the correct result to the correct play-
ers. The protocol is considered secure if the players’
views in the ideal case cannot be distinguished from
the real ones. Views of a player Pi (denoted ViewPi )
are defined as distributions containing: the players’
inputs (including random values), the messages re-
ceived during a protocol execution and the outputs.
The construction of the corrupted players’ view in the
ideal world is made by an algorithm called Simulator.
Definition 1. In the presence of a set C of semi-honest
adversaries with inputs set XC, a protocol Π securely
computes f : ([0,1]∗)m → ([0,1]∗)m (and fC denotes
the outputs of f for each adversaries in C) if there
exists a probabilistic polynomial-time algorithm Sim,
such that: {Sim(C,{XC}, fC(X))}X∈([0,1]∗)m is compu-
tationally indistinguishable from {C,{ViewΠ

Pi
}Pi∈C}.

For DSDPn, it is secure only if C is reduced to a
singleton, i.e. if only one player is corrupted.
Lemma 6. By assuming the semantic security of the
cryptosystem E, for n ≥ 3, DSPDn is secure against
one semi-honest adversary.
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Proof. We assume that the underlying cryptosys-
tem E is semantically secure (IND-CPA secure).
First, we suppose that only P1 is corrupted. His
view, in a real execution of the protocol, is
ViewP1 = {U,R,γ,S,A,B,C}, where U = {ui}1≤i≤n,
R = {ri}1≤i≤n, A = {αi}2≤i≤n, B = {βi}3≤i≤n−1 and
C = {ci}2≤i≤n. Now, Sim1 is the simulator for P1
in the ideal case, where a simulated value x is de-
noted x′: by definition, P1’s private entries (vectors
U and R) are directly accessible to Sim1, along with
the output S, sent by the T T P. Sim1 starts by gen-
erating n− 2 random values, and then ciphers them
using the corresponding public keys: this simulates
the c′i values. Then, using the provided ri and ui
with the associated c′i and Pi’s public key, Sim1 com-
putes: α′i = c′ui

i ∗ Ei(ri),2 ≤ i ≤ n. Next, the sim-
ulation of B′ is done by ciphering random values
with the appropriate public key. The γ′ value is
computed using R along with the protocol output S:
γ′ = E1(S+∑n−2

i ri +u1v1). In the end, the simulator
view is ViewSim1 = {U,R,γ′,S,A′,B′,C′}. If an adver-
sary is able to distinguish any ciphered values (e.g.
C′ from C and thus A′ from A), hence he is able to
break the semantic security of the underlying crypto-
graphic protocol. This is assumed impossible. More-
over, since the remaining values are computed as in
a real execution, P1 is not able to distinguish ViewP1
from ViewSim1 . Second, we suppose that a player
Pi, i≥ 2 is corrupted and denote by Simi the simulator
in this case. Since the role played by each participant
is generic, (except for Pn, which only differs by his
computation of γ instead of βn+1), the simulators are
easily adaptable. During a real protocol execution, the
view of Pi is ViewPi = {vi,A,B,C,γ,∆i}. Simulating
the values also known to P1 is similar, up to the used
keys. Hence, the simulation of A′, B′, γ′, C′ (except
ci) is made by ciphering random values using the ade-
quate public key. ci is ciphered using vi and the public
key of Pi. For ∆′i, the simulator Simi has to forward the
random value previously chosen to be ciphered as αi.
Indistinguishability is based on the semantic security
of E (for A, B, C and γ) and on the randomness added
by P1 (and thus unknown by Pi). Then, ∆′i is compu-
tationally indistinguishable from the real ∆i. Hence,
ViewPi and ViewSi are indistinguishable and DSDPn is
secure against one semi-honest adversary.

6.2 Automated Verification

Alongside mathematical proofs, we use an auto-
matic protocol verification tool to analyze the secu-
rity of the protocol. Among existing tools, we use
ProVerif (Blanchet, 2001; Blanchet, 2004). It allows
users to add their own equational theories to model a

large class of protocols. In our case, we model prop-
erties of the underlying cryptosystem including addi-
tion and multiplication. Sadly, verification of proto-
col in presence of homomorphic function over abelian
groups theory has been proven undecidable (Delaune,
2006). Moreover, as showed in (Lafourcade and Puys,
2015), some equational theories such as Exclusive-Or
can already outspace the tool’s capacities. Thus we
have to provide adapted equational theories to be able
to obtain results with the tool. We modeled the appli-
cation of Pailler’s or shared modulus encryption prop-
erties on αi messages that Bob receives as follows:
(i). ∀u,v,r,k, bob(Ek(r),u,Ek(v)) = Ek(uv+ r)
This property allows Bob to obtain u2v2+r2 from α2.
This also allows an intruder to simulate such calculus
and impersonate Bob. We also model:
(ii). β3 by ∀u,v,r,x,y,z,k, charlie(Ek(uv +

r),Ek(xy+ z)) = Ek(uv+ xy+ r+ z)
(iii). β4 by ∀u,v,r,x,y,z,a,b,c,k, dave(Ek(uv+ xy+

r+ z),Ek(ab+ c)) = Ek(uv+ xy+ab+ r+ z+ c)
In the following, we use ProVerif to prove the secu-
rity of our protocols under the abstraction of the func-
tionalities given in our equational theory. ProVerif
discovers some attacks in presence of active intruder.
We then propose some countermeasures. The lim-
its of ProVerif are reached and it does not terminate.
The associated source files are available in a web-site:
http://matmuldistrib.forge.imag.fr

Analysis in Case of a Passive Adversary. Using
these equational theories on the protocol described
in Figure 1, we verify it in presence of a passive in-
truder. Such adversary is able to observe all the traffic
of the protocol and tries to deduce secret information
of the messages. This corresponds to a ProVerif in-
truder that only listens to the network and does not
send any message. By default, this intruder does not
possess the private key of any agent and thus does not
belong to the protocol. To model a semi-honest adver-
sary as defined in Section 2, we just give secret keys
of honest participants to the passive intruder knowl-
edge in ProVerif. Then the tool proves that all secret
terms cannot be learn by the intruder for any combi-
nations of leaked key. This confirms the proofs given
in Section 6.1 against the semi-honest adversaries.

Analysis in Case of Malicious Adversary. The
malicious adversary described in Section 2 is an ac-
tive intruder that controls the network and knows
a private key of a compromised honest participant.
Modeling this adversary in ProVerif, we are able to
spot the two following attacks and give some counter-
measures:
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Intruder(Alice) Bob Charlie

c2=EpubB(v2)oo

α2 = cuI
2 ∗EpubB(rI)

x3 = EpubC(vI)

α3 = xu′I
3 ∗EpubC(r′I)α2,α3 //

∆2 = DprivB(α2) {now ∆2 is (v2uI + rI)}
β3=α3∗EpubC(∆2) //

∆3 = DprivC(β3)

{now ∆3 is (vIu′I + r′I)+(v2uI + rI)}
γ=EpubA(∆3)oo

v2 = (DprivA(γ)− vIu′I− rI− r′I)u
−1
I

Figure 2: Attack on the secrecy of v2.

(i) Only the key of Alice is compromised and the
countermeasure uses proofs of knowledge.

(ii) Only the key of Charlie is compromised and the
countermeasure uses signatures.

In the rest of the section, we present these two points.
In the Section 7.2, we also give a solution called ran-
dom ring for the case where both keys of Alice and
Charlie are compromised.

(i) The key of Alice is compromised. An attack on
the secrecy of v2, the secret generated by Bob, is then
presented in Figure 2.

The malicious adversary usurps Alice and re-
places all the αi messages, arriving from the other
agents, with one message she generated, except one
message, denoted c2 in Figure 2. He lets the proto-
col end normally and obtains a term where only v2 is
unknown. He learns v2. If the key of Alice (P1) is
compromised, ProVerif also finds an attack on any of
the other players secrecy. Suppose, w.l.o.g, that P2 is
the target, P1 replaces each αi except α2 by ciphers
Ei(xi) where xi are known to him. xi = 0 could do for
instance (xi = 0vi + ri also), since after completion of
the protocol, P1 learns u2v2 + r2 +∑n

i=3 xi, where the
ui and ri are known to him. Therefore, P1 learns v2.
Note also that similarly, for instance, α2 = 1v2+0 and
x3 = v3 could also reveal v2 to P3. Counter measure:
this attack, and more generally attacks on the form of
the αi can be counteracted by zero-knowledge proofs
of knowledge. P1 has to prove to the other players
that αi is a non trivial affine transform of their secret
vi. For this we use a variant of a proof of knowledge
of a discrete logarithm (Chaum et al., 1986) given in
Figure 3.

In the Protocol 1, this proof of a non trivial affine
transform applies as is to α2 with µ2 = gu2 , ρ2 = gr2 so
that the check of P2 is δ2 = g∆2 ?

== µv2
2 ρ2. Differently,

for the subsequent players, the δi−1 = g∆i−1 used to
test must be forwarded: indeed the subsequent play-
ers have to check in line 10 that ∆i = uivi + ri +∆i−1.

Alice Public: g Bob

c = EpubB(v)
coo

α = EpubB(uv+ r)

µ = gu and ρ = gr
α, µ, ρ //

Check µ 6= 1,µ 6= g so that u 6= 0,u 6= 1

Check ρ 6= 1,ρ 6= g so that r 6= 0,r 6= 1

∆ = DprivB(α) if ∆ = uv+ r

Check g∆ ?
== µvρ then guv+r = (gu)vgr

Figure 3: Proof of a non trivial affine transform.

Thus with P1 providing µi = gui , ρi = gri and Pi−1
providing δi−1, the check of player Pi ends with δi =

g∆i ?
== µvi

i ρiδi−1. As for proofs of knowledge of dis-
crete logarithm, secrecy of our proof of non trivial
affine transform is guaranteed as long as the discrete
logarithm is difficult. The overhead in the protocol,
in terms of communications, is to triple the size of the
messages from P1 to Pi, with αi growing to (αi,µi,ρi),
and to double the size of the messages from Pi to Pi+1,
with βi growing to (βi,δi). In terms of computations,
it is also a neglectible linear global overhead.

(ii) The key of Charlie is compromised. There
ProVerif finds another attack on the secrecy of v2.
This time the key of Charlie is compromised and
the malicious adversary blocks all communications to
and from Alice who is honest. The adversary per-
forms the same manipulation on the αi terms which
are directly sent to Bob. Thus, this attack becomes
feasible since the adversary knows the terms u2, u3,
r2, r3 and v3 that he generated and ∆3 = (v2u2 + r2)+
(v3u3 + r3) using the private key of Charlie. Such an
attack relies on the fact that Bob has no way to ver-
ify if the message he receives from Alice has really
been sent by Alice. This can be avoided using crypto-
graphic signatures.

This attack can be generalized to any number of
participants. The attack needs the adversary to know
the key of Alice (since she is the only one to know
the ui and ri values thanks to the signatures). Then, to
obtain the secret value of a participant Pi, the key of
participants Pi−1 and Pi+1 are also needed:
(i). Pi−1 knows ∆i−1 = (u2v2 + ...+ ui−1vi−1 + r2 +

...+ ri−1).
(ii). Pi+1 knows ∆i+1 = (u2v2+ ...+ui−1vi−1+uivi+

ui+1vi+1 + r2 + ...+ ri−1 + ri + ri+1).
Thus, by simplifying ∆i−1 and ∆i+1, the malicious

adversary obtains uivi +ui+1vi+1 + ri + ri+1 where he
can remove ui+1, vi+1, ri, ri+1 and ui to obtain vi. For
more than three participants, we see in Section 7.2
that these kinds of threats can be diminished if the
protocol is replayed several times in random orders.
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7 PARALLEL APPROACH

In order to speed up the overall process, we show that
we can cut each dot-product into blocks of 2 or 3 co-
efficients. On the one hand, the overall volume of
communications is unchanged, while the number of
rounds is reduced from n to a maximum of 5. On the
other hand, semantic security is dropped, but we will
see at the end of this section that by simply repeating
the protocol with a wiretap mask it is possible to make
the probability of breaking the protocol negligible.

An application of the DSDPn protocol is the com-
putation of matrix multiplication. In this case, instead
of knowing one vector, each player Pi owns two rows,
Ai and Bi, one of each n× n matrices A and B. At
the end, each Pi learns a row Ci of the matrix C = AB.
In order to compute the matrix product, it is therefore
natural to parallelize DSDPn: each dot-product is cut
into blocks of 2 or 3 coefficients. Indeed, scalar prod-
uct between three players (resp. four) involves two
(resp. three) new coefficients in addition to the ones
already known by Pi. For P1, the idea is to call DSDP3
on the coefficients u1,v1 and u2,u3 of P1, and v2,v3 of
P2 and P3. Then P1 knows s = u1v1 +u2v2 +u3v3. P1
can then continue the protocol with P4 and P5, using
(s,1) as his first coefficient and u4,u5 to be combined
with v4,v5, etc. P1 can also launch the computations
in parallel. Then P1 adds his share u1v1 only after all
the computations. For this it is sufficient to modify
line 13 of DSDPn as: P1 : S = D1(γ)−∑n−1

i=1 ri. This is
given as the ESDPn protocol variant in Algorithm 2.

Algorithm 2: ESDPn Protocol: External Secure Dot-Product
of size n.
Require: n+1 players, P1 knows a coefficient vector

U ∈ Fn, each Pi knows components vi−1 of V ∈ Fn,
for i = 2 . . .n+1.

Ensure: P1 knows S =UTV .
return DSDPn+1(P1 . . .Pn+1, [0,U ], [0,V ]).

7.1 Partition in Pairs or Triples

Depending on the parity of n, and since gcd(2,3)= 1,
calls to ESDP2 and ESDP3 are sufficient to cover
all possible dot-product cases, as shown in protocol
PDSMMn of Algorithm 3. The protocol is cut in two
parts. The loop allows us to go all over coefficients by
block of size 2. In the case where n is even, a block
of 3 coefficients is treated with an instance of ESDP3.
In terms of efficiency and depending on the parity of
n, ESDP2 is called n−1

2 or n
2 −2 times, and ESDP3 is

called 0 or 1 times.

Algorithm 3: PDSMMn Protocol: Parallel Distributed and
Secure Matrix Multiplication.

Require: n players, each player Pi knows rows Ai
and Bi of two n×n matrices A, B.

Ensure: Each player Pi knows row i of C = AB.
1: for Each row: i=1 . . . n do
2: for Each column: j=1 . . . n do
3: s← ai,ibi, j
4: if n is even then
5: k1 ← (i − 1) mod n + 1; k2 ← (i − 2)

mod n+1; k3← (i−3) mod n+1;
6: s ← s + ESDP3(Pi, [Pk3 ,Pk2 ,Pk1 ],

[ai,k3 ,ai,k2 ,ai,k1 ], [bk3, j,bk2, j,bk1, j])

7: t← n−4
2

8: else
9: t← n−1

2
10: for h = 1 . . . t do
11: k1 ← (i+ 2h− 1) mod n+ 1; k2 ← (i+

2h) mod n+1;
12: s← s+ESDP2(Pi, [Pk1 ,Pk2 ], [ai,k1 ,ai,k2 ],

[bk1, j,bk2, j])
13: ci, j← s

Theorem 2. The PDSMMn Protocol in Algorithm 3 is
correct. It runs in less than 5 parallel communication
rounds.

Proof. Correctness means that at the end, each Pi has
learnt row Ci of C = AB. Since the protocol is ap-
plied on each rows and columns, let us show that
for a row i and a column j, Algorithm 3 gives the
coefficient ci j such that ci j = ∑n

k=1 aik ∗ bk j. First,
the ki coefficients are just the values 1 . . .(i− 1) and
(i+ 1) . . .n in order. Then, the result of any ESDP2
step is ai,k1bk1, j + ai,k2bk2, j and the result of the po-
tential ESDP3 step is ai,k3bk3, j +ai,k2bk2, j +ai,k1bk1, j.
Therefore accumulating them in addition of ai,i ∗ bi, j
produces as expected ci j = ∑n

k=1 aik ∗bk j.
Now for the number of rounds, for all i and j, all

the ESDP calls are independent. Therefore, if each
player can simultaneously send and receive multiple
data we have that: in parallel, ESDP2, like DSDP3 in
Figure 1, requires 4 rounds with a constant number
of operations: one round for the ci, one round for the
αi, one round for β3 and one round for γ. As shown
in Algorithm 1, ESDP3, like DSDP4, requires only a
single additional round for β4.

7.2 Random Ring Order Mitigation

We have previously seen that if the first player of a
dot-product cooperates with the third one she can al-
ways recover the second player private value. If the
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first player cooperates with two well placed players
she can recover the private value of a player in be-
tween. In the trust evaluation setting every malicious
player plays the role of the first player in its row and
therefore as soon as there is a collaboration, there is a
risk of leakage. To mitigate this cooperation risk, our
idea is to repeat the dot product protocol in random or-
ders, except for the first player. To access a given pri-
vate value, the malicious adversaries have to be well
placed in every occurrence of the protocol. Therefore
if their placement is chosen uniformly at random the
probability that they recover some private value di-
minishes with the number of occurrences. In practice,
they use a pseudo, but unpredictable, random gener-
ator to decide their placement: as each of them has
to know their placement, they can for instance use a
cryptographic hash function seeded with the alphabet-
ical list of the players distinguished names, with the
date of the day and with random values published by
each of the players. We detail the overall procedure
only for one dot-product, within the PDSMMn proto-
col. Each player except the first one masks his coef-
ficient v as in a simple wiretap channel (Ozarow and
Wyner, 1984), as sketched in Algorithm 4.

Algorithm 4: Wiretap repetition of the dot-product.

1: The players agree on d occurrences.
2: Each player computes his placement order in

each occurrence of the protocol from the cryp-
tographic hash function.

3a: With a shared modulus cryptosystem, the players
should share a common modulo M satisfying Hy-
pothesis (4). In the first occurrence, each player
Pj then masks his private input coefficient v j with
d−1 random values λ j,i ∈ Z/MZ: v j−∑d

i=2 λ j,i.
3b: With a Paillier-like cryptosystem, the players

choose their moduli according to Hypothesis (5),
where B2 is replaced by dB2, in groups of size
n = 4 (the requirements of (5) on the moduli are
somewhat sequential, but can be satisfied inde-
pendently if each modulo is chosen in a distinct
interval larger than 3dB2). Then, in the first oc-
currence, each player Pj masks his private input
coefficient v j with d−1 random values 0≤ λ j,i <

B: v j +∑d
i=2(B−λ j,i)< dB.

4: Then for each subsequent occurrence, each player
replaces its coefficient by one of the λ j,i.

5: In the end, the first player has gathered d dot-
products and just needs to sum them in order to
recover the correct one.

Theorem 3. Algorithm 4 correctly allows the first
player to compute the dot-product.

Proof. First, in a shared modulus setting, af-
ter the first occurrence, Alice (P1) gets S1 =
∑n

j=2 u j
(
v j−∑d

i=2 λ j,i
)
. Then in the following oc-

currences, Alice gets Si = ∑n
j=2 u jλ j,i. Finally she

computes ∑d
i=1 Si = ∑n

j=2 u jv j. Second, similarly,
in a Paillier-like setting, after the first occurrence,
Alice recovers S1 = ∑n

j=2 u j
(
v j +∑d

i=2(B−λ j,i)
)
.

Then in the following occurrences, Alice gets
Si = ∑n

j=2 u jλ j,i. Finally she computes ∑d
i=1 Si −

(d − 1)B(∑n
j=2 u j) = ∑n

j=2 u j(v j + (d − 1)B)− (d −
1)Bu j = ∑n

j=2 u jv j.

We give now the probability of avoiding attacks in
the case when n = 2t + 1, but the probability in the
even case should be close.

Theorem 4. Consider n = 2t + 1 players, grouped
by 3, of which k ≤ n − 2 are malicious and co-
operating, including the first one Alice. Then, it
is on average sufficient to run Algorithm 4 with
d ≤ 2ln

(
min{k−1,n− k, n−1

2 }
)(

1+ k−1
n−k−1

)
occur-

rences, to prevent the malicious players from recov-
ering any private input of the non malicious ones.

Proof. The idea is that for a given private input of
a non malicious player Bob, to be revealed to Alice,
Bob needs to be placed between cooperating mali-
cious adversaries at each occurrence of the protocol.
If there is only one non malicious player, then noth-
ing can be done to protect him. If there is 2 non ma-
licious, they are safe if they are together one time,
this happens with probability 1

n−2 , and thus on av-
erage after n− 2 occurrences. Otherwise, PDSMMn
uses t = n−1

2 groups of 3, including Alice. Thus,
each time a group is formed with one malicious and
one non malicious other players, Alice can learn the
private value of the non malicious player. Now, af-
ter any occurrence, the number a of attacked play-
ers is less than the number of malicious players mi-
nus 1 (for Alice) and obviously less than the num-
ber of non malicious players: 0 ≤ a < min{k −
1,n− k}. Thus let b = k− 1− a and c = n− k− a.
In the next occurrence, the probability of saving at
least one more non malicious is a(a−1+c)(n−3)!

(n−1)!
n−1

2 =
a(a−1+c)

2(n−2) = a(n−k−1)
2(n−2) , so that the average num-

ber of occurrences to realize this is En,k(a) =
2(n−2)

a(n−k−1) . Thus, Tn,k(a), the average number of oc-
currences to save all the non malicious players, sat-
isfies Tn,k(a)≤ En,k(a)+Tn,k(a−1)≤ ∑3

i=a En,k(i)+
Tn,k(2) = (∑3

i=a
1
i )

2(n−2)
n−k−1 + Tn,k(2). With 2 attacked

and c saved, Tn,k=n−c−2(2) = n−2
c+1 so that Tn,k(a) ≤

(Ha − 3
2 )

2(n−2)
n−k−1 + n−2

n−k−1 , where bounds on the Har-
monic numbers give Ha ≤ lna (see, e.g., (Batir,
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2011)) and since a ≤ k − 1 and a ≤ n − k, this
shows also that 2a ≤ n− 1. Therefore, Tn,k(a) ≤
2ln
(
min{k−1,n− k, n−1

2 }
) n−2

n−k−1 .

For instance, if k, the number of malicious insid-
ers, is less than the number of non malicious ones,
the number of repetitions sufficient to prevent any at-
tack is on average bounded by O (logk). To guaranty
a probability of failure less than ε, one needs to con-
sider also the worst case. There, we can have k = n−2
malicious adversaries and the number of repetitions
can grow to n ln(1/ε):
Proposition 1. With n = 2t +1, the number d of ran-
dom ring repetitions of Algorithm 4 to make the prob-
ability of breaking the protocol lower than ε satisfies
d < n ln(1/ε) in the worst case.

Proof. There are at least 2 non-malicious players,
otherwise the dot-product reveals the secrets in any
case. Any given non-malicious player is safe from
any attacks if in at least one repetition he was paired
with another non-malicious player. In the worst
case, k = n− 2 players are malicious and the latter
event arises with probability (1− 1

n−1 )
d for d repeti-

tions. If d ≥ n
(
ln
(
ε−1
))

, then d > (n−1)(− lnε) >
lnε

ln(1− 1
n−1 )

, which shows that (1− 1
n−1 )

d < ε.

Overall, the wiretap variant of Algorithm 4 can
guaranty any security, at the cost of repeating the pro-
tocol. As the number of repetitions is fixed at the be-
ginning by all the players, all these repetitions can oc-
cur in parallel. Therefore, the overall volume of com-
munication is multiplied by the number of repetitions,
while the number of rounds remains constant. This is
summarized in Table 1 and Figure 4, for the average
(Theorem 4) and worst (Proposition 1) cases of Al-
gorithm 4, and where the protocols of the previous
sections are also compared.

Table 1: Communication complexities.

Protocol Volume Rounds Paillier
MPWP O

(
n3) O (n) 7

P-MPWP (§ 4) n2+o(1) O (n) 3

Alg. 4 (Wiretap) n2+o(1) ln
( 1

ε
)

5 3

Alg. 1 (DSDPn) n1+o(1) O (n) 3

Alg. 3 (PDSMMn) n1+o(1) 5 3

Alg. 4 (Average) n1+o(1) 5 3

On the one hand, we see in Figure 4 that quadratic
protocols, with homomorphic encryption, are not us-
able for a realistic large group of players (trust aggre-
gation could be used for instance by certificate author-
ities, and there are several hundreds of those in current
operating systems or web browsers). On the other
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Figure 4: Quadratic and linear protocols timings.

hand, quasi linear time protocols present good per-
formance, while preserving some reasonable security
properties: the average wiretap curve is on average
sufficient to prevent any attack and still has a quasi
linear asymptotic behavior. The steps in this curve
are the rounding of log(n) to the next integer and cor-
respond to one more random ring wiretap round.

8 CONCLUSION: MPC OF TRUST

We now come back to the aggregation of trust. As
shown in Section 3, the first step is to reduce the com-
putation to that of dot-products. We show how to fully
adapt the protocol of Section 5 to the evaluation of
trust values with parallel and sequential aggregations:

Corollary 1. The protocol DSDP of Algorithm 1 can
be applied on trust values, provided that the random
values ri are invertible for z.

Proof. • ui, vi, ri, ci, αi, βi, ∆i, γ are now couples;
• Encryption and decryption (E(vi), D(βi), E(∆i),

E(γ), etc.) now apply on couples, using the mor-
phism E(〈a,b〉) = 〈E(a),E(b)〉;

• αi is E((uiFvi)zri) = Add(Mul(E(vi);ui);ri),
and can still be computed by P1, since ci = E(vi)
and ui and ri are known to him;

• Similarly, βi = E(αiz∆i) = Add(E(αi);∆i).
• Finally, as z is commutative, S is recovered by

adding the inverses for z of the ri.

From (Dumas and Hossayni, 2012, Definition 11),
the d-aggregation of trust is a dot-product but slightly
modified to not include the value u1v1. Therefore at
line 3, in the protocol of Algorithm 3, it suffices to
set s to the neutral element of z (that is s← 〈0,1〉,
instead of s← ai, jbi, j).

There remains to encode trust values that are pro-
portions, in [0,1], into D = Z/NZ. With n par-
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ticipants, we use a fixed precision 2−p such that
2n(2p+1) < N ≤ 2n(2(p+1)+1) and round the trust co-
efficients to bx2pc mod N from [0,1]→ D. Then the
dot-product can be bounded as follows:

Lemma 7. If each coefficient of the ui and vi are
between 0 and 2p − 1, then the coefficients of S =
zn

i=1(uiFvi) are bounded by 2n(2p+1) in absolute
value.

Proof. For all u,v, the coefficients of (uFv) are be-
tween 0 and (2p − 1)(2p − 1) + (2p − 1)(2p − 1) =
22p+1−2p+2 +2 < 22p+1−1 for p a positive integer.
Then, by induction, when aggregating k of those with
z, the absolute values of the coefficients remain less
than 2k(2p+1)−1.

Therefore, with N an 2048 bits modulus and n ≤
4 in the ESDP protocols of Algorithm 3, Lemma 7
allows a precision close to 2−255 ≈ 10−77.

In conclusion, we provide an efficient and secure
protocol DSDPn to securely compute dot products
(against semi-honest adversary) in the MPC model,
with unsual data division between n players. It can be
used to perform a private matrix multiplication and
also be adapted to securely compute trust aggregation
between players.
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