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Abstract:  In this paper the temperature at one side of a plate is used to control in closed loop the temperature on the 
opposite side of the plate. To solve this problem, Laplace transform is used to obtain the quadrupole model 
of the direct heat equation and the analytical solution for the transfer function for the inverse problem. The 
resulting hyperbolic functions are approximated by Taylor expansions to facilitate the real-time closed loop 
temperature control formulation. Simulation results illustrate the advantages and permit to identify the 
limitations of using inverse problem to closed loop control temperature of a plate. 

1 INTRODUCTION 

In a metal plate the temperature distribution is 
characterized by the fast decay with regards to 
frequency. The goal of the paper consists in applying 
input temperature at one side in order to modify the 
temperature on the other side of the plate; in closed 
loop control this is approached using the inverse 
problem solution, known to lead to an ill-posed 
problem (Maillet, et al., 2000), (Beck et al., 1985). 
There are many methods to address this ill-posed 
problem and an investigation is required to find out a 
suitable one for each application. In this paper is 
searched a suitable solution for closed loop control 
of a plate temperature. The books (Maillet, et al., 
2000), (Beck, et al., 1985) and (Necsulescu, 2009) 
presented a variety of solutions for solving inverse 
heat transfer problems in case of temperature 
monitoring for plates. Feng et al in 2010 solved the 
problem of heat conduction over a finite slab to 
estimate temperature and heat flux on the front 
surface of a plate from the back surface 
measurement, (Feng, et al., 2010) and (Feng, et al., 
2010). Feng et al. in 2011 solved the same problem 
using a 1-Dimensional (1D) modal expansion (Feng, 
et al., 2010). Fan et al. obtained temperature 
distribution on one side of a flat plate by solving the 
inverse problem based on the temperature 
measurement on the other side of the plate, using the 
modified 1D correction and the finite volume 
methods, (Fan, et al., 2009). Monde developed an 
analytical method to solve inverse heat conduction 

problem using Laplace transform technique (Monde, 
2000). Piazzi and Visioli investigated dynamic 
inversion using transfer functions (Piazzi, Visioli, 
2001). 

In this paper the 1D heat conduction equation is 
formulated in the Laplace domain to determine the 
hyperbolic transfer functions relating input and 
output temperature of a thin plate for both direct and 
inverse problems. In this case, hyperbolical 
functions depend on square root of complex variable 
s and this does not facilitate real-time applications. 
Closed loop control problem differs from the known 
monitoring problems and from open-loop control 
problems (Necsulescu, Jarrah, 2016). For real-time 
applications, this is approached using finite Taylor 
expansions of the hyperbolic functions that permit to 
obtain transfer functions that approximate 
hyperbolic functions for a given frequency domain. 

Temperature control of metal plates is 
investigated for the case of heating one side to bring 
the temperature on the other side at a desired value. 
Earlier attempts to solve the ill-posed inverse 
problem of indirect temperature estimation referred 
to the study of overheating of the outer shell of a 
rocket entering the atmosphere using temperature 
measurement from inside (Beck, et al., 1985). Closed-
loop control of plate temperature is applicable to 
achieving accurate temperature output of heating 
plates and to inside tanks temperature control using 
outside heating. 
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2 SYSTEM MODEL AND 
CLOSED-LOOP CONTROLLER 

The 1D heat conduction equation in complex 
domain is: ୢమ(,ୱ)ୢమ 	= ୱ θ(z, s)  (1)

where	ߠ is the temperature and z is the 1D position 
variable 0 < z < L for a plate of thickness L. α is 
thermal diffusivity. 

Boundary conditions suitable for this case are the 
following: θଵ(0, s) = A ⍵ୗమା⍵మ , 		 			θଶ(L, s) = free  (2)
 ∅ଵ(0, s) = 	free	,					 					∅ଶ(L, s) = 	0 (3)
where	∅ is the heat flux and θଵ(0, s) is the Laplace 
transform of ߠଵ(0, (ݐ = A	sin⍵t. 

The equations 2 and 3 define the thermal 
quadrupole ends, θଵand	∅ଵ for input and θଶand	∅ଶfor output, [1]. 

These boundary conditions were chosen for the 
investigation of temperature control with sinusoidal 
input ߠଵ(0, (ݐ = A	sin⍵t resulting in the temperature 
output ߠଶ(ܮ,  on the opposite side of the plate of(ݐ
thickness L. The heat flux ∅ଵ(0,  results from the (ݐ
imposedߠଵ(0, ,ܮ)while heat flux ∅ଶ ,(ݐ  (ݐ
corresponds to isolated side of the plate [9]. 

The solution of this equation is [2, 3]: θ(z, s) = Aଵcosh(Kz) +	Aଶsinh(Kz) (4)
The heat flux is given by ∅(z, s) = 	−Ks ୢ			ୢୱ   (5)

where K = ට ୱ			  (6)

Applying boundary conditions, equations (2) and 
(3), to equation 4, gives the following: Aଵ = A ⍵ୗమା⍵మ 	 , 							Aଶ = −A ⍵ୗమା⍵మ tanh(KL)  (7)

For the aboveAଵandAଶ,	the solutions become; θ(z, s) = A ⍵ୗమା⍵మ ሾcosh(Kz) − tanh(KL) sinh(Kz)ሿ (8)
 ∅(z, s) = −KsA ⍵ୗమା⍵మ ሾcosh(Kz) −tanh(KL) sinh(Kz)ሿ  (9)

The dynamics of boundary temperatures θଵand	θଶ: θଵ = 	θ(0, s) = 	A ⍵ୗమା⍵మ  (10)
 
 

θଶ = θ(L, s) = A ୵ୗమା⍵మ ሾcosh(KL) −tanh(KL) sinh(KL)ሿ=A ⍵ୗమା⍵మ[1/cosh(KL)] (11)

The transfer function of the direct problem linking θଶ	to	θଵis Gଵ = మభ = ቂ ଵୡ୭ୱ୦()ቃ=sech(KL) (12)

The transfer function for the inverse problem [1-3] is Gଶ = ଵୋభ = cosh	(KL)  (13)

The closed loop control block diagram is shown 
in Figure 1 for unity feedback and proportional 
control constant k. 

 θଶୢ+                                         θଵ														θଶ 

- 

Figure 1: Closed loop controller block diagram. 

In this approach for closed loop control of plate 
temperature, the proposed linear controller, kG2 
resembles the polynomial and model predictive 
controllers. The merit of the proposal consists in a 
novel controller design, where in the transfer 
function approximation of the hyperbolic functions, 
the order of the polynomials is chosen such that the 
response is for the desired range of frequencies. This 
permits to avoid arriving to an ill-posed problem by 
limiting the inverse problem   to lower frequency 
domain adequate for temperature control. This 
solution differs from the known regularization 
approach of ill-posed problems and is particularly 
suitable for real-time applications [1, 2]. 

MATLABTM and SimulinkTM are used for 
simulating the above system. 

In this formulation, the hyperbolic functions G1 
and G2 contain square root of s 

x= KL = ටୱ L (14)

The design of the closed loop temperature 
control of the plate requires the derivation of transfer 
functions. 

Taylor series expansion provides equations in s, 
given that it results in even indexed terms only. For 
G1, Taylor series expansion is Gଵ = sech(x) = ቀ୬!ቁ 	x୬for|x| < 2ஶ୬ୀ/ߨ   (15)

where Euler numbers En are zero for odd-indexed 
numbers, while even indexed numbers are 

݇ ଵܩ Gଶ 
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E0=1 
E2=-1 
E4=5 
E6=-61 
E8=1385 
E10=-50521 
E12=2702765 
E14=-199360981 
E16=19391512145 
E18=-2404879675441     etc. 
 

For G2 = cosh(x), also an even function, results  Gଶ = cosh(x) = 	 ( ଵ(ଶ୬)!)	xଶ୬ஶ୬ୀ   (16)

In order to avoid the limitation of sech(x) to 
|x|<π/2, the alternative form sech(x)=1/cosh(x) is 
used, given that cosh(x) has no domain limitation. 
The above Taylor series expansions of 1/G1=cosh(x) 
and G2=cosh(x) contain only even-indexed terms, 
and give integer number powers polynomials in s for 
simulation. For computation, the infinite series are 
truncated to finite number of terms, chosen subject 
to acceptable approximation error. This polynomial 
approximation is particularly useful in real-time 
control of the plate temperature. 

For the Simulink simulation, Taylor expansion of 
G1, direct problem transfer function will be limited 
to N terms, and G2, inverse problem transfer 
function is limited to M terms. For the transfer 
function G1*G2, N and M are chosen such that 
N>M. The simulated item is a thin Aluminum plate 
has the thickness L = 0.03 [m] and thermal 
diffusivity α= 9.715e-5 [m2/sec], such that: 

x=	KL = ටୱ L=ට ୱଽ.ଵହ∗ଵିହ	 0.03 (17)

For the simulations were chosen M=4 and N=6, i.e. 
N >M: Gଶ(s) = 	1	 + 	4.632s	 + 3.576sଶ 	+ 	1.104sଷ (18)
 Gଵ	(s) = ଵୡ୭ୱ୦() = 	1/(1	 + 	4.632s	 +	3.576sଶ 	+ 	1.104sଷ 	+ 		0.1827sସ 	+ ହ) (19)ݏ0.0188

Closed loop equivalent transfer function is మమౚ = ୩ୋଵ∗ୋଶଵା୩ୋଵ∗ୋଶ  (20)

Actual implementation of the closed loop control 
using the inverse problem can be achieved using the 
time domain differential operator equivalent of G2(s) 

G2= 1+ 4.632 d/dt + 3.57 d2/dt2+ 1.104d3/dt3 (21)
Obviously, in actual implementation, direct 

problem is replaced by the physical relationship of ߠଶ(ܮ, ,ଵ(0ߠ function of (ݐ  .(ݐ

3 RESULTS AND DISCUSSION 

Simulations were carried out for closed loop control 
for different values of input frequency and for the 
desired sinusoidal temperature amplitude of 200 
above the original temperature. 

Simulations were carried for the direct problem 
G1 for N=6 while for inverse problem G2 for M= 4. 
The input was θଵ(0, t) =20sin(⍵t). Simulation 
results for  ⍵	= 0.1, 1, 5, 10 and 20 rad/sec are 
shown in Figure 2 for k=1 and Figure 3 for k=10. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 2: Closed loop control response for M=4, N=6 k=1 
and ω = (a) 0.1 Hz, (b) 1 Hz, (c) 5 Hz, (d) 10 Hz, (e) 20 
rad/sec. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3: Closed loop control response θ2for M=4, N=6 
k=10 and ω = (a) 0.1 Hz, (b) 1 Hz, (c) 5 Hz, (d) 10 Hz, (e) 
20 rad/sec. 

The simulation results in Figure 2 for k=1 and in 
Figure 3for k=10 represent the outputs of the closed 
loop control θଶ with N=6, M=4 terms for	⍵ = 0.1, 1, 
5, 10 and 20 rad/sec. The output temperature ߠଶresults in Figure 2 and 3, for lower frequencies of 
0.1 and 1 rad/sec, compared to desired one, 20	sin⍵t, are very close. The results for output 
temperature θଶ, for higher frequencies of 5 and 10 
rad/sec, compared to desired one, 20	sin⍵t, and of 
the command temperature  θଵ, are significantly 

different. This can be explained by the very high 
amplitudes of the output of the inverse problem, 
shown in Figure 4, which lead eventually to an ill-
posed inverse problem at higher frequencies, 
particularly with regard to parameters L and α 
uncertainty. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4: Inverse problem response θ1 for M=4, N=6 k=1 
and ω = (a) 0.1 Hz, (b) 1 Hz, (c) 5 Hz, (d) 10 Hz, (e) 20 
rad/sec. 
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For ⍵ = 20, the amplitude is significantly lower 
than in for lower frequencies in Figure 2 (e) and 
somewhat lower in Figure. 3(e). Bode diagrams of 
open loop control transfer function in Figure. 5 
explain this by indicating significantly lower 
magnitudes for ⍵	> 11 rad/sec in Figure 5 (a) for 
k=1 and for ⍵	>20 rad/sec in Figure 5 (b) for k=10. 
In the case of open loop control, since there is no 
feedback from the output, parameter uncertainty and 
disturbance effects cannot be reduced [9]. Figure 5 
shows the Bode diagram of closed loop control 
transfer function for N=6 and M=4. and for k=1 in 
(a) and k=10 in (b). 

 
(a) 

 
(b) 

Figure 5: Bode diagram of closed loop control transfer 
function for N=6 and M=4.and (a) k=1and (b) k=10. 

4 CONCLUSIONS 

The temperature on the one face of a plate can be 
controlled in real-time to a desired value from the 
other face using the proposed closed loop approach, 
based on inverse problem solution. Simulation 
results indicate the advantages and the limitations of 
this approach. Closed loop control has to be further 
investigated to improve the performance and range 
of applications to multi-layer plates. 
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