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Abstract: A new rational quartic interpolating spline based on function values is constructed. The rational quartic 
interpolating spline curves have simple and explicit representation with parameters. The monotonicity-
preserving, C2 continuity and boundedness of rational quartic interpolating spline curves are confirmed. 
Function value control and derivative value control of rational quartic interpolation spline are given 
respectively. The advantage of these control methods is that they can be applied to modifying the local 
shape of interpolating curve only by selecting suitable parameters according to the practical requirements. 

1 INTRODUCTION 

In engineering and science, one often has a number 
of data points, obtained by sampling or 
experimentation. It is often required to interpolate 
the value and derivatives of that original function. In 
the mathematical field of numerical analysis, 
interpolation is a method of constructing new 
function. The polynomial interpolation methods 
include Lagrange interpolation, Newton 
interpolation, Hermite interpolation, etc. However, 
once the interpolation condition is determined, the 
interpolation curve will be fixed uniquely. The 
classical Vandermode interpolation does not allows 
to control the curve, but it is worthy to say that there 
are another methods of controlling the shape. We 
know the augmented, generalized interpolation 
based on the so-called confluent Vandermonde 
matrices (Respondek, 2011; 2013; 2016). They 
enable to control the slope and convexity of the 
curve in other way. 

In order to meet the need of the ever-increasing 
modeling complexity and to incorporate 
manufacturing requirements, shape control becomes 
more and more important as curves and surfaces are 
constructed. Given the interpolation condition, how 
to control the shape of the curve to meet the 
practical application is a very meaningful and urgent 
problem. 

Spline interpolation is a useful and powerful tool 
in CAGD and CAD. Spline methods have been 
widely used in geometric modeling. The rational 

interpolating splines with shape parameters can 
modify curves locally or globally, and it is very 
convenient for interaction design in geometric 
modeling. Their application in shape control has 
attracted a great deal of interest. In recent years, 
univariate rational spline interpolations with the 
parameters have been receiving more attentions. A 
rational cubic spline based on function values is 
constructed (Duan et al., 1998), which can be used 
to control the position and shape of curve or surface. 
Duan and Wang constructed rational cubic 
interpolation spline (Duan and Wang, 2005a) and 
weighted rational cubic interpolation spline (Duan et 
al., 2005b) based on function values. Meanwhile, 
convexity-preserving, monotonicity-preserving, 
error approximation property and region control 
property have been given. The interpolation spline 
often is required to satisfy some geometric 
characteristics (positivity, monotonity, convexity) of 
data points in industrial design. A shape-preserving 
rational cubic spline with three parameters has been 
developed (Abbas et al., 2012; Zhang et al., 2007), 
and the convexity control of interpolating surfaces 
had been treated. The region control and convexity 
control of rational interpolation curves with 
quadratic denominators have been achieved 
(Gregory, 1986; Sarfraz, 2000). However, rational 
quartic interpolating curves have been ignored due 
to the complexity of calculation. With the in-depth 
research, Wang and Tan constructed a class of 
rational quartic interpolation with linear 
denominators (Wang and Tan, 2004), and discussed 
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monotonicity-preserving, C2 continuity and error 
approximation property. Duan and Bao proposed the 
method of local point control of rational cubic 
interpolating spline with linear and quadratic 
denominators based on function value respectively 
(Bao et al., 2009; Duan et al., 2009; Bao et al., 
2010). The methods of local point control of rational 
cubic interpolation spline with linear, quadratic and 
cubic denominators respectively were discussed 
(Duan et al., 2010; Pan et al., 2013). The above 
methods can modify shape of curves at a place 
flexible by selecting suitable parameters. Duan and 
Bao constructs rational cubic interpolating spline 
with difference quotient, but their methods can’t 
show the expression of the spline curve or the point 
control on the last subinterval (Bao et al., 2009; 
Duan et al., 2009). 

The rational quartic interpolating spline based on 
function values is constructed and studied in this 
paper. In section 2, the rational interpolation spline 
with parameters based on function values will be 
constructed. In this section, monotonicity-
preserving, C2

 continuity and boundedness of 
rational quartic interpolating curves are proved. The 
method of function value control and derivative 
value control of rational quartic interpolation spline 

( )P t  will be discussed in section 3. In section 4, for 

the end subintervals, point control of rational quartic 
interpolation curves ( )P t  are given. Finally, some 

examples of local point control methods are shown. 

2 RATIONAL QUARTIC 
INTERPOLATING SPLINE AND 
PROPERTIES 

Let   , , 0,1, ,i it f i n   be a set of given data 

points, where  

0 1 na t t t b     , 

and if  is the value of the function being interpolated 

at the knot it . Denote  

1i i ih t t  , i

i

t t

h



 , 1i i

i
i

f f

h
 

  . 

And let i  be positive parameters, where 

0,1, , 1i n  . Then C1-continuous, piecewise 
rational quartic splines with the quadratic 
denominator are defined on the interpolating 
subinterval  1,i it t   as follow 

 

1[ , ]
( ) ( ) ( ) , 0,1, , 1,

i i
i it t

P t p t q t i n

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0U  and 1nW   are free variables. It is easy to prove 

that the rational quartic spline ( )P t  satisfies 

interpolation condition:  

( ) , 0, ,i iP t f i n   , 

and  
( ) , 1,2, , 1.i iP t i n      

Let  

( ) ( ), 1,2, , 1.i iP t P t i n       

According to the interpolation condition, the 
following conclusion can be obtained. 
 

Theorem 1. (C2-continuous) When parameters i  

satisfy the equations as follow: 

 1 1 1 1i i i i i i i i i ih h h h           , 

1, 2, , 1i n  , the rational quartic spline (1) keep 

C2-continuous at interval  0 , nt t .  

Specially, consider equidistant knots case, that is 

i jh h  for all  , 0,1, , 1i j n  . The C2-

continuous condition of rational quartic spline can 
be simplified as follow: 

 

 1 1 2 1i i i i i       . (2)

Example 1. Set  

 ( ) , 1.5, 1.5tf t e t    

as Fig. 1(a). The C2-continuous rational quartic 
spline curve ( )P t  with 0 1   where  

1.5it ih   , 0,1, ,10i   , 

0.3h  , 

0 0.5243U  , 9  5.4787W   

is given as Fig. 1(b). 
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(a) The original function. 

-1.5 -1 -0.5 0 0.5 1 1.5

0.5

1

1.5

2

2.5

3

3.5

4

 
(b) The rational quartic interpolation curve. 

Figure 1: The C2-continuous rational quartic interpolation. 

Theorem 2. (Monotonicity-preserving) If the data 

points   , , 0,1, ,i it f i n   satisfy the condition 

0i  , the rational quartic splines (1) satisfy 

( ) 0P t   when 0 5 / 6i  , 1 / 2i i i    or 

5 / 6 2i  , 1 / 5 / 3i i   . 

Proof. The ( )P t  can be presented in the simpler 

form as 
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Obviously, inequality , 0 ( 0, ,5)i kQ k    are true 

when 0i  , 1 / 5 / 3i i    and 

1 / 2 4i i i    . So, ( ) 0P t   when 

0 5 / 6i  , 1 / 2i i i    or 5 / 6 2i  , 

1 / 5 / 3i i   . 

According to the above conclusion, the rational 
quartic spline (1) is monotonicity-preserving if and 
only if the shape parameters i  satisfies 0i  , 

0 5 / 6i  , 1 / 2i i i    or 5 / 6 2i  , 

1 / 5 / 3i i   . 

To make it easier to analyze the properties of the 
rational quartic splines, Eq. (1) can be rewritten as  

0 1 1 2 2( ) ( , ) ( , ) ( , )i i i i i iP t f f f             (4)

where 
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i i
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     
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     


    


        
       



 (5)

For all  0,1  , the basis function ( , )j i    satisfy  

2

0
( , ) 1j ij

  


 . 

For the given data, no matter what the parameters i  

might be, the interpolating function defined by (1) 
are bounded in the interpolation interval as described 
by the following Theorem 3. 

 

Theorem 3. (Boundedness) Given interpolation data 

  , , 0,1, ,i it f i n   and all 0i  , where the 

knots are equidistant. Let ( )P t  be the interpolating 

functions defined by (1) and define 
2

max
i

j
j i

N f



 . 

The values of ( )P t  in  1,i it t   satisfy 

( ) 3 / 2P t N . 

Proof. For all  1,i it t t  , 0,1, , 2i n  , 

 0,1  , it is easy to show that  

0 1 1

2 2

( ) ( , ) ( , )

( , )

i i i i

i i

P t f f

f

     
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

 


. 

According to Eq. (5), 
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thus 

( ) 3 / 2P t N  (6)

So, the proof is completed. 

3 LOCAL POINT CONTROL OF 
RATIONAL INTERPOLATION 
QUARTIC SPLINES 

In general, the common spline interpolation is the 
fixed interpolation which means the shape of the 
interpolating curve or surface is fixed for the given 
interpolating data. However, for the quartic rational 
interpolation splines defined by Eq (1), although the 
interpolation conditions remain unchanged, we can 
still adjust the value of shape parameters i  to 

obtain the ideal shape. Thus, function value control 
and derivative value control can be carried out at any 
point on the quartic rational interpolation curve. 

The curve through a fixed point is often 
demanded in geometric design. Let *  be the local 

coordinate of a point  *
1,i it t t  , 1, , 2i n  . 

The point control of rational quartic interpolation 
curve on the end subinterval will be discussed in 
section 4. 

In the practical design, it is often been required 

that the function value of the curve at the point *t  to 

be equal to a real number *M  *
1i if M f   . Let  

* * *
0 1 1

*
2 2

( , ) ( , )

( , )

i i i i

i i

M f f

f

     
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

 


 (7)

The above equation is called a control equation; it is 
equivalent to  

0iA B    (8)
where 
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

        

 

If there exist parameters i  satisfying Eq. (8) 

when , 0A B  , there must exist positive i  

satisfying Eq. (7). Therefore, we have the following 
function value control theorem. 

 

Theorem 4. Let ( )P t  be interpolation functions 

over  1,i it t   defined in (1), and let  *
1,i it t t  , 

1, , 2i n  . The sufficient condition for existence 

of positive parameters i  satisfying * *( )P t M  is 

0AB  . 

If * *( )P t M  is required, it is equivalent to 

0iA B   . Thus, * *( )P t M  can set up if and 

only if 0, 0A B   can’t set up at the same time. 

On the other hand, in the practical design, it is 
often been required that the first derivative of the 
interpolation at the point  1,i it t t  to be equal to a 

real number M . 
Let  

0 1 1
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Then the control equation (9) is equivalent to 
2

0 1 2 0i iA A A     (10)
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
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If there exist positive parameters i  satisfying Eq. 

(10), then (9) holds. This can be stated as the 
following derivative value control theorem. 

 

Theorem 5. Let ( )P t  be the interpolation function 

over  1,i it t   defined in (1), and let  1,i it t t  . The 

sufficient condition for existence of the positive 
parameters i  satisfying  P t M   is that Eq. (10) 

has positive roots. 
 

Example 2. Without loss of generality, consider the 
interpolation on  0,1 . Let ( )f t  be the interpolated 

function satisfying (0) 1f  , (1) 2.5f   (2) 4f   

and ( )P t  be interpolation functions defined by (1) 

in the interpolating interval  0,1 . It is obvious that 

( 0) /(1 0)t t     . The function value control is 

shown in Figure 2(a). 
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Let 1.5i  . It can be computed that 

(0.4) 1.5383P  . If (0.4) 1.60P   is required, then 

Eq. (8) should be satisfied, and 1i   which satisfy 

Eq. (8). Thus, the interpolation function becomes 
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the interpolation function becomes  
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(a) The function value control. 

 
(b) The derivative value control. 

Figure 2: Local point control of rational interpolation 
quartic splines. 

Example 3. For the same interpolation conditions in 
Example 2, let 0.75i  . It can be calculated that 

(0.5) 1.4694P  . Let 0.5t  , 1.40M   in Eq. 

(10). It is can be obtained that 27 16 7 0i i    . 

Solving the above equation 
8 15

7i


  can be 

obtained. For 
8 15

7i


 , the interpolation 

function becomes  

 

4 3
3

2 2 3 4

2 2

( ) (8 15)(1 ) (28 3.5 15) (1 )

(25.5 15) (1 ) 24.5 (1 ) 17.5

/ 8 15 (1 ) 7 ,

P t t t t
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    

 

 0,1t . If (0.5) 1.50P   is required, according to 

Eq. (10), we can obtain the equation 
2 2 1 0i i    , calculating that 1i  , then the 

interpolation function becomes 1( )P t . The derivative 

value control is shown in Figure 2(b). 

4 THE END SUBINTERVAL 
POINT CONTROL OF 
RATIONAL QUARTIC 
INTERPOLATION CURVES 

As discussed earlier, the given interval [ , ]a b  is 

divided into n subintervals 1[ , ]i it t  , ( 1,2, , )i n  . 

Unlike in (Bao et al., 2009), We could construct 
( )P t  in every subintervals, including end 

subintervals. We use examples to illustrate the point 
control of rational interpolation curves ( )P t . 

Without loss of generality, we take 3n  . Namely, 

there are three subintervals and the curve has three 
sections. The general principles are given in 
Theorem 4 and 5. 
 

Example 4. Let ( )P t  be defined by (1), 0 0t  , 

1 1t  , 2 2t  , 3 3t   and 0 1f  , 1 3f  , 2 2f  , 

3 4f  , 2 13W  , we discuss the function value 

control of ( )P t  on the last subinterval,  2,3t . 

The function value control is shown in Figure 3(a). 
Let 2 2.0  . The interpolation function is 

4 3 2 2
4

3 4

2 2

( ) 4(3 ) 12( 2)(3 ) 8( 2) (3 )

13( 2) (3 ) 4( 2)

/ 2(3 ) ( 2) ,

P t t t t t t

t t t

t t

       
     

    

 

 2,3t . It can be computed that 4 (2.5) 3.4167P  . 

Furthermore, if 4 (2.5) 3.5P   is required, then 

2 1.75   can be selected from Theorem 4 and the 

interpolation function becomes 
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4 3 2 2
5

3 4

2 2

( ) 14(3 ) 42( 2)(3 ) 30( 2) (3 )

52( 2) (3 ) 16( 2)

/ 7(3 ) 4( 2) ,

P t t t t t t

t t t

t t

       
     

    

 

 2,3t . 

 
(a) The function value control. 

 
(b) The derivative value control. 

Figure 3: Local point control of rational interpolation 
quartic splines on the last subinterval. 

Example 5. For Example 4, let 2 2.0  . It can be 

computed that (0.5) 1.4694P  . Let 2.5t  , it can 

be computed that (2.5) 7.7778P  . If (2.5) 8.0P   

is required, it can be obtained that 2
2 211 3 0     

from Theorem 5. After calculating, we get 

2

11 133

7
  

 , 0i  , we take 2

11 133

7
  

  

and the interpolation function becomes 

 
 
 

 

4
6

3

2 2

3 4

2 2

( ) 22 2 133 (3 )

66 6 133 ( 2)(3 )

14 2 133 ( 2) (3 )

26( 2) (3 ) 8( 2)

/ 11 133 (3 ) 2( 2) ,

P t t

t t

t t

t t t

t t

   

    

    

     
      

 

 2,3t . The function value control is shown in 

Figure 3(b). 

5 CONCLUSIONS 

In this paper, a C2 rational quartic function has been 
developed for the smooth and pleasing visualization 
of provided data. It can be testified that rational 
quartic interpolation spline is C2-continuous, 
monotonicity-preserving and bounded. Function 
value control and derivative value control of rational 
quartic interpolation splines with difference quotient 
are given. Rational quartic interpolation splines can 
be changed locally by selecting the corresponding 
parameters. Thus, they can meet the needs of the 
practical design. 
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