
Facilitating Robotic Subtask Reuse by a New Representation of
Parametrized Solutions

Jacob P. Buch, Lars C. Sørensen, Dirk Kraft and Henrik G. Petersen
SDURobotics, The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Campusvej 55, Odense, Denmark

Keywords: Industrial Assembly Automation, Uncertainty Handling, Dynamic Simulation, Reuse of Experimental Data.

Abstract: In this paper, we suggest a coherent way of representing results from experiments associated with robotic
assembly. The purpose of the representation is to be able to reuse the experiments in other assembly settings.
A main novelty in our representation is the inclusion of fine grained experimental uncertainties such as e.g.
deviations between a sensed object pose and the actual pose, and we discuss why it is very important for the
reusability of experiments to include these uncertainties. Under the reasonable assumption that we can repre-
sent the uncertainties as a region around the origin in a potentially high dimensional Cartesian space, we show
that we can efficiently represent the studied deviations by storing experiments on a so called spherical lattice.
We illustrate that the representation works by studying simulation experiments on two different industrial use
cases involving grasping an object and mounting an object on a fixture.

1 INTRODUCTION

Within industrial production involving assembly,
there is an ever increasing demand for faster response
times, smaller batch sizes and a higher degree of vari-
ation. In addition, there is a similar demand for a
higher degree of automation in order to decrease cost
and increase efficiency and reliability. Traditionally,
assembly operations have mostly been automated by
means of large static mechanical machinery with high
throughput and relying heavily on strict repeatabil-
ity. However, such machinery is only cost effective
for very large batch sizes that are supposed to run for
several or many years and are thus becoming increas-
ingly infeasible for the above mentioned varying low
volume production. Therefore, industry needs solu-
tions that are cheap and easy to install and program
and also easy to reconfigure to a new task or between
different already programmed tasks.

The issue can be addressed by modularization ap-
proaches both on the mechanical and programming
side. In this paper, we will purely focus on modu-
lar programming concepts. Concerning the program-
ming issue, a common approach has been to divide
overall assembly tasks into a set of “subtasks”. The
idea is that solutions to subtasks can be developed for
one (the first) application and reused by combining
them into other applications. We adopt a wide used
definition of a subtask as having a well defined inter-

face in terms of a precondition for executing the sub-
task and a postcondition that the subtask is expected
to produce and that can be used as precondition for the
subsequent subtask. The pre- and postconditions are
mostly defined at a symbolic level such as for exam-
ple “objectA-in-gripper” or “objectB-detected”. The
solution to the subtask is formalized as a parameter-
ized control where the parameters are typically op-
timized manually for the application where the sub-
task is used. Together with a framework for inserting
and sequencing the programmed subtasks, the over-
all complexity of solving a new task is strongly re-
duced by the modularization. The naming and precise
definition of the subtasks and associated parametrized
controls varies in the literature (see Section 2), but the
above formulation captures the essential idea of the
various approaches.

A potential problem with solving new tasks in
general and also with the above approach is that it can
be a slow and cumbersome process to derive the opti-
mal (or good enough) parameters for the control. The
reason for the difficulty is that there are small varia-
tions in the conditions for each execution of the task
due to e.g. small random displacements of the objects.
One might be able to reduce these variations mechan-
ically and rely on strict repeatability as in traditional
automation, but to reduce costs and setup times, it
would be desirable to be able to select control param-
eters that account for these variations. In the current

Buch, J., Sørensen, L., Kraft, D. and Petersen, H.
Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions.
DOI: 10.5220/0005964100370048
In Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2016) - Volume 2, pages 37-48
ISBN: 978-989-758-198-4
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

37

state, the programmer basically teaches the program
relying on a limited set of experiments using his com-
mon sense. There is no theoretical foundation for this
programming activity and there is no framework for
representing the generated results. Although the in-
formation (such as which control methods gave which
results) from the experiments may be valuable when
applying the subtask to other contexts, all this infor-
mation is typically lost. In simulations or in a labo-
ratory setting, information about the actual variation
in each execution may be made available, and hence
it would be desirable to derive a formulation that al-
lows storing information on the actual variations and
the outcome in a systematic and reusable way.

In this paper, we provide a theoretical formaliza-
tion of teach-in programming of tasks with variations
and provide a simple example that illustrates that so-
lutions to subtasks that are programmed based on a
teach-in procedure will typically rely on an insuffi-
cient set of experiments. We then suggest how to for-
mulate a representation of experiments when we have
ground truth knowledge of the variations that allows
stored results to be easily reusable between different
applications of the same subtask. This leads to the
choice of representing executions in a systematic way,
where we suggest to use a hyperspherical lattice (an
equidistant multidimensional directional grid) for the
variations. We then derive how such a lattice can be
used to predict the outcome when executing a subtask
with an arbitrary variation using interpolation tech-
niques.

Finally, we show how we can use the method to
quantitatively study the robustness of a given con-
trol to variations by an experimentally derived semi-
analytical expression for the region of variations in
which the execution will be successful. We study
and validate the formulation using simulations with
knowledge of variations of two different frequent sub-
tasks, namely a grasping task and a placing on fixture
task.

The paper is organized as follows: In Section 2,
we review the state-of-the-art in more detail. In Sec-
tion 3, we present the basics of our approach in terms
of a mathematical formalization of executions of sub-
tasks. In Section 4, we augment this formalization so
that it becomes possible to reuse experimental results
associated with optimized subtask control. This leads
to the creation of a hyperspherical lattice in Section
5 for representing the impact of variations so that re-
sults can be reused between applications. In Section
6, we validate our concept based on the two different
subtask examples. Section 7 concludes the paper.

2 RELATED WORK

The idea of dividing a task into subtasks with well
defined interfaces is not at all new as it has been
studied for decades in particular in the Artificial In-
telligence community. Early work on this was on
the purely symbolic side. A prominent example that
has inspired much of the early work is the so called
Stanford Research Institute Problem Solver (STRIPS)
planner (Fikes and Nilsson, 1971). The planner uses
proven components with well defined interfaces that
can be combined to find a path from an initial state to
a goal state. The exploitation of the concept in robotic
tasks has in recent years evolved. A good example
is the work by Huckaby and Christensen (Huckaby
and Christensen, 2012), (Huckaby et al., 2013) which
uses STRIPS for planning. Their representation of an
action allows to use a SysML (System Modeling Lan-
guage - an extension to UML) and a Planning Domain
Definition Language to reduce the overhead for the
planning of new processes. They call their subtasks
“skills” these can for example be grasping, sensing
or inserting. Another formulation of subtasks is pre-
sented in (Pedersen and Krüger, 2015) as a combin-
able function block which is also called a skill. The
formulation also uses pre- and postconditions for au-
tomated sequencing. The parametrization is supposed
to be provided by the user as the studied cases are
rather simple.

Concerning our approach addressing reuse of ob-
tained knowledge for assembly, the work presented
in (Bjorkelund et al., 2011) is very relevant. Here, a
knowledge base is developed that supports the reuse
and examples within assembly are presented. How-
ever, the authors do not present a method for how
the reuse is supposed to take place in general, and in
particular also not how the variations should be in-
cluded in the knowledge base. In (Wahrburg et al.,
2015) a simpler subtask type is defined which only
contains the needed components for control and co-
ordination of a robot without any responsibility for
interfaces and planning. The focus is on making the
subtasks reusable by defining them as generic tem-
plates where any case specific part is extracted from
parameters. Other subtask formulations can be found
in e.g. (Bøgh et al., 2012), (Guerin et al., 2015).

The research on optimizing subtasks has mainly
focused on one specific instance of the subtask. Much
of this work is still carried out using a classical
teach-in approach. For grasping great effort has
been put into designing automated off-line grasp gen-
eration (Miller et al., 2003), (Vahrenkamp et al.,
2011), (Bohg et al., 2014), (Rytz et al., 2015) and
benchmarking of grasp solutions (Kim et al., 2013)

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

38

(Bekiroglu et al., 2011). In this process, dynamic sim-
ulation has shown to be a valuable tool. Examples like
GraspIt (Miller and Allen, 2004) and OpenGrasp (Ul-
brich et al., 2011) are publicly available simulators
designed specifically for grasping.

A subtask where both teach-in and offline meth-
ods have been used for optimization is the peg-in-
hole type insertion. In (Stemmer et al., 2006), (Stem-
mer et al., 2007) and (Song et al., 2014) force con-
trol based assembly strategies are proposed. They use
force feedback from the robot to determine the state
of the assembly subtask. In (Chhatpar and Branicky,
2005) and (Kim et al., 2012) the authors approach the
problem by finding efficient search algorithms for the
process and thereby the relative position uncertainty
is indirectly found. Offline optimization techniques
using dynamic simulation are heavily used in (Buch
et al., 2014) and (Sørensen et al., 2016). An inser-
tion trajectory is found by optimizing the relative tra-
jectory between the peg and hole objects so that the
available compliance can be optimally exploited.

3 MATHEMATICAL
REPRESENTATION OF
SUBTASKS WITH A FIXED
APPLICATION AND A FIXED
CONTROL

In this section, we first present a formulation of the
execution of an arbitrary subtask as a deterministic
mathematical function that maps from the detailed
settings before the execution to the detailed settings
after the execution. In turn, we formulate a subtask
success criterion (chosen by the operator) as a binary
function on the settings after the execution. We then
show that deriving the control based on optimizing
the success probability (using the chosen success cri-
terion) will mostly require a very high number of exe-
cutions, which calls for a representation where execu-
tion results from teach-in of one subtask can be reused
for a similar subtask.

Consider a subtask as described in the introduc-
tion and recall that a subtask has a parametrized con-
trol function. When the parameters have been opti-
mized, we shall refer to a “programmed solution” to
the subtask. The subtask then comprise symbolic pre-
and post-conditions and an executable program. We
can view the programmed solution as a mapf : X →
Y described by a known functiony(x) = f (x,c(x)),
wherex∈ X is the expected input state andy(x) ∈Y
is the expected state after the execution. We will as-
sume that all elements inX satisfy the precondition

of the programmed solution and thatX andY can be
represented as integrable subsets of (potentially high
dimensional) Euclidean spaces. The state setsX and
Y may thus contain fine grained information such as
e.g. object poses and can have different dimensions.
The functionc(x) denotes the programmed solution.

However, this representation is not sufficient to
provide a deterministic description of a programmed
solution for the subtask when variations occur. To de-
rive a deterministic description, we should include a
true state, sayxTrue in an individual execution. The
true state will typically deviate from the expected
statex and these deviations differ from execution to
execution. The true state could for example con-
tain the actual pose of an object as opposed to the
expected state which would contain the pose com-
puted from sensorial data. Similarly, the outcome
yTrue will deviate from the expected outcomey. As
the fluctuations are unknown (otherwise they would
be the expected values), we should thus view a pro-
grammed solution as an unknown functionyTrue =
fTrue(xTrue,c(x)). Unfortunately, it is not possible to
derive this function in the real industrial setting as
both xTrue andyTrue will be unknown in these. We
make the basic assumption thatxTrue contains the rel-
evant data for the outcome of the execution so that
the function fTrue(xTrue,c(x)) is deterministic. Fur-
thermore, we make the reasonable assumption that
fTrue(x,c(x)) ≡ f (x,c(x)). In industrial settings, the
programmer therefore in practice defines a success
criterion for the execution, which can be measured.
Formally, we can write such a success criterion as a
setSY(x) ⊆ Y. Notice that although we do notyTrue,
we may know whether it is inSY. Consider for ex-
ample a grasping task where the stateyTrue holds un-
known information of the actual pose of the object
relative to the gripper frame, but we can still measure
whether the grasp was successful.

Assume now for simplicity that the expected state
x and thus alsoy and SY are fixed. The theoretical
success probability is then:

s=
∫

X
ρ(xTrue|x)δSY(fTrue(xTrue,c(x)))dxTrue (1)

where ρ(xTrue|x) is the probability density of true
states given that the expected (typically measured)
state wasx and δSY(yTrue) is one if yTrue ∈ SY and
zero otherwise. This success probability can then be
estimated without knowledge ofρ(xTrue|x) by simply
repeating experiments with the programmed solution
c(x) enough times.

It should be noticed, that such a procedure to ob-
tain an accurate estimate ofs will often require many
experiments. Therefore it is also difficult or impos-
sible for the programmer to know if a programmed

Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions

39

solution has been selected that works as desired in the
long run. To see this, consider an example with ten
different possible sets of control parameters of which
nine has a success probability of 1− 3ε and the last
has a success probability of 1− ε where we assume
thatε is small. Assume that we doM independent ex-
periments with each set of control parameters. Using
the Poisson approximation, we obtain that we need
to carry out on the orderM = 1/δ2 experiments to
obtain a standard deviation that will enable us to de-
rive the optimal programmed solution with a reason-
able certainty. Withδ = 1%, the operator thus need
to carry out around 10,000 experiments with each set
of control parameters to be reasonable certain that the
solution with the 99% success rather than 97% suc-
cess has been selected. A further and more practical
study on intelligent sampling methods for optimizing
control parameters can be found in (Sørensen et al.,
2016) where it also found that many experiments are
needed.

To resolve the problem of having to perform many
experiments, it would be desirable to find out how we,
for an application of a subtask, can reuse the experi-
ments with the same type of subtask carried out in
different applications with different settings. An ob-
vious difficulty with reusing programmed solutions is
that there will be differences in the objects to be han-
dled (different materials, mass density distributions,
geometries etc.). This may be formally handled by a
parametrization of the experimental settings through
augmenting the set of expected statesX. Unfortu-
nately, there are even when disregarding these differ-
ences a couple of drawbacks when seeking to reuse
the programmed solutions: i) The control was op-
timized with aρ(xTrue|x) associated with the given
experimental settings. In other applications, where
the programmed solution is to be used, the function
ρ(xTrue|x) may be significantly different and thus the
controlc(x) may be far from optimal. A good exam-
ple is grasping of a pose estimated object. The object
may be picked from a table with small variations in
height and tilt or from a bin with similar variations
in all pose dimensions. ii) In some experiments, it
may be difficult to associate a reusable success region
SY. A good example is again grasping, where the suc-
cess regionSY for a precision grasp strongly depends
on the accuracy requirements of the subsequent op-
eration. Hence, a traditionally programmed solution
(using e.g. one of the skill libraries mentioned in the
related work section) is only useful for reuse if the
changes inρ(xTrue|x) and SY are negligible. In the
next section, we will devise a representation that al-
low significant changes inρ(xTrue|x) andSY and thus
substantially increase reusability.

4 AUGMENTED SUBTASK
REPRESENTATIONS FOR
REUSABILITY

In this section, we augment the representation of sub-
task executions so that they include the true states.
Clearly, the true states will not be available in the
real industrial settings, but this formulation opens for
the possibility of exploiting experiments performed in
laboratory conditions with sensors to obtain ground
truth information or (as we do in this paper) exploit-
ing experiments carried out in computer simulations
where all information of course is available. We dis-
cuss how to choose the represention and different
methods for storing the results of the executions both
in laboratory conditions and with computer simula-
tions.

To deal with differentρ(xTrue|x)’s and SY’s, we
need to devise a representation that is independent of
these. The most direct way of achieving that is to
simply study the propagation of true states relative to
the expected state in a coherent way.

If we describe the propagation of true states
yTrue = fTrue(xTrue,c(x)) as y + ey = fTrue(x +
ex,c(x)), we may study the map as a propagation of
errors to the expected stateey = φ(ex,c(x),x) where
ex ∈ EX,ey ∈ EY and EX,EY are small regions lo-
cated around the origin in the corresponding Eu-
clidean spaces belonging toX andY. Notice that we
assume that the mapφ(ex,c(x),x) is continuous inex
within the regionEX. This is a reasonable assumption
since we are studying potentially successful actions.
We wish to derive a method that based on already per-
formed experiments is capable of predicting the out-
come of executing the programmed solution with an
arbitrary errorex without having to perform the exper-
iment withex. In the simplest setting, we would wish
to be able to predict whether the experiment would
be successful, i.e. thatf (x+ ex,c(x)) ∈ SY. A fur-
ther step would be to be able to predict the value of
φ(ex,c(x),x). Here, we discuss two approaches that
could be taken

• Random sampling inEX together with a smooth-
ing technique such as e.g. Kernel Density Estima-
tion

• Interpolation inEX using a grid (e.g. based on a
hyperspherical lattice)

There are advantages and disadvantages with both ap-
proaches. The problem with random sampling is in
the search phase. If the dimension ofEX is high,
the total number of samples needed will also be high,
and there would be a large overhead in finding the
neighbors that are needed in the Kernel Density based

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

40

interpolation. The disadvantage with a spherical lat-
tice is that it requires that we can select the errorsex.
However, as we will deploy simulation for the exper-
iments, the selection problem does not occur and we
therefore choose the lattice approach. Hence, we will
devise a spherical lattice that will allow instantaneous
finding of the nearest lattice vectors for a given error
and how these can be used to predict the error propa-
gationey = φ(ex,c(x),x).

5 CONSTRUCTION OF A
SPHERICAL LATTICE

In this section, we present an algorithm for construct-
ing a hyperspherical lattice where we adopt a method
from the literature and outline how it works. A spher-
ical lattice on aK-dimensional sphere is an organized
set of approximately equidistant points on the sphere.
In two dimensions these can be generated optimally
by simply tesselating the unit circle intoN points with
angles 2π j/N for j = 1, . . . ,N. Already in three di-
mensions, there are no general optimal solutions al-
though there are special cases such as the icosahedral
distribution. In higher dimensions, it become even
more complicated, but several rather different meth-
ods for computing suitable lattices can be found in
the literature. Here we adopt the method from (Lovi-
solo and da Silva, 2001) as it has the advantage of
providing a lattice set that facilitates searching and
also allows the user to control the grid size rather pre-
cisely. For completeness, we state the algorithm here.
We first define spherical coordinates for vectors inK
dimensions. If we write an arbitrary unit vector as
u= (u1, . . . ,uK), a set of corresponding spherical co-
ordinatesθ1, . . . ,θK−1 can be defined as:

uk = cosθkΠk−1
j=1sinθ j k= 1. . .K −1 (2)

uK = ΠK−1
j=1 sinθ j (3)

The user then chooses an approximate distance be-
tween neighboring lattice vectorsδ and a set can then
be found as follows. Choose first∆θ1 = δ and per-

form the tesselationθ(i1)1 = i1∆θ1. Assume now that a
tesselation has been derived for spherical coordinate
k−1 and consider an arbitrary point of that tessela-

tion (θ(i1)1 ,θ(i2)2 , . . . ,θ(ik−1)
k−1 . We can then compute the

size of the tesselation of the spherical coordinatek by
computing:

∆θk =
δ

Πk−1
j=1sinθ(i j)

j

(4)

and subsequently chooseθ(ik)k = ik∆θk. Notice that
for k> 1, we thus have a variable∆θk selected so that

the distance between adjacent points will beδ. Due
to boundaries on the spherical coordinate, the lattice
will not be perfect, but we have tested it to be useful
even for a rather small size of the lattice. Moreover,
the choice ofδ should be rather intuitive for the user.

6 USING THE SPHERICAL
LATTICE TO APPROXIMATE
THE ERROR
TRANSFORMATIONS AND
SUCCESS REGIONS USING
SIMULATIONS

We now study a subtask using simulation. For any
input errorex, the simulator thus produces a resulting
errorey = φ(ex,c(x),x), and we wish to estimate this
map using our spherical lattice.

Lattice Data Generation: The first step is to
choose an appropriate scaling (choice of unit) for each
of the coordinates ofex so that we can select the same
maximal error distanceD for all directions (and thus
for all lattice vectors) that we wish to sample. For
each lattice vector, sayuk, we select a tesselationε
of error points along the vectoruk where we perform
simulations. The next step is thus to perform simula-
tions with errorssik = iεuk for each lattice vector and
for i = 1, . . . ,⌈D

ε ⌉. We record the deterministic out-
comesσik = φ(sik,c(x)) generated by executing the
simulation.

Prediction: Consider now an arbitrary errorex.
We then search for theK nearest lattice vectors that
correspond to the corners in theK − 1 dimensional
hyperplane on the surface of the unit sphere to which
ex belongs. To do this efficiently, we may compute the
spherical coordinates ofex and use the structure of the
lattice to obtain the hyperplane with a rather limited
search. We then select the nearest tesselation point
relative to the size ofex and perform a weighted linear
interpolation between these to obtain an estimate of
φ(ex,c(x),x).

We are thus immediately able to use this for var-
ious studies such as to estimate the overall success
probability of the programmed solutionc(x) for any
ρ(xTrue|x) and anySY by noticing that we can write
(1) as:

s=
∫

X
ρ(x+ex|x)δSY(fTrue(x+ex,c(x)))dex (5)

and deploying a classical sample point based numeri-
cal integration schemes.

In this paper, we wish to illustrate the validity of
our method in a simple way by studying the success

Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions

41

regions directly. To determine the success region, we
for each lattice vector, sayuk, compute the largest dis-
tancedk where all errorsαuk belong to the success re-
gion whenα ≤ dk. If all values up toDuk belongs to
the success region, we setdk = D.

For an arbitrary error vectorex, we then again
search for theK nearest lattice vectors that corre-
sponds to the corners in theK − 1 dimensional hy-
perplane on the surface of the unit sphere to whichex
belongs. We can then provide a conservative estimate
by testing ifex is closer to the origin than the scaled
hyperplane with cornersdksk for the relevantK − 1
lattice vectors.

7 VALIDATING OUR CONCEPTS
ON TWO SUBTASKS

In this section, we test our concept on two subtasks.
The first subtask consist of grasping of an industrial
object using a Robotiq two fingered hand and the sec-
ond case is the placement of the same object into a fix-
ture. For each subtask, three types of errors and asso-
ciated success regions are studied where each handles
a specific type of uncertainty. The first error type in-
cludes the positional uncertainties of an object placed
on a table. The second includes errors in all three
positional dimensions to illustrate the concept for any
positional uncertainties. Lastly, a full six-dimensional
error illustrates any transformational uncertainty for
an object.

For each of the cases, we compare the actual out-
come (success/failure) with the predicted outcome
computed as outlined in the end of the previous sec-
tion. By this, we will study the value of using the
derived representation for a detailed robustness of a
given control to uncertainties.

7.1 Grasping of Industrial Object
Subtask

In the grasping subtask, an industrial part is grasped
by a Robotiq two fingered gripper. The length of
the industrial part is 5cmand has a diameter of 3cm
where it is largest. The scene is shown in Figure 1.
The grasping strategy starts by the hand being placed
10cmabove the grasping location and it is then moved
linearly down to the grasping location. At this posi-
tion, the gripper is set to close, and finally, the hand
is again lifted to the initial position. At this point, the
simulation is evaluated. In the evaluation, it is tested
whether the object is still in contact with both the fin-
gers. If so, the action is evaluated as a success and

Figure 1: Scene for the grasping subtask. It consists of a
fixed fixture, a dynamic industrial object and a kinemati-
cally controlled Robotiq hand with dynamically controlled
fingers.

otherwise as a failure.
The dynamic simulation engine chosen for this

task is the Open Dynamics Engine (Drumwright
et al., 2010), which is a widely used engine in the
robot community and has in particular been used
for grasping. The engine is interfaced using Rob-
Work(Ellekilde and Jorgensen, 2010). In the engine,
the friction between the fingers and the industrial ob-
ject was set toµ= 0.9. The robotic hand was modeled
as individual bodies for each finger part connected by
joints. The finger is then driven by a torque added
between the base and the first outermost finger part
which is used to pull the fingers together when grasp-
ing the object. The object is picked from a simple fix-
ture comprised of a box with a small cut out to hold
it in place. Contacts between fixture and gripper are
ignored in simulation.

7.1.1 2D Positional Errors when Grasping
Objects from a Table

The industrial part is, in this case, perturbed in the di-
rections of a plane to simulate the errors which could
occur if the object was placed on a table, i.e.ex ∈R2.
The area is estimated by two different sets of lattice
vectors with respectively six and twelve vectors. The
search vector is maximally evaluated up toD = 12cm
and the used tesselation isε = 1mm. The success ar-
eas are illustrated in Figure 2, together with 4000 ran-
dom perturbations generated from a realistic distribu-
tion. The distribution chosen was a two-dimensional
normal distribution with mean 0cmand standard de-
viation σ = 8cm in both directions and with no cor-
relation. Qualitatively, the plot shows that the region
is very well captured with these two rather sparse lat-
tices. Typically, the success area will grow in size
when refining the lattice as the polyhedral shortcuts
will be smaller, which can also be seen in the Figure.
However, in the first quadrant, the success area of the
12 lattice vector case is smaller than the 6 lattice case

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

42

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

- 0.06 - 0.04 - 0.02 0.02 0.04

[m]

- 0.04

- 0.02

0.02

0.04

[m]

Figure 2: 2D success areas of the grasping action and 4000
perturbations taken from a two dimensional normal distri-
bution with mean 0 cm and standard deviation 9 cm in both
dimensions. Blue dots indicate a failure while yellow ind-
cate a success. The six search vector based success area is
illustrated in black and the twelve search vector based suc-
cess area is illustrated in green.

due to what seems to be a simulation artifact.
For quantification, the performance is for all our

experiments measured with a confusion matrix and a
histogram. The histogram shows the distribution of
the four results from the confusion matrix with re-
spect to the distance to the boundary of the estimated
success region. Points inside the region have negative
distances in the histogram.

For the 2D case, the results are illustrated for the
coarse lattice with six vectors in Figure 3. The con-
fusion matrix illustrates a very good estimation where
92% of the experiments were correctly estimated with
respect to the success area and only 0.57% are a crit-
ical false positive. False positives are more critical
since they can result in unexpected failures whereas
false negatives just represent a too strict success area.
Notice also from the histogram that all of the false
estimates are close to the edge of the success area.

-0.04 -0.02 0.00 0.02 0.04 0.06
[m]

100

200

300

400

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 2111 305 2416
simulation Failure 9 1575 1584

Total 2120 1880 4000

Figure 3: Histogram and confusion matrix for the 2D po-
sitional errors based on six lattice vectors for the grasping
subtask.

For the twelve vectors based success area, the re-
sults are shown in Figure 4. Despite the artifact in

the first quadrant, this success area has a better cover-
age of the real success area where 96% of all pertur-
bations were correctly estimated. It has as expected
a small increase to 1.5% in the critical false-positive
percentage due to the more tight estimation of the suc-
cess region.

-0.04 -0.02 0.00 0.02 0.04 0.06
[m]

50

100

150

200

250

300

350

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 2283 133 2416
simulation Failure 24 1560 1584

Total 2307 1693 4000

Figure 4: Histogram and confusion matrix for the 2D posi-
tional errors based on twelve lattice vectors for the grasping
subtask.

7.1.2 3D Positional Errors when Grasping an
Object

In the second experiment, we also include the third
positional dimension, i.e.ex ∈ R3. To estimate the
success area, we again consider two lattices based re-
spectively on 12 and 42 vectors. As it is difficult to
illustrate plots of the regions in more than two dimen-
sions, we have chosen to omit these. The performance
can however again be estimated by a confusion matrix
and a histogram. We again used 4000 perturbations,
but now taken from a three-dimensional normal distri-
bution with identical standard deviation ofσ= 8cmin
each dimension. The results with twelve lattice vec-
tors are shown in Figure 5.

The performance is not quite as good as for the
two-dimensional success area, but still more than 90%
are correctly estimated and still only less than 2% of
the critical false positive are present in both cases.
The performance for the success region based on 42
vectors is shown in Figure 6. The results in the con-
fusion matrix has again an increase in false positives
due to the tighter fit, but has a larger decrease in false
negatives and thus an overall better representation of
the success region.

7.1.3 6D Errors for Grasping an Object

We now consider grasping objects with pose errors
in all six dimensions (three in position and three in
orientation). A success area is best represented by

Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions

43

-0.04 -0.02 0.00 0.02 0.04 0.06
[m]

50

100

150

200

250

300

350

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1515 370 1885
simulation Failure 26 2089 2115

Total 1541 2459 4000

Figure 5: Histogram and confusion matrix for the 3D po-
sitional errors based on 12 lattice vectors for the grasping
subtask.

-0.04 -0.02 0.00 0.02 0.04 0.06
[m]

100

200

300

400

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1689 196 1885
simulation Failure 42 2073 2115

Total 1731 2269 4000

Figure 6: Histogram and confusion matrix for the 3D po-
sitional errors based on 42 lattice vectors for the grasping
subtask.

the lattice vectors if there is an equivalence between
translation and rotation. To ensure this, we have cho-
sen a relation of the units to be so that 1cm is equiv-
alent to 0.3rad roughly corresponding to an object of
a size of 5− 10cm. The success region is estimated
with lattices of respectively respectively 98 and 1004
lattice vectors corresponding toδ = 0.8 andδ = 0.5.
The performance is again studied using 4000 pertur-
bations, which is now taken from a distribution with
a standard deviation of 5cmin the three positional di-
mensions andσ = 1rad in roll, pitch and yaw.

The results for the success region estimated from
98 search vectors is illustrated in Figure 7. There is a
now a rather significant set of 43.75 % of the actually
successful perturbations that are falsely predicted as
a false negative. This indicates that the conservative
success region estimate obtained from cutting off with
the polyhedral shortcuts now has an impact.

The results with 1004 lattice vectors are illustrated
in Figure 8. We see that the estimate is improved over
the 98 based six-dimensional success area, but there
are still many successful tests that were predicted as

-0.02 -0.01 0.00 0.01 0.02 0.03
[m]

200

400

600

800

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1333 1750 3083
simulation Failure 68 849 917

Total 1401 2599 4000

Figure 7: Histogram and confusion matrix for the 6D errors
based on 98 lattice vectors for the grasping subtask.

-0.02 -0.01 0.00 0.01 0.02 0.03
[m]

200

400

600

800

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1811 1272 3083
simulation Failure 64 853 917

Total 1875 2125 4000

Figure 8: Histogram and confusion matrix for the 6D errors
based on 1004 lattice vectors for the grasping subtask.

failure. For both cases, we however observe around 7
% of the failures were now false positives.

7.2 Placing in Fixture Subtask

The second investigated subtask is a placement of the
same industrial part into a fixture. The scene is shown
in Figure 9 and consist of two elements. A compliant
fixture and an industrial part which is kinematically
controlled. The compliance in the fixture is modeled
by fixing the body to the world with a damped spring.
The spring has a directional compliance which is set
to 0.0005m/N, the rotational compliance is set to
0.1 1

N·m and the friction is chosen so the system is crit-
ically damped. The control used with the insertion
to simply place the object linearly from above. The
industrial object is initially held 15cmabove the tar-
geted final position in the fixture. From that position,
the object is moved directly downwards to the final
position. The simulation is then evaluated at simula-
tion end time. For evaluation, we examine the tip of
the fixture. If the tip of the fixture is at least 1cm in-
side the industrial part the simulation is evaluated as

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

44

Figure 9: Scene for the place in fixture case. The left im-
age shows the initial position and the right image the goal
position of the subtask.

a success, otherwise it is a failure.
Since this action is a tight fit insertion, we found

based on recent studies (Thulesen and Petersen, 2016)
that ODE was not suitable to simulate the task. Based
on these studies,anonomouswas chosen to accurately
simulate tight-fit assembly. We used the standard set-
tings of the engine except for the friction coefficient,
which was set to 0.4 corresponding to interactions be-
tween two plastic objects. We again study 2D and
3D positional errors and the 6D general error with the
same lattices as for the grasping subtask.

7.2.1 2D Positional Errors for Placing an Object
on a Fixture

The results for the estimation of the success region
were again obtained with 4000 perturbations and a
plot is shown in Figure 10. The perturbations are here
again taken from a two-dimensional normal distribu-
tion but with a lower standard deviationσ = 2.5cm
since this action is much less resilient to uncertain-
ties.

The quantitative results are again shown with con-
fusion matrices and histograms and are illustrated in

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

- 0.006 - 0.004 - 0.002 0.002 0.004 0.006

[m]

- 0.006

- 0.004

- 0.002

0.002

0.004

0.006

[m]

Figure 10: 2D success areas of the place in fixture ac-
tion and 4000 perturbations taken from a two dimensional
normal distribution with mean 0cmand standard deviation
2.5cm in both dimensions. Blue dots indicate a failure
while yellow indcate a success. The six search vector based
success area is illustrated in black and the twelve search
vector based success area is illustrated in green.

Figure 11 and Figure 12 respectively. The results
show that both success regions are very well esti-
mated with only a few false classifications and the
performance looks very similar to the corresponding
results from the grasping action.

0.000 0.005 0.010 0.015 0.020
[m]

50

100

150

200

250

300

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1143 161 1304
simulation Failure 7 2689 2696

Total 1150 2850 4000

Figure 11: Histogram and confusion matrix of 2D success
area estimated based on six search vectors for the place in
fixture subtask.

0.000 0.005 0.010 0.015 0.020
[m]

50

100

150

200

250

300

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1238 68 1306
simulation Failure 18 2676 2694

Total 1256 2744 4000

Figure 12: Histogram and confusion matrix of 2D success
area estimated based on twelve search vectors for the place
in fixture subtask.

7.2.2 3D Positional Errors for Placing an Object
on a Fixture

This study is similar to the study for the success re-
gion for the three-dimensional grasping case, but with
the perturbations are taken from a distribution with
standard deviation ofσ = 2.5cm in all three dimen-
sions. The results is shown in Figure 13 and Figure
14.

Again the quality of matching is similar to the
grasping subtask with only around 0.5% false pos-
itives, but here there is a somewhat surprising im-
provement on the false negatives by going to 42 lattice
vectors.

Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions

45

0.000 0.005 0.010 0.015 0.020
[m]

50

100

150

200

250

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 991 286 1276
simulation Failure 13 2710 2723

Total 1004 2996 4000

Figure 13: Histogram and confusion matrix of 3D success
area estimated based on twelve search vectors for the place
in fixture subtask.

-0.005 0.000 0.005 0.010 0.015 0.020
[m]

50

100

150

200

250

300

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1127 150 1277
simulation Failure 15 2708 2723

Total 1142 2858 4000

Figure 14: Histogram and confusion matrix of 3D success
area estimated based on 42 search vectors for the place in
fixture subtask.

7.2.3 6D Errors for Placing an Object on a
Fixture

For this subtask, the last experiments also considers
all six dimensions of pose errors. The perturbations
are taken from a distribution with standard deviation
of σ = 2cm in the position andσ = 0.6rad in roll,
pitch and yaw. The performance of the success area
is shown in Figure 15 and Figure 16 for the success
area created from 98 search vectors and 1004 search
vectors respectively. Again, we obtain results that are
quite similar to those for the grasping subtask with
around 7% false positives.

8 CONCLUSION

In this paper, we have outlined how to represent out-
comes of experiments when uncertainties are avail-
able to be used in frameworks where robotic tasks are
divided into subtask components that are aimed at be-

-0.005 0.000 0.005 0.010
[m]

100

200

300

400

500

600

700

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 979 1275 2254
simulation Failure 116 1630 1746

Total 1095 2905 4000
Figure 15: Histogram and confusion matrix for the 6D er-
rors based on 98 lattice vectors for the place in fixture sub-
task.

-0.005 0.000 0.005 0.010
[m]0

200

400

600

800

1000

True Positive
True Negative
False Positive
False Negative

Predicted
Success Failure Total

Executed in Success 1224 1030 2254
simulation Failure 125 1621 1746

Total 1349 2651 4000

Figure 16: Histogram and confusion matrix for the 6D er-
rors based on 1004 lattice vectors for the place in fixture
subtask.

ing reused. We have discussed why it is important
to include uncertainties and that classical teach-in ap-
proaches rely on two main flaws, namely that there
will often be too few experiments for obtaining the
optimal solution and that reuse in different settings is
problematic. We then show how our suggested repre-
sentation can resolve this issue. Our method relies on
sampling with ground truth knowledge of the uncer-
tainties. These conditions can be met in simulation as
shown by our experiments or by executing the tasks
in laboratory conditions where the uncertainties can
be measured.

It is clear from our tests that the quality of our
estimates of the success area seems to decrease with
increase in the dimensionality of the state space. A
main reason for this is that the amount of necessary
grid points in the hyperspherical lattice grows expo-
nentially with the dimension of the uncertainty space.
Hence, when we use the grid for directly estimating
φ(ex,c(x),x), we will study how to develop a grid that
at the different locations on the hypersphere adapts
the grid size to a required accuracy of the interpola-
tion. In the near future, we will also conduct stud-
ies of reusing the representation between different but

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

46

similar subtasks. Furthermore, we want to use the
representation to estimateρ(xTrue|x) for a full task as
a tool to estimate the optimal control parameters for
each of the subtasks constituting the full task.

REFERENCES

Bekiroglu, Y., Laaksonen, J., Jorgensen, J. A., Kyrki, V.,
and Kragic, D. (2011). Assessing grasp stability based
on learning and haptic data.Robotics, IEEE Transac-
tions on, 27(3):616–629.

Bjorkelund, A., Edstrom, L., Haage, M., Malec, J., Nilsson,
K., Nugues, P., Robertz, S., Storkle, D., Blomdell, A.,
Johansson, R., Linderoth, M., Nilsson, A., Roberts-
son, A., Stolt, A., and Bruyninckx, H. (2011). On
the integration of skilled robot motions for productiv-
ity in manufacturing. InAssembly and Manufactur-
ing (ISAM), 2011 IEEE International Symposium on,
pages 1–9.

Bøgh, S., Nielsen, O. S., Pedersen, M. R., Krüger, V., and
Madsen, O. (2012). Does your robot have skills? In
Proceedings of the 43rd International Symposium on
Robotics (ISR2012).

Bohg, J., Morales, A., Asfour, T., and Kragic, D. (2014).
Data-driven grasp synthesis - a survey.Robotics, IEEE
Transactions on, 30(2):289–309.

Buch, J. P., Laursen, J. S., Sørensen, L. C., Ellekilde, L.-P.,
Kraft, D., Schultz, U. P., and Petersen, H. G. (2014).
Applying simulation and a domain-specific language
for an adaptive action library. InLecture Notes in
Computer Science, volume 8810, pages 86–97.

Chhatpar, S. and Branicky, M. (2005). Particle filtering for
localization in robotic assemblies with position uncer-
tainty. InIntelligent Robots and Systems, 2005. (IROS
2005). 2005 IEEE/RSJ International Conference on,
pages 3610–3617.

Drumwright, E., Hsu, J., Koenig, N., and Shell, D. (2010).
Extending open dynamics engine for robotics simula-
tion. Second International Conference, SIMPAR 2010,
Darmstadt, Germany, (3):38–50.

Ellekilde, L.-P. and Jorgensen, J. A. (2010). Robwork: A
flexible toolbox for robotics research and education.
pages 1 –7.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new ap-
proach to the application of theorem proving to prob-
lem solving. InProceedings of the 2Nd International
Joint Conference on Artificial Intelligence, IJCAI’71,
pages 608–620, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Guerin, K. R., Lea, C., Paxton, C., and Hager, G. D. (2015).
A framework for end-user instruction of a robot as-
sistant for manufacturing. InRobotics and Automa-
tion (ICRA), 2015 IEEE International Conference on,
pages 6167–6174.

Huckaby, J. and Christensen, H. (2012). A taxonomic
framework for task modeling and knowledge transfer
in manufacturing robotics. InProc. 26th AAAI Cogni-
tive Robotics Workshop, pages 94–101.

Huckaby, J., Vassos, S., and Christensen, H. (2013). Plan-
ning with a task modeling framework in manufac-
turing robotics. InIntelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on,
pages 5787–5794.

Kim, J., Iwamoto, K., Kuffner, J., Ota, Y., and Pollard, N.
(2013). Physically based grasp quality evaluation un-
der pose uncertainty.Robotics, IEEE Transactions on,
29(6):1424–1439.

Kim, Y.-L., Kim, B.-S., and Song, J.-B. (2012). Hole de-
tection algorithm for square peg-in-hole using force-
based shape recognition. InAutomation Science and
Engineering (CASE), 2012 IEEE International Con-
ference on, pages 1074–1079.

Lovisolo, L. and da Silva, E. A. B. (2001). Uniform distri-
bution of points on a hyper-sphere with applications to
vector bit-plane encoding.IEE Proceedings - Vision,
Image and Signal Processing, 148(3):187–193.

Miller, A. and Allen, P. (2004). Graspit! a versatile simula-
tor for robotic grasping.Robotics Automation Maga-
zine, IEEE, 11(4):110–122.

Miller, A., Knoop, S., Christensen, H., and Allen, P. (2003).
Automatic grasp planning using shape primitives. In
Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on, volume 2,
pages 1824–1829 vol.2.

Pedersen, M. R. and Krüger, V. (2015). Automated plan-
ning of industrial logistics on a skill-equipped robot.
In IROS 2015 workshop Task Planning for Intelligent
Robots in Service and Manufacturing, Hamburg, Ger-
many.

Rytz, J. A., Ellekilde, L., Kraft, D., Petersen, H. G., and
Krüger, N. (2015). On transferability and contexts
when using simulated grasp databases.Robotica,
33(5):1131–1146.

Song, H.-C., Kim, Y.-L., and Song, J.-B. (2014). Automated
guidance of peg-in-hole assembly tasks for complex-
shaped parts. InIntelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on,
pages 4517–4522.

Sørensen, L. C., Buch, J. P., Petersen, H. G., and Kraft,
D. (2016). Online action learning using kernel den-
sity estimation for quick discovery of good parameters
for peg in hole insertion. In13th International Con-
ference on Informatics in Control, Automation and
Robotics (ICINCO). To be submitted.

Stemmer, A., Albu-Schaffer, A., and Hirzinger, G. (2007).
An analytical method for the planning of robust as-
sembly tasks of complex shaped planar parts. In
Robotics and Automation, 2007 IEEE International
Conference on, pages 317–323.

Stemmer, A., Schreiber, G., Arbter, K., and Albu-Schaffer,
A. (2006). Robust assembly of complex shaped planar
parts using vision and force. InMultisensor Fusion
and Integration for Intelligent Systems, 2006 IEEE In-
ternational Conference on, pages 493–500.

Thulesen, T. N. and Petersen, H. G. (2016). RobWork-
PhysicsEngine: A new dynamic simulation engine for
manipulation actions. InRobotics and Automation
(ICRA), 2016 IEEE International Conference on. (ac-
cepted).

Facilitating Robotic Subtask Reuse by a New Representation of Parametrized Solutions

47

Ulbrich, S., Kappler, D., Asfour, T., Vahrenkamp, N., Bier-
baum, A., Przybylski, M., and Dillmann, R. (2011).
The opengrasp benchmarking suite: An environment
for the comparative analysis of grasping and dexter-
ous manipulation. InIntelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on,
pages 1761–1767.

Vahrenkamp, N., Przybylski, M., Asfour, T., and Dillmann,
R. (2011). Bimanual grasp planning. InHumanoid
Robots (Humanoids), 2011 11th IEEE-RAS Interna-
tional Conference on, pages 493–499.

Wahrburg, A., Zeiss, S., Matthias, B., Peters, J., and Ding,
H. (2015). Combined pose-wrench and state machine
representation for modeling robotic assembly skills.
In Proceedings of the IEEE/RSJ Conference on Intel-
ligent Robots and Systems, pages 852–857.

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

48

