
A Verification Method of Time-response Requirements

Yuuma Matsumoto and Atsushi Ohnishi
Department of Computer Science, Ritsumeikan University, Kusatsu, Japan

Keywords: Non-functional Requirements, Time-Response Requirements, Requirements Frame, Verification of
Non-functional Requirements.

Abstract: In order to verify the correctness of functional requirements, we have been developing a verification method of
the correctness of functional requirements specification using the Requirements Frame model. In this paper,
we propose a verification method of non-functional requirements specification, especially time-response re-
quirements written with a natural language. We establish a verification method by extending the Requirements
Frame model. We have also developed a prototype system based on the method using Java. The extended Re-
quirements Frame model and the verification method will be illustrated with examples.

1 INTRODUCTION

Software requirements should hold some character-
istics in IEEE Std830 (IEEEstd98). We have de-
veloped a requirements frame and requirements lan-
guage named X-JRDL based on the requirements
frame to improve the characteristics of software func-
tional requirements(Ohnishi1996). We can detect
lack of indispensable cases and wrong noun types us-
ing X-JRDL, but since this language aims to specify
functional requirements, we cannot improve the char-
acteristics of non-functional requirements.

In this paper, we propose an extended require-
ments frame and a verification method of non-
functional requirements based on the extended re-
quirements frame model.

In the next section, we illustrate the original re-
quirements frame model and the requirements lan-
guage. In Section 3, we describe an extended require-
ments frame model and a verification method of non-
functional requirements specification with examples.
In Section 4, related works will be described. In Sec-
tion 5, we conclude our research.

2 REQUIREMENTS FRAME
MODEL

Consider requirements of a library system of book re-
trieval as below.

There exist users, cards of retrieval of books,
and Identifier (ID) number of each book.
Users are human-type objects. Cards and
ID are data-type objects. Cards are classi-
fied into authors-cards that are sorted by au-
thor’s name in alphabetical order, and title-
cards sorted by title. A user can retrieve books
with these cards.

A requirements definer first identifies objects
(nouns), object types (attributes) in a target system.
Secondly he defines operations among objects (verbs)
and roles of the operations (cases), and then con-
structs requirements sentences. The “cases” mean
concept about agents, objects, goals of the operations
(Shank1977). Thus, a requirement sentence includes
nouns and verbs as its components, and there exist
roles of objects as relations among the components. A
particular functional requirement may be defined with
several sentences. Our requirements model named
Requirements Frame Model has been developed to
easily represent the above structures. It involves two
kinds of frames. These are a frame of noun level and
a frame of sentence level (Ohnishi1996).

2.1 Noun Frame

The first frame is the Noun Frame, a frame whose
components are nouns and their types. Table 1 shows
the noun types provided to specify file-oriented soft-
ware requirements. A new noun appearing in a re-
quirements description will be classified into one of
these types.

Matsumoto, Y. and Ohnishi, A.
A Verification Method of Time-response Requirements.
DOI: 10.5220/0005973101490156
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 149-156
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

149

Table 1: Noun types of the Noun Frame.

Type of noun Meaning
human active and external object

function active and internal object
file passive object of information set
data passive object of a single information

control passive object for control transition
device passive object of an instrument

Table 2: Concept of the Case Frame.

Concept Meaning
DFLOW Data flow
FLOW Control flow
ANDSUB And-tree structure
ORSUB Or-tree structure
GEN Data creation
RET Retrieve a record in a file
UPDATE Update a record in a file
DEL Delete a record in a file
INS Insert a record in a file
MANIP File manipulation
EQ, NE, LT, GT, LE, GE Logic operators

2.2 Case Frame

The second frame is theCase Frame, a frame whose
components are nouns, verbs and cases. We provide
seven different cases;agent, goal, instrument, key,
object, operationand source. We also provide 16
different concepts includingdata flow, control flow,
data creation, file manipulation, data comparison,
andstructure of data/file/function.There are several
verbs to represent one of these concepts. For exam-
ple, to specify a conceptdata flow, we may useinput,
output, print out, display, send, and so on. A require-
ments definer can use any verbs as far as it can be
categorized in these 16 concepts provided.

We prepare these concepts to specify requirements
of a file-oriented software domain. When a user wants
to write requirements of another domain, he may need
a verb not categorized into these concepts. In such a
case, he can use a new verb if he defines its case struc-
ture. Since a newly defined verb, its concept, and its
case structure can be registered in the verb dictionary,
he can use his own verbs as well as provided verbs.

The 16 concepts (10 verb type concepts and 6 ad-
jective type concepts) are shown in Table 2.

The Case Frame defines case structures of these
concepts. For example, thedata flow(DFLOW) con-
cept hasagent, source, goal,and instrumentcases.
The agent case corresponds to a data which is trans-
ferred from the source case object to the goal case ob-
ject. So, an object assigned to the agent case should
be a data type object. An object in the source or goal

DFLOW

object

instrument

source
goal

case noun type

object data

source function,

human

goal function,

human

instrument device

Figure 1: Case Frame of the Concept, “DFLOW”.

Table 3: Analysis of a requirement sentence.

“A user enters a retrieval command with a terminal.”

Concept DFLOW
agent a retrieval command
source a user
goal ** undefined **

instrument a terminal

cases should be either a human or a function type ob-
ject. If and only if a human type object is assigned to
source or goal cases, some device type object should
be specified as an instrument case. These are illus-
trated in Fig. 1. Each concept has its own case struc-
ture.

The Case Frame enables to detect illegal usage of
data and lack of cases. Suppose a requirement sen-
tence,“A user enters a retrieval command with a ter-
minal.” Since the objective is“a retrieval command”
that is data type noun,“enters” should be categorized
into the DFLOW concept. With the Case Frame of
the DFLOW, this sentence will be analyzed as shown
in Table 3.

In this sentence the goal case object is omitted.
The case structure of DFLOW says the goal case
should be a noun of function type or human type.
Previously specified nouns of the type become candi-
dates of the omitted case. In this way, a requirement
sentence is transformed into an internal representa-
tion namedCRD (Conceptual Requirements Descrip-
tion). CRD is exactly based on the Noun Frame and
the Case Frame.

2.3 Requirements Language: X-JRDL

We have developed a text-base requirements language
namedX-JRDL . This is based on the Requirements
Frame model.

In X-JRDL, compound sentences and complex
sentences will be divided into simple sentences each

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

150

Table 4: Verbs in the dictionary.

Concept part of registered verbs
DFLOW, CFLOW pass, move, receive, input
ANDSUB,ORSUB subpart, part, construct
GEN generate, produce, make
RET retrieve
INS insert, add
UPDATE update
DEL delete

of which has just one verb for analysis with the Case
Frame. These simple sentences are transformed into
CRD. We adopted X-JRDL as a requirements lan-
guage in the course of Information Systems, gradu-
ate school of Information Sci., Kyoto University. Stu-
dents specified SRSs of 50-500 sentences with this
language. In this course we found 85 % of sentences
were interpretably accepted by the X-JRDL analyzer
and others needed to be pre-edited.

2.4 Analysis of X-JRDL Description

An X-JRDL description is analyzed through three
interpreters. Since X-JRDL allows compound sen-
tences and complex sentences, a surface interpreter
divides them into simple sentences. Another inter-
preter, word interpreter, fulfills a case structure con-
sulting with dictionaries. Since a noun is interpreted
with its type, the noun dictionary holds a name and
its type. A verb (or an adjective) is interpreted with
its corresponding concept. In the case of pronoun
and omission of nouns, its type will be guessed with
the Case Frame. A sentence interpreter transforms a
simple sentence transformed into CRD with checking
lacks of indispensable cases.

X-JRDL allows using pronouns and omission of
nouns. We frequently come across such features in
Japanese sentences. The X-JRDL analyzer automat-
ically assigns a concrete word into a pronoun or a
lacked case.

Conjunctions are used to write down compound
sentences and complex sentence. The analyzer di-
vides such a sentence into a set of simple sentences.

The X-JRDL analyzer has a dictionary of nouns,
verbs and adjectives. When a requirements definer
uses a word which is not appeared in the dictionary,
the analyzer guesses a type of new noun and a con-
cept of new verb and adjective with the Requirements
Frame. Table 4 shows registered verbs. Really these
verbs are Japanese verbs. The analyzer can treat in-
flection of these verbs.

A same requirement can be described differently.
For example, the previous requirement sentence“A
user enters a retrieval command with a terminal”can

Table 5: Keywords related to time-response requirements.

Keywords related to time-response requirements
response, respond, turnaround,

within(in) x (milliseconds/microseconds) seconds

be expressed as “A terminal receives a retrieval com-
mand from a user” or “A retrieval command can be
passed from a user to a terminal.” The CRDs of these
three sentences are exactly the same. In other words,
if the CRDs are the same, the meanings of require-
ment sentences are the same.

Since X-JRDL is focused to express functional re-
quirements, non-functional requirements (NFRs) can-
not be described.

3 VERIFICATION OF
TIME-RESPONSE
REQUIREMENTS

By extending the Requirements Frame, we can ana-
lyze sentences of NFRs and transformed into CRDs.
In this paper, we focus on time-response require-
ments. This means our approach is limited to veri-
fication of time-response requirements.

Saito et al. propose a machine learning approach
to evaluate the clarity of NFRs described in a Re-
quest For Proposal (RFP) written in a natural lan-
guage (Saito2013). In this method, keywords related
to NFRs are extracted from a RFP, and mapped to
each NFR category. Then, the clarity of NFRs is mod-
eled by the random forest with weight factors based
on appearance frequency and context vectors. As a
result of an experiment to evaluate the clarity (low,
mid or high) of many NFR categories in 70 RFPs,
the proposed method showed 69.8% match to the ex-
pert’s decision. They clarified 18 keywords related to
time-response requirements. We select 4 keywords as
shown in Table 5.

With these 4 keywords, we retrieve requirements
sentences in 20 RFPs. The results are shown in Fig.
2. In this figure, the same sentences are merged into
one.

The seventh sentence is not a time-response re-
quirement, because the agent (the presenter) is not a
system or a function that responds. We do not regard
a sentence whose responder is a human as a time-
response requirement. We manually checked whether
there are any other time-response requirements, but
we could not find. So, with these keywords it is
enough to retrieve time-response requirements.

A Verification Method of Time-response Requirements

151

1. The response time shall be within three seconds at normal time and within five seconds at peak time.
2. The standard response time shall be within 3 seconds.
3. The response time shall be same or less than the response time of the as-is system.
4. The server shall respond within a reasonable time.
5. The minimum time a bank card must be inserted to guarantee it is recognized in 200 milliseconds.
6. The time to generate a dial tone once a caller’s phone is detected off hook should not exceed one second.
7. The presenter can respond to questions.

Figure 2: Retrieved time-response requirements.

3.1 Requirements Frame for
Time-response Requirements

We introduce a new requirements frame to repre-
sent time-response requirements. We provide one
action, that is, “respond “ and its three cases, that
is, “agent case,” “goal case,” and “condition case.”
The agent case corresponds to a noun that responds.
The goal case corresponds to performance objective
in response. So, goal case should be quantitative at-
tributes. The condition case corresponds to condition
or environment in response. Table 6 shows manually
transformed into internal representation of the first six
retrieved time-response requirements in Fig. 2 using
this requirements frame. In the transformation, surfi-
cial representation such as “The response time (of the
system) shall be within three seconds” can be trans-
formed into conceptual representation “(The system)
responds within three seconds.” In this Figure, “-”
means corresponding word is missing.

In (ISO/IEC/IEEE29148:2011), examples of re-
quirement syntax are proposed as shown in Fig.
3. Requirement sentences based on the syntax in
(ISO/IEC/IEEE29148:2011) can be transformed into
internal representations based on the extended Re-
quirements Frame in Table 6, because the agent case
in the extended Requirements Frame corresponds to
“Subject” in Fig. 3, and the goal case corresponds to
“Constraint.”

3.2 Verification Method of
Time-response Requirements

We focus on the following qualities of time-response
requirements.

1. non-redunancy

2. unambiguity

3. consistency

4. completeness

We can detect redundant requirements if there exist
multiple requirements whose agent cases, whose goal
cases, and whose condition cases are same nouns, re-
spectively.

We can detect ambiguous requirements in terms
of time-response if there exists a requirement whose
goal case is missing or qualitative.

We can detect inconsistent requirements, if there
exist two or more requirements whose agent cases are
same and whose condition cases are same, but whose
goal cases are different.

We can detect lack of time-response requirements
if there exists a noun that should respond but there is
no time-response requirement whose agent case is the
noun.

We can detect potential errors if there exist two
or more requirements whose agent cases are same
and whose goal cases are same, but whose condition
cases are different. In such a case, these requirements
should be merged into one requirement by logically
merging their condition cases.

Verification procedures of time-response require-
ments are shown in Fig. 4.

In Table 6, the first three requirements have no
agent cases. The first two requirements are not in-
consistent, because the condition cases are different,
although the missing agent cases are same and goal
cases are different. The fourth requirement is ambigu-
ous if the response time of the as-is system cannot be
referred. The fifth requirement is ambiguous, because
the goal case is qualitative and not quantitative.

We can detect the ambiguity, the inconsistency,
the completeness, and the redundancy of time-
response requirements with our method. Actually, the
redundancy of requirements is not an error, but in case
of modification if one requirement is changed and the
other is not changed, this modification may cause the
inconsistency.

3.3 Prototype

Fig. 5 shows the whole system of verification of time-
response requirements. We use an existing text-based
retrieval system as the Retrieval system in this figure.
Retrieved time-response requirements are automati-
cally processed by a natural language processor or
manually processed by a user, and then transformed
into internal representaion based on the extended Re-
quirements Frame. The error detecting system gets

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

152

Table 6: Transformed time-response requirements in Fig. 2.

agent action goal condtion
- respond within three seconds normal time
- respond within five seconds peak time
- respond same or less than the response-

time of the as-is system
- respond within three seconds -
the server respond within a reasonable time -
- respond in 200 milliseconds bank card insertion
- respond one second dial tone generation once

a caller’s phone is detected

[Condition][Subject][Action][Object][Constraint]

EXAMPLE: When signal x received [Condition], the system [Subject] shall set [Action] the signal x received bit
[Object] within 2 seconds [Constraint].

or
[Condition][Action or Constraint][Value]

EXAMPLE: At sea state 1 [Condition], the Radar System shall detect targets out to [Action or Constraint] 100
nautical miles [Value].

or
[Subject][Action][Value]

EXAMPLE: The Invoice System [Subject], shall display pending customer invoices [Action] in ascending order
[Value] in which invoices are to be paid.

Figure 3: Examples of requirement syntax (ISO/IEC/IEEE29148:2011).

1. Retrieve time-response requirements in an SRS using the four keywords.
2. User checks whether each of retrieved requirements is time-response requirements or not, and omits non-time-
response requirements.
3. The time-response requirements will be analyzed with a natural language processor in order to analyze the
syntax of the sentences.
4. Transform the analyzed results by the natural language processor into internal representation based on the
extended requirements frame model.
5. Detect the redundancy, inconsistency, incompleteness,or ambiguity of the time-response requirements.

Figure 4: Verification Procedure of time-response requirements.

the internal representation and produce a report of de-
tected errors.

We have developed a prototype system of error de-
tection using Java with Eclipse 4.4 Luna. The number
of source code lines is about 500. This is a 2 man-
month product. This system supports the first, the
fourth and the fifth steps of the verification procedure
in Fig. 4.

Figure 6 and 7 show snapshots of detecting an er-
ror with the prototype system. Original messages of
the prototype system are in Japanese, so we add mes-
sages in English for English readers.

Using the prototype system, we can detect two
ambiguous time-response requirements in 20 RFPs.
These are the 3rd sentence and the 4th sentence in
Fig. 2. The 4th sentence is really ambiguous, be-
cause the time-response requirement is defined quali-

tatively. In contrast, the 3rd sentence may not be am-
biguous, if the response time of as-is system is quanti-
tatively specified in other SRS. This requirement may
be ambiguous, if the response time of as-is system
is qualitatively specified in other SRS or not clearly
specified.

4 DISCUSSION

Our method enables to detect the redundancy, am-
biguity, inconsistency, and incompleteness of time-
response requirements. We suppose a time-response
requirement is expressed as a single sentence and we
can analyze a time-response requirement sentence us-
ing the extended Requirements Frame described in
Section 3.1. However, a time-response requirement

A Verification Method of Time-response Requirements

153

Software Requirements

Specifications

Retrieval system
Time-response

requirements

Natural language

Processor/user

Processed

Time-response

requirements

Transformer

Internal

representation of

Time-response

requirements

Error detecting

system

4 keywords

Detected

errors of

time-

response

requirements

Figure 5: The whole system of verification of time-response requirements.

The response time shall be within

 three seconds

The standard response time shall be

 within five seconds.

Original

requirement

Requirements

frame

1st requirement

 goal case: within three seconds

2nd requirement

 goal case: within five seconds

goal cases are different each other, so

these requirements are inconsistent.

Detected errors

File selection

Retrieval of time

response req.
Error detection

Figure 6: Snapshot of detecting the inconsistency between two requirements.

may be expressed as multiple sentences or expressed
as a sentence and a table like the second sentence in
Fig. 8.

In Fig. 8, each time-response requirement is ex-
pressed as non-single sentence. In such a case, it is

difficult to analyze a time-response requirement with
the extended Requirements Frame model. However
such requirements can be retrieved with the keywords
shown in Table 5. By transforming such require-
ments into a single sentence by hand, we can apply

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

154

The server should respond within a

reasonable time.

1st requirement

 agent case: server

 goal case: within a reasonable time

The time response requirement is ambiguous,

because it is not quantitative.

Figure 7: Snapshot of detecting an ambiguous requirement.

a) The response times of the system are shown as follows. At peak-time it should be within five seconds. At
non-peak-time it should be within three seconds.
b) The response time of the system is shown in Table X.
c) The response time of the new system should be same as the response time of the current system.
d) The response time for normal use of the system should be specified. It is desirable that the response time is
within three seconds.

Figure 8: Time-response requirements with non-single sentence.

our method to the transformed sentence.

5 RELATED WORKS

The NFR-frame work is a goal-oriented analysis
method for non-functional aspects of a target system
(Chung1999). Our method aims to verify the charac-
teristics of an SRS, instead.

In (Cin2000), performance requirements written
with a structured language will be transformed into
Petri-net model and then the inconsistency and ambi-
guity will be checked. Our method enables to detect
not only the inconsistency and ambiguity, but also the
incompleteness and redundancy in requirements writ-
ten with a natural language.

In (Cysneiros2005; Fatwanto2008), use-case ori-
ented verification method of NFR is proposed. This
method is useful to check scenarios or use-case de-
scriptions, but is not suitable to check SRSs.

In (Kaiya2011), rule-based checking method of
NFR is proposed. This method checks whether NFRs
are specified or not and do not check the characteris-
tics of NFRs.

In (Bo2011), a formal verification method of NFR
is proposed, but it is not suitable for SRSs in a natural
language.

In (Irfan2011), the importance of quantitative re-
quirements is claimed, but they do not verify the char-
acteristics of NFRs.

6 CONCLUSION

In this paper, we propose a verification method of
the unambiguity, the consistency, the completeness,
and the redundancy of time-response requirements in
SRS written with a natural language. We can detect
ambiguous, inconsistent, incomplete, and/or redun-
dant time-response requirements with our method.
We also developed a prototype system based on the
method.

Evaluation of the method by applying to other
SRSs, and the establishment of verification method
of other NFR are left as future works.

A Verification Method of Time-response Requirements

155

ACKNOWLEDGEMENTS

We thank to Associate Professor Hiroya Itoga, Assis-
tant Professor Takayuki Omori, under graduate stu-
dent Shouta Kasai, and other members of Software
Engineering laboratory, Department of Computer Sci-
ence, Ritsumeikan University for their contributions
to the research. This research is partly supported by
Grant-in-Aid for Scientific Research, Japan Society
for the Promotion of Science.

REFERENCES

Bo, W., Bin, Y., Zhi, J., Zowghi, D.: “r sigma: Automated
reasoning tool for non-functional requirement goal
models,” Proc. 19th International Requirements En-
gineering Conference (RE2011), 2011, pp.337-338.

Chung, L., Nixon, B.A., Yu, E., Mylopoulo,s J.: “Non-
Functional Requirements in Software Engineering,”
Springer, 1999.

Cin, M, D.: “Structured Language for Specifications of
Quantitative Requirements,” Proc. The 5th IEEE In-
ternational Symposium on High Assurance Systems
Engineering (HASE), pp.221-227, 2000.

Cysneiros, L.M., Sampaio, P., Leite, J.C.S.P.: “Non-
Functional Requirements: from Elicitation to Concep-
tual Model,” IEEE Transaction on Software Engineer-
ing, IEEE, Vol. 30 No. 5, 2005, pp.328-350.

Fatwanto, A., Boughton, C.: “Analysis, Specification
and Modeling of Non-Functional Requirements for
Translative Model-Driven Development,” Proc. Inter-
national Conference on Computational Intelligence
and Security (CIS’08), 2008, pp.405-410.

IEEE Standards Board: Section 4.3 “Characteristics of a
good SRS,” “IEEE Recommended Practice for Soft-
ware Requirements Specifications,” IEEE830-1998,
1998.

Irfan, M., Hong, Z.: “Key role of value-oriented require-
ments to develop real-time database systems,” Proc.
IEEE 2nd International Conference on Computing,
Control and Industrial Engineering (CCIE), 2011,
pp.405-408.

ISO/IEC/IEEE: Systems and software engineering - Life
cycle processes- Requirements engineering, Interna-
tional Standard, first edition, 2011, pp.10-11.

Kaiya, H., Ohnishi, A.: “Quality Requirements Analysis
Using Requirements Frames ,” Proc. 11th Interna-
tional Conference on Quality Software (QSIC 2011),
2011, pp.198-207.

Ohnishi, A.: “Software Requirements Specification
Database Based on Requirements Frame Model,”
Proc. 2nd International Conference on Requirements
Engineering (ICRE ’96), 1996, pp.221-228.

Saito, Y., Monden, A., Matsumoto K.: “Evaluation of RFPs
Based on Machine Learning (in Japanese),” Vol.2013-
SE-179, No.5, SIG Technical Report, IPS, Japan,
pp.1-7, 2013.

Shank, R.: “Representation and Understanding of Text,”
Machine Intelligence8, Ellis Horwood Ltd., Cam-
bridge, 1977, pp.575-607.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

156

