
Cassandra’s Performance and Scalability Evaluation

Melyssa Barata1 and Jorge Bernardino1,2
1Polytechnic of Coimbra, ISEC, Rua Pedro Nunes, Quinta da Nora, 3030-190 Coimbra, Portugal

2Centre of Informatics and Systems, University of Coimbra, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

Keywords: Performance, Scalability, NoSQL, Cassandra.

Abstract: In the past, relational databases were the most commonly used technology for storing and retrieving data,
allowing easier management and retrieval of any stored information organized as a set of tables. However,
today databases are larger in size and the query execution time can become very long, requiring servers with
bigger capacities. The purpose of this paper is to describe and analyze the Cassandra NoSQL database using
the Yahoo! Cloud Serving Benchmark in order to better understand the execution capabilities for various
types of applications in environments with different amounts of stored data. The experiments with
Cassandra show good scalability and performance results and how the database size and number of nodes
affect it.

1 INTRODUCTION

Nowadays NoSQL databases have become the
primary alternative to relational databases, with
scalability, availability, and fault tolerance being key
deciding factors. The environment for a NoSQL
database is a largely distributed database system that
allows rapid, ad-hoc organization and analysis of
high-volume data types (Cattell, 2010). A flexible
and schema-less data model, horizontal scalability,
distributed architectures, and the use of languages
and interfaces that are “not only” SQL typically
characterize this technology (Moniruzzaman and
Hossain, 2013); (Abramova et al., 2015).

When people discuss about performance and
scalability, they very often use these two words
synonymously even though they are very different
(Smith and Williams, 2000). Scalability refers to the
characteristics of a system to increase performance
by adding additional resources. When it comes to
large distributed systems, scalability is a desirable
characteristic in the network, system, or process,
which indicates its ability to either be prepared to
grow, or handle an increasing portion of the work
evenly (Pokorny, 2011). Size is just one aspect of
scale that needs to be considered. Scalability may
refer to various parameters of the system: how easy
is it to add more storage capacity, how much
additional traffic it can handle, or how many more
transactions can be processed (Kuwahara et al.,
2013). It provides the foundation for decisions in

designing a distributed web architecture. This is an
essential asset for many large-scale web
applications, being able to handle extremely large
amounts of users. On the other hand, performance
refers to the capability of how fast something can get
done (Huang and Luo, 2013). Therefore,
performance is the speed at which a computer
operates during a benchmark test.

Standard benchmarks are widely used for
comparing the performance of different systems,
answering the common question of “Which is the
best system in a given domain, for specific kinds of
applications?” (Barata et al., 2014). Benchmarking is
an essential aspect of any database management
system. In an increased competition scenario,
companies are more and more faced with the need of
finding management tools that allow them to
diagnose critical business factors, with the purpose
of doing better each time. For this reason,
benchmarking exists to fit the needs of companies
who seek a support tool to improve overall
performance.

The main purpose of this work is to benchmark
the Cassandra NoSQL database using the Yahoo!
Cloud Serving Benchmark, in order to better
understand their execution capabilities for various
types of applications in environments with different
amounts of stored data. We obtain performance and
scalability results using different numbers of
processing nodes that provide a better understanding
on how the performance of this NoSQL is affected

Barata, M. and Bernardino, J.
Cassandra’s Performance and Scalability Evaluation.
DOI: 10.5220/0005980101270134
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 127-134
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

127

by the size of the database.
The remainder of this work is organized as

follows. We begin to describe in Section 2 the
Cassandra database used in these experiments, and
in Section 3 we explain and characterize the YCSB
benchmark. Section 4 presents our experimental
evaluation and lastly section 5 presents our
conclusions and future work.

2 CASSANDRA

NoSQL databases were created primarily to address
issues with web applications that need to operate
with enormous loads of data as well as being able to
scale without difficulty. Cassandra is a Column
Family NoSQL database that is designed to solve the
challenges associated with massive scalability. It can
support a very high update throughput while
delivering low latency. Cassandra is very similar to
the usual relational model, made of columns and
rows. The main difference is the stored data, which
can be structured, semi-structured or unstructured.

When it comes to storage in clusters, all of the
data is stored in distributed fashion over all nodes of
the cluster. When a node is added or removed, all of
its data is automatically distributed over other
available nodes, and a failing node will be replaced
instantly. Because of this, it is no longer necessary to
calculate and assign data to each node. Cassandra’s
architecture is known to be peer-to-peer (partitions
tasks or workloads between peers equally) and
overcomes master-slave limitations such as high
availability and massive scalability. Data is
replicated over multiple nodes in the cluster. Failed
nodes are detected by gossip protocols (peer-to-peer
communication protocol in which nodes periodically
exchange state information about themselves and
about other nodes they know about) and those nodes
can be replaced instantly (Cooper et al., 2010).

In Cassandra, data is indexed by a key that is of
the type String. This key represents a line where data
is found, and in each row the data is divided into
columns and column families. Each column in
Cassandra has a name, a value and a timestamp.
Both the value and the timestamp are provided by
the client application when data is inserted. Besides
the normal typed columns, another kind of column
exists, they are known as the super columns. The
thing that differentiates these columns from the
others is the fact that instead of having objects as
values, they have other columns as values.

In order to group columns, Cassandra has a
concept known as: Column Families, which is very

similar to relational database tables. Unlike columns,
the Column Families are not dynamic and must be
previously declared in a configuration file. They are
the unit of abstraction containing keyed rows which
group together columns and super columns of highly
structured data. Column families have no defined
schema of column names and types supported.

Similarly to columns, there is also the Super
Column Family, which is a Column family that just
contains Super columns. It is useful for modeling
complex data types such as addresses and other
simple data structures.

Lastly, column families are grouped into
Keyspaces. These Keyspaces can be compared to
Schemas in a relational database.

Cassandra was designed to handle large amounts
of data spread across many commodity servers.
Cassandra provides high availability through a
symmetric architecture that contains no single point
of failure and replicates data across nodes.
Cassandra’s architecture is a combination of
Google’s Big-Table (Chang et al., 2008) and
Amazon’s Dynamo (DeCandia et al., 2007). It is a
peer-to-peer model, which makes it tolerant against
single points of failure and provides horizontal
scalability. Each node exchanges information across
the cluster every second. A sequentially written
commit log on each node captures write activity to
ensure data durability (Datastax, 2014). Data is then
indexed and written to an in-memory structure called
memtable, which resembles a write-back cache.
Once the memory structure is full, the data is written
to disk in an SSTable (sorted string table) data file (a
file of key/value string pairs, sorted by keys). All
writes are automatically partitioned and replicated
throughout the cluster. When a read or write request
is made, any node in the cluster is able to handle it.
Through the key, the node that answered the
requisition can know which node possesses data
information.

3 YAHOO CLOUD SERVING
BENCHMARK (YCSB)

The Yahoo! Cloud Serving Benchmark (YCSB) is
one of the most used benchmarks, and provides
benchmarking for the bases of comparison between
NoSQL systems. The YCSB Client can be used to
benchmark new database systems by writing a new
class to implement the following methods (Cooper et
al., 2010): read, insert, update, delete and scan.

These operations represent the standard CRUD
operations: Create, Read, Update, and Delete.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

128

A cloud service testing client consists of two
parts: workload generator and the set of scenarios.
Those scenarios are known as workloads, which
perform reads, writes and updates. The YCSB
predefined workloads are (GitHub, 2015):
 Workload A: Update heavy. This workload has a

mix of 50% reads and 50% updates.
 Workload B: Read heavy. This workload has a

95% of reads and 5% of updates.
 Workload C: Read only. This workload is 100%

read.
 Workload D: Read latest. This workload has a

95% of reads and 5% of inserts.
 Workload E: Short ranges. This workload has a

95% of scans and a 5% of inserts.
 Workload F: Read-modify-write. In this

workload, the client will read a record, modify it,
and write back the changes.

Due to space limits in the experimental evaluation
we only show the results using the workloads: A, B,
C, and D.

When a data set is generated, the client uses a set
of records that define the distributions that are most
likely to be chosen in the execution of operations. In
this benchmark three major distributions exist
(Cooper et al., 2010): Uniform, Zipfian and Latest.
In our experiment we use the uniform distribution

4 CASSANDRA EXPERIMENTAL
EVALUATION

In this section the experimental setup, speedup
metric used and benchmarking results and analysis
of execution time for the workloads used with
uniform distribution will be presented.

4.1 Experimental Setup for YCSB

In this section we will describe our experiment using
the YCSB benchmark for the Cassandra database.
The tests were performed using three computers
using the Ubuntu Operating System. The computers
had the following characteristics Intel(R)
Core(TM)2 Quad CPU Q8300 @2.50GHz 2.51 GHz
3,99 GB of RAM available.

For this experiment we used a one node cluster
and a three node cluster, in which we loaded 10 000
000 and 100 000 000 records for the one node
cluster and then for the three node cluster
respectively. We performed 10 000 operations for
each scenario and used 1, 100 and 1000 threads.

All executions were repeated four times, and the
values presented in Section 5.2.1, 5.2.2, 5.2.3, 5.2.4,
5.2.5 and 5.2.6 are the average values of the three
executions. In order to maintain all executions
independent after each execution a computer restart
was effected. Due to the increased speed of
execution from the records in memory, this approach
of testing allowed us to have isolated results whose
runtimes are not influenced by the use of volatile
memory or the effect of cache results.

4.2 Speedup

In this experiment we use the speedup metric. The
speedup of a system is defined as the ratio between
response time using a processor and using multiple
processors or nodes (Karp and Flatt, 1990). The
speedup measures the increase in gain in
performance achieved using various processors
instead of a single processor and is calculated using
the following equation:

The ratio of the execution time using 1 processor to
the execution time with M processors. Ideally, one
would like Speedup=M, which is called ideal
speedup, although in practice this is rarely achieved.
An ideal speedup means that when we increase the
number of processors to M, the original response
time will be reduced by the same factor.

4.3 Cassandra Evaluation

In this section the benchmarking results and analysis
of execution time for workloads A, B, C, and D of
uniform distribution with 10 million and 100 million
records on 1 and 3 nodes will be presented.

4.3.1 Workload A

In this experiment we test workload A, which has
50% reads and 50% updates with uniform
distribution. Figure 1 shows the results for 10
million records and 100 million records for a single
node cluster and a 3 node cluster, with thread
variation of 1,100 and 1000.

Figure 1 shows workload A which has 50% reads
and 50% updates. In this figure we observe that the 3
node cluster was always faster than the 1 node
cluster. This was especially noticeable when dealing
with 100 and 1000 threads. We can see that the
results for 100 and 1000 threads were almost the
same in both scenarios. In Table 1 the speedup

Cassandra’s Performance and Scalability Evaluation

129

results for 1 and 3 nodes are presented.

Figure 1: Execution Time of Workload A.

Table 1: Speedup results for 1 and 3 nodes (Workload A).

1 Thread

(1->3)
100 Threads

(1->3)
1000 Threads

(1->3)
10 M Records 1.97 4.50 4.69

100 M Records 1.15 3.33 3.36

Analyzing Table 1 we conclude that in the 100
and 1000 thread case for the 3 node cluster in
comparison to the 1 node cluster the performance
results were always superlinear. With 100 threads
we obtained speedup results that were 4.5 times
faster for 10 million records and 3.33 times faster for
100 million records. For the 1000 thread case
scenario we see that it was 4.69 and 3.36 times faster
when using the 3 node cluster in comparison to the 1
node cluster in both 10 million and 100 million
records respectively. In both these cases the reason
for these superlinear results is due to the fact that
with one node there is always a limit, but if we
increase the number of nodes to 3 we are
incrementing power to a multiple factor of 3. The
overall gain is limited by the processing power of
the node which is not able to process all of the 100
threads at the same time, however, when we increase
the cluster size to 3 we are dividing more data and
because of this more gain is achieved. What this
means is that we are getting rid of this limit that
exists with the single cluster because we increase
processing power to 3 and therefore 300 threads are
going to be working simultaneously for the 3 node
cluster. However, when analyzing 1 thread we
observe that a speedup result of only 1.97 was
obtained for 10 million records, and a speedup result
of 1.15 for 100 million records. The reason why the
gain here was sublinear is because we increased
computing power by 3 and the additional node
overhead (any excess computation time, memory,
bandwidth or other resources) of network

communication is greater than this gain.
In conclusion, we expected some factors from

this experiment to have been different. For instance,
the performance was expected to improve
approximately 3 times more from the single node
cluster to the 3 node cluster in all threads. However
in the 1 thread scenario this did not happen because
in the 3 node cluster the database had to transfer
more information by network to execute each query.
Also, there was no improvement in execution time
from 100 to 1000 threads because of the network
overheads and the processing overheads. This could
be because the processor may not support more
threads at the same time due to the fact that both the
memory and the processor have a limit. Because of
this, it is apparent that from 1 thread to 100 threads
saturation was achieved. Since no improvements
were calculated from 100 to 1000 threads, it
becomes evident that at 100 threads our experiment
reached the limit of hardware resources available.
Table 2 presents the percentage gain obtained for
workload A.

Table 2: Percentage Gain for Workload A.

1 –> 100
Threads

100 -> 1000
Threads

10 M Records – 1 Node 39% 5%

10 M Records – 3 Nodes 73% 8%

100 M Records – 1 Node 12% 5%

100 M Records – 3 Nodes 70% 5%

In terms of gain, we conclude from Table 2 that
better results were achieved when going from 1 to
100 threads in all four cases. Distinct values between
different record sizes and nodes were noticed with
100 threads especially when dealing with 3 nodes. In
both 10 and 100 million records with 3 nodes there
was a gain of 73% and 70% respectively. These
results were undoubtedly better in comparison to
using a single node. When using 10 million records
and 100 million records when going from 1 to 100
threads with the single node we see a percentage
gain of 39% for 10 million records, and only a 12%
gain with 100 million records. On the other hand,
when going from 100 threads to 1000 threads we see
that almost no gain was achieved. Percentage gain
in this case when dealing with 10 million records
and 3 nodes was 8%, and only 5% when dealing
with 100 million records with 1 and 3 nodes, and 10
million records with 1 node.

4.3.2 Workload B

In this experiment workload B was tested with

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

130

uniform distribution. This workload has 95% reads
and 5% updates. Figure 2 shows the results for 10
and 100 million records for a 1 and 3 node cluster,
with 3 different thread variations (1, 100 and 1000).

Figure 2: Execution Time of Workload B.

Figure 2 shows workload B, from this figure we
conclude that that 3 node cluster always had faster
execution times than the 1 node cluster. In Table 3
we present the speedup results obtained for this
workload.

Table 3: Speedup results for 1 and 3 nodes (Workload B).

1 Thread

(1->3)
100 Threads

(1->3)
1000 Threads

(1->3)
10 M Records 1.47 3.93 4.10

100 M Records 1.10 2.78 2.92

In the 100 and 1000 thread case the performance
results obtained when using 10 million records from
1 node to 3 nodes were superlinear in both cases. For
100 threads it was 3.93 times faster and with 1000
threads it was 4.10 times faster as can be seen from
Table 3. With 100 million records the results we
obtained were also good having achieved an almost
linear speedup, 2.78 for 100 threads and 2.92 for
1000 threads. When using 1 thread the results
obtained were sublinear for both 10 million and 100
million records. When using 10 million records we
obtained a result of 1.47 from 1 node to 3 nodes, and
a result of 1.10 was calculated when using 100
million records. In both 100 and 1000 threads the
results were very similar, varying only by a few
seconds from 10 million records to 100 million
records as we can see from Figure 8. This is because
various threads are going through the CPU, and the
CPU can only do so many things at a given time,
therefore if a certain threshold is hit, it doesn’t
matter how many more things are trying to get
through the CPU, it is still limited by what the CPU
can process at a given time. Just because we add

more threads, does not mean we will obtain better
performance results. This workload in general
achieved slower results than those presented in
workload A because Cassandra is optimized for
write-heavy workloads. In Table 4 we present
workload B’s percentage gain.

Table 4: Percentage Gain for Workload B.

1 -> 100
Threads

100 -> 1000
Threads

10 M Records – 1 Node 28% 2%

10 M Records – 3 Nodes 73% 6%

100 M Records – 1 Node 15% 2%

100 M Records – 3 Nodes 66% 7%

When comparing the results obtained from Table
4 we can see that 100 and 1000 threads had very
different behavior. From 1 to 100 threads the 3 node
cluster once again had better results in both 10 and
100 million records with 73% and 66% percentage
gain respectively, while the single node cluster had a
gain of 28% for 10 million nodes, and 15% for 100
million nodes. However, when comparing the results
obtained from 100 to 1000 threads we conclude that
the gain was little to none in this experiment. The 3
node cluster here once again had a bit more gain
than the 1 node cluster with 6% for 10 million
records, and 7% for 100 million records, while the
single node cluster had a gain of only 2% for both 10
and 100 million records.

4.3.3 Workload C

In this experiment we test workload C which has
100% reads with uniform distribution. Figure 3
shows the results for 10 million records and 100
million records for a single node cluster and a 3
node cluster, with thread variation of 1, 100 and
1000.

Figure 3: Execution Time of Workload C.

In Figure 3 workload C results are presented. For

Cassandra’s Performance and Scalability Evaluation

131

this workload we have 100% of reads. The results
obtained from this experiment were similar to those
obtained from workload B which had 95% reads and
5% updates. When comparing execution times, we
can see a major improvement in time for 100 and
1000 threads in both 10 million and 100 million
records from 1 to 3 nodes. In Table 5 the speedup
results for 1 and 3 nodes are presented.

Table 5: Speedup results for 1 and 3 nodes (Workload C).

1 Thread

(1->3)
100 Threads

(1->3)
1000 Threads

(1->3)

10 M Records 1.59 3.54 3.61

100 M Records 1.04 2.97 2.99

From Table 5 we see that for 100 threads from 1
to 3 nodes it is 3.54 times faster with 10 million
records and 2.97 times faster with 100 million
records. On the other hand with 1000 threads
comparing the 1 node cluster to the 3 node cluster
we conclude that with 10 million records we
obtained an improvement of 3.61 and with 100
million records we got and improvement in speedup
of 2.99. Once again the same scenario from the two
previous workloads was observed with 1 thread.
With 10 million records the execution time was 1.59
times faster comparing 1 node to 3 nodes and with
100 million records the result was 1.04 times faster
with the 3 node cluster. These results are sublinear,
and have to do with the fact that the database had to
transfer more information by network to execute
each query and because computing power was
increased to 3, the node overhead of network
communication proved to be more than the gain we
obtained. As mentioned before, Cassandra is
optimized for write-heavy workloads, because of
this Cassandra’s efficient sequential use of disk for
updates reduces contention for the disk head.
However, the results here for both 100 and 1000
threads were as expected in terms of scalability
because as the number of nodes increased from 1 to
3, the results obtained also improved 3 times more
seeing as the execution time decreased significantly
from 1 to 3 nodes. Table 6 presents the gain in
percentage we calculated for workload C.

Table 6: Percentage Gain for Workload C.

 1 -> 100
Threads

100 -> 1000
Threads

10 M Records – 1 Node 32% 3%

10 M Records – 3 Nodes 70% 5%

100 M Records – 1 Node 12% 1%
100 M Records – 3 Nodes 69% 2%

From Table 6 we conclude that from 1 to 100
threads the results obtained were better than from
100 to 1000 threads. With 100 threads we see that
for the 3 node cluster we had better percentage gain
in both 10 and 100 million records with 70% for 10
million records and 69% for 100 million records. In
case of the single cluster we see a gain of 32% for
10 million records, and only 12% for 100 million
records. However, for 1000 threads the gain was
once again close to none. For 10 million records a
gain of 3% was calculated in the single node cluster,
and 5% in the 3 node cluster. For 100 million
records a gain of only 1% for the 1 node cluster was
obtained and 2% for the 3 node cluster.

4.3.4 Workload D

In this experiment we test workload D which has 5%
inserts and 95% reads with uniform distribution.
Figure 4 shows the results for 10 million and 100
million records for a single node cluster and a 3
node cluster, with thread variation of 1, 100 and
1000.

Figure 4: Execution Time of Workload D.

Figure 4 shows workload D which includes 5%
of insert and 95% of read operations. This workload
is similar to workload B which has 95% reads and
5% updates. In terms of execution times even though
both workload B and D contain 95% reads, the insert
and update part of the workload changed everything
seeing as workload D presented faster results than
workload B. This is because in workload B an
update needs to firstly scan the whole table in order
to get the records to update, and in workload D data
is just simply inserted. For workload D the results
displayed major differences when comparing 1
thread to 100 and 1000 threads. Table 7 shows the
speedup results for the single node and 3 node
cluster.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

132

Table 7: Speedup results for 1 and 3 nodes (Workload D).

1 Thread

(1->3)
100 Threads

(1->3)
1000 Threads

(1->3)

10 M Records 1.44 5.53 5.96

100 M Records 1.47 3.16 3.46

From Table 7 we see that the 1 thread scenario
has an improvement in terms of speedup that is 1.44
times faster with 10 million records and 1.47 times
faster with 100 million records when using the 3
node cluster as opposed to the 1 node cluster. The
results obtained here were not as expected in terms
of scalability because as the number of nodes
increased from 1 to 3, the results obtained were also
supposed to improve nearly 3 times more. Just like
in the previous workloads the explanation here is the
same seeing as additional node overhead of network
communication was greater than the gain. However,
when comparing the results for 100 and 1000
threads we see an improvement in execution time in
both threads. The results here were superlinear. With
100 threads we obtained a speedup result of 5.53
with 10 million records and 3.16 with 100 million
records. In the 1000 thread case we obtained a
speedup results that was 5.96 times faster with 10
million records and 3.46 times faster with 100
million records from 1 node to 3 nodes. In these four
cases the time reduced by 3 from 1 node to 3 nodes,
making these results super, seeing that as we
increased the number of nodes from 1 to 3 the
results also improved 3 times more. However, seeing
as the results from 100 to 1000 threads were very
similar in terms of execution time, saturation was
achieved at 100 threads. Table 8 presents the
percentage gain results for workload D.

Table 8: Percentage Gain for Workload D.

 1 -> 100
Threads

100 -> 1000
Threads

10 M Records – 1 Node 26% 5%
10 M Records – 3 Nodes 81% 12%
100 M Records – 1 Node 32% 2%
100 M Records – 3 Nodes 69% 10%

After analyzing Table 8 we conclude that the
results here were much better when going from 1 to
100 threads as opposed to 100 to 1000 threads. 100
threads had superlinear results with 3 nodes having a
gain of 81% for 10 million records and 69% for 100
million records. For the single node cluster we
obtained a gain of 26% for 10 million records, and
32% for 100 million records. With 1000 threads we
see that better results were calculated once again
with the 3 node cluster in comparison to the 1 node
cluster. Having the 3 node cluster a gain of 12% for

10 million records, and 10% gain for 100 million
records. For the single cluster only a 5% gain was
obtained for 10 million records, and 2% for 100
million records.

5 CONCLUSIONS AND FUTURE
WORK

The popularity of NoSQL databases has increased in
recent years because they bring a number of
advantages compared to relational databases. In our
work we experimentally evaluated Cassandra, one of
the most popular Column family NoSQL databases.

Throughout the experimental evaluation we
assessed performance and scalability of the
Cassandra database using the Yahoo! Cloud Serving
Benchmark. The workloads that were used were
defined in a range of scenarios. We tested factors
such as data size, number of nodes, number of
threads, workload characteristics, and analyzed
whether desirable speedup and scalability properties
were met. By analyzing the results we concluded
that Cassandra exhibits good scaling capacity while
maintaining the performance which leads us to say
this database is highly optimized to work with large
volumes of data. After concluding our results we
expected some factors from this experiment to have
been different. For instance, the performance was
expected to improve 3 times more from the single
node cluster to the 3 node cluster in all thread cases.
However in the 1 thread scenario this did not happen
in any workload because in the 3 node cluster the
database had to transfer more information by
network to execute each query making the gain
sublinear because we increased computing power by
three and the additional node overhead of network
communication is greater than this gain. Also, there
was no major improvement or difference in
execution time when going from 100 to 1000 threads
because of the network overheads and the processing
overheads. This could be because the processor may
not support more threads at the same time due to the
fact that both the memory and the processor have a
limit. Since various threads are going through the
CPU, and the CPU can only do so many things at a
given time, if a certain threshold is hit, it doesn’t
matter how many more things are trying to get
through the CPU, it is still limited by what the CPU
can process at a given time. Just because we add
more threads, does not mean we will obtain better
performance results. Because of this, it is apparent
that from 1 thread to 100 threads saturation was
achieved. In terms of gain, we can also conclude that

Cassandra’s Performance and Scalability Evaluation

133

far better results were achieved when going from 1
to 100 threads when using 10 and 100 million
records for 1 and for 3 nodes. Distinct values
between different record sizes and nodes were
noticed when going from 1 to 100 threads especially
when dealing with 3 nodes. In both 10 and 100
million records with 3 nodes there was almost
always a better gain in comparison to using a single
node.

In general Cassandra’s workload executions are
fast except when it is necessary to execute scans, in
those cases the performance highly decreases and
the system is not as fast. It is important to remember
that regardless operation type the system must be
scaled adequately, according to the database size.

As future work, we intend to analyze and
compare the variation of execution time,
performance and scalability between different types
of NoSQL databases using the YCSB benchmark by
increasing record size, using more clusters and using
more operations. This approach would enable us to
better understand how NoSQL and relational
databases differ from one another comparing which
one is better for different purposes.

REFERENCES

Abramova V., Bernardino J., Furtado P. (2015), SQL or
NoSQL? Performance and scalability evaluation.
IJBPIM 7(4): 314-321 (2015)

Barata, M., Bernardino J., and Furtado P. (2014), "YCSB
and TPC-H: Big Data and Decision Support
Benchmarks," 2014 IEEE International Congress on
Big Data, Anchorage, AK, 2014, pp. 800-801.

Cattell R. (2010) “Scalable SQL and NoSQL data stores”
SIGMOD Record Vol. 39 No. 4 pp. 12-27.

Chang F., Dean J., Ghemawat S., Hsieh W., Wallach A.,
Burrows M., Chandra T., Fikes A., and Gruber R.
(2008) “Bigtable: A distributed storage system for
structured data” ACM Trans. Comput. Syst. (26) no. 2.

Charsyam - Cassandra Data Model - https://charsyam.
wordpress.com/tag/cassandra-data-model/ Accessed
08-01-2015.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
Sears, R. (2010) “Benchmarking Cloud Serving
Systems with YCSB”, SoCC pp. 143-154.

Data Magnum –Graph Databases (Including Object DBS)
- http://data-magnum.com/lesson-8-graph-databases-
including-object-dbs/ Accessed 29-11-2015.

Datastax - Apache Cassandra™ 1.1 Documentation -
http://www.datastax.com/doc-source/pdf/cassandra11.
pdf - Accessed 31-05-2014.

DeCandia G., Hastorun D., Jampani M., Kakulapati G.,
Lakshman A, Pilchin A, Vosshall P., and Vogels W.,
(2007) “Dynamo: Amazon’s Highly Available Key-
Value Store”, SOSP pp.205-220.

GitHub - YCSB. - https://github.com/brianfrankcooper/
YCSB/wiki/core-workloads - Accessed 02-11-2015.

High Scalability - 5 Steps To Benchmarking Managed
NoSQL - DynamoDB Vs Cassandra - http://
highscalability.com/blog/2013/4/3/5-steps-to-benchma
rking-managed-nosql-dynamodb-vs-cassandra.html -
Accessed 04-11-2015.

Huang, Y. and Luo T. (2013) “NoSQL Database: A
Scalable, Availability, High Performance Storage for
Big Data”. ICPCA/SWS pp. 172-182.

Karp, A. and Flatt H. (1990) “Measuring Parallel
Processor Performance”, Commum. ACM Vol. 33 No.
5, pp.539-543.

Kuwahara, H., Fan, M., Wang, S., Gao, X., (2013) “A
framework for scalable parameter estimation of gene
circuit models using structural information”.
Bioinformatics, Vol. 29 No. 13 pp. 98-107.

Lakshman, A. and Malik P. (2010) “Cassandra – A
Decentralized Structured Storage System”, Operating
Systems Review Vol. 44 No. 2 pp. 35-40.

MongoDB – MongoDB CRUD Introduction.
http://docs.mongodb.org/manual/core/crud-introductio
n/ Accessed 29-11-2014.

Moniruzzaman A. B. M. and Hossain S. A. (2013)
“NoSQL Database: New Era of Databases for Big data
Analytics - Classification, Characteristics and
Comparison.” CoRR Vol. abs/1307.0191.

Pokorny J. (2011) “NoSQL databases: a step to database
scalability in web environment.” pp. 278-283.

Smith C., and Williams L. G. (2000) “Performance and
Scalability of Distributed Software Architectures: An
SPE Approach”. Scalable Computing: Practice and
Experience Vol. 3 No. 4.

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

134

