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Abstract: In the past, relational databases were the most commonly used technology for storing and retrieving data, 
allowing easier management and retrieval of any stored information organized as a set of tables. However, 
today databases are larger in size and the query execution time can become very long, requiring servers with 
bigger capacities. The purpose of this paper is to describe and analyze the Cassandra NoSQL database using 
the Yahoo! Cloud Serving Benchmark in order to better understand the execution capabilities for various 
types of applications in environments with different amounts of stored data. The experiments with 
Cassandra show good scalability and performance results and how the database size and number of nodes 
affect it. 

1 INTRODUCTION 

Nowadays NoSQL databases have become the 
primary alternative to relational databases, with 
scalability, availability, and fault tolerance being key 
deciding factors. The environment for a NoSQL 
database is a largely distributed database system that 
allows rapid, ad-hoc organization and analysis of 
high-volume data types (Cattell, 2010). A flexible 
and schema-less data model, horizontal scalability, 
distributed architectures, and the use of languages 
and interfaces that are “not only” SQL typically 
characterize this technology (Moniruzzaman and 
Hossain, 2013); (Abramova et al., 2015). 

When people discuss about performance and 
scalability, they very often use these two words 
synonymously even though they are very different 
(Smith and Williams, 2000). Scalability refers to the 
characteristics of a system to increase performance 
by adding additional resources. When it comes to 
large distributed systems, scalability is a desirable 
characteristic in the network, system, or process, 
which indicates its ability to either be prepared to 
grow, or handle an increasing portion of the work 
evenly (Pokorny, 2011). Size is just one aspect of 
scale that needs to be considered. Scalability may 
refer to various parameters of the system: how easy 
is it to add more storage capacity, how much 
additional traffic it can handle, or how many more 
transactions can be processed (Kuwahara et al., 
2013). It provides the foundation for decisions in 

designing a distributed web architecture. This is an 
essential asset for many large-scale web 
applications, being able to handle extremely large 
amounts of users. On the other hand, performance 
refers to the capability of how fast something can get 
done (Huang and Luo, 2013). Therefore, 
performance is the speed at which a computer 
operates during a benchmark test. 

Standard benchmarks are widely used for 
comparing the performance of different systems, 
answering the common question of “Which is the 
best system in a given domain, for specific kinds of 
applications?” (Barata et al., 2014). Benchmarking is 
an essential aspect of any database management 
system. In an increased competition scenario, 
companies are more and more faced with the need of 
finding management tools that allow them to 
diagnose critical business factors, with the purpose 
of doing better each time. For this reason, 
benchmarking exists to fit the needs of companies 
who seek a support tool to improve overall 
performance. 

The main purpose of this work is to benchmark 
the Cassandra NoSQL database using the Yahoo! 
Cloud Serving Benchmark, in order to better 
understand their execution capabilities for various 
types of applications in environments with different 
amounts of stored data. We obtain performance and 
scalability results using different numbers of 
processing nodes that provide a better understanding 
on how the performance of this NoSQL is affected 
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by the size of the database. 
The remainder of this work is organized as 

follows. We begin to describe in Section 2 the 
Cassandra database used in these experiments,  and 
in Section 3 we explain and characterize the YCSB 
benchmark. Section 4 presents our experimental 
evaluation and lastly section 5 presents our 
conclusions and future work. 

2 CASSANDRA 

NoSQL databases were created primarily to address 
issues with web applications that need to operate 
with enormous loads of data as well as being able to 
scale without difficulty. Cassandra is a Column 
Family NoSQL database that is designed to solve the 
challenges associated with massive scalability. It can 
support a very high update throughput while 
delivering low latency. Cassandra is very similar to 
the usual relational model, made of columns and 
rows. The main difference is the stored data, which 
can be structured, semi-structured or unstructured. 

When it comes to storage in clusters, all of the 
data is stored in distributed fashion over all nodes of 
the cluster. When a node is added or removed, all of 
its data is automatically distributed over other 
available nodes, and a failing node will be replaced 
instantly. Because of this, it is no longer necessary to 
calculate and assign data to each node. Cassandra’s 
architecture is known to be peer-to-peer (partitions 
tasks or workloads between peers equally) and 
overcomes master-slave limitations such as high 
availability and massive scalability. Data is 
replicated over multiple nodes in the cluster. Failed 
nodes are detected by gossip protocols (peer-to-peer 
communication protocol in which nodes periodically 
exchange state information about themselves and 
about other nodes they know about) and those nodes 
can be replaced instantly (Cooper et al., 2010). 

In Cassandra, data is indexed by a key that is of 
the type String. This key represents a line where data 
is found, and in each row the data is divided into 
columns and column families. Each column in 
Cassandra has a name, a value and a timestamp. 
Both the value and the timestamp are provided by 
the client application when data is inserted. Besides 
the normal typed columns, another kind of column 
exists, they are known as the super columns. The 
thing that differentiates these columns from the 
others is the fact that instead of having objects as 
values, they have other columns as values.  

In order to group columns, Cassandra has a 
concept known as: Column Families, which is very 

similar to relational database tables. Unlike columns, 
the Column Families are not dynamic and must be 
previously declared in a configuration file. They are 
the unit of abstraction containing keyed rows which 
group together columns and super columns of highly 
structured data. Column families have no defined 
schema of column names and types supported. 

Similarly to columns, there is also the Super 
Column Family, which is a Column family that just 
contains Super columns.  It is useful for modeling 
complex data types such as addresses and other 
simple data structures.  

Lastly, column families are grouped into 
Keyspaces. These Keyspaces can be compared to 
Schemas in a relational database. 

Cassandra was designed to handle large amounts 
of data spread across many commodity servers. 
Cassandra provides high availability through a 
symmetric architecture that contains no single point 
of failure and replicates data across nodes. 
Cassandra’s architecture is a combination of 
Google’s Big-Table (Chang et al., 2008) and 
Amazon’s Dynamo (DeCandia et al., 2007). It is a 
peer-to-peer model, which makes it tolerant against 
single points of failure and provides horizontal 
scalability. Each node exchanges information across 
the cluster every second. A sequentially written 
commit log on each node captures write activity to 
ensure data durability (Datastax, 2014). Data is then 
indexed and written to an in-memory structure called 
memtable, which resembles a write-back cache. 
Once the memory structure is full, the data is written 
to disk in an SSTable (sorted string table) data file (a 
file of key/value string pairs, sorted by keys). All 
writes are automatically partitioned and replicated 
throughout the cluster. When a read or write request 
is made, any node in the cluster is able to handle it. 
Through the key, the node that answered the 
requisition can know which node possesses data 
information. 

3 YAHOO CLOUD SERVING 
BENCHMARK (YCSB) 

The Yahoo! Cloud Serving Benchmark (YCSB) is 
one of the most used benchmarks, and provides 
benchmarking for the bases of comparison between 
NoSQL systems. The YCSB Client can be used to 
benchmark new database systems by writing a new 
class to implement the following methods (Cooper et 
al., 2010): read, insert, update, delete and scan. 

These operations represent the standard CRUD 
operations: Create, Read, Update, and Delete. 
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A cloud service testing client consists of two 
parts: workload generator and the set of scenarios. 
Those scenarios are known as workloads, which 
perform reads, writes and updates. The YCSB 
predefined workloads are (GitHub, 2015): 
 Workload A: Update heavy. This workload has a 

mix of 50% reads and 50% updates. 
 Workload B: Read heavy. This workload has a 

95% of reads and 5% of updates.  
 Workload C: Read only. This workload is 100% 

read.  
 Workload D: Read latest. This workload has a 

95% of reads and 5% of inserts.  
 Workload E: Short ranges. This workload has a 

95% of scans and a 5% of inserts.  
 Workload F: Read-modify-write. In this 

workload, the client will read a record, modify it, 
and write back the changes.  
 

Due to space limits in the experimental evaluation 
we only show the results using the workloads: A, B, 
C, and D.  

When a data set is generated, the client uses a set 
of records that define the distributions that are most 
likely to be chosen in the execution of operations. In 
this benchmark three major distributions exist 
(Cooper et al., 2010): Uniform, Zipfian and Latest. 
In our experiment we use the uniform distribution 

4 CASSANDRA EXPERIMENTAL 
EVALUATION 

In this section the experimental setup, speedup 
metric used and benchmarking results and analysis 
of execution time for the workloads used with 
uniform distribution will be presented. 

4.1 Experimental Setup for YCSB 

In this section we will describe our experiment using 
the YCSB benchmark for the Cassandra database. 
The tests were performed using three computers 
using the Ubuntu Operating System. The computers 
had the following characteristics Intel(R) 
Core(TM)2 Quad CPU Q8300 @2.50GHz 2.51 GHz 
3,99 GB of RAM available.  

For this experiment we used a one node cluster 
and a three node cluster, in which we loaded 10 000 
000 and 100 000 000 records for the one node 
cluster and then for the three node cluster 
respectively. We performed 10 000 operations for 
each scenario and used 1, 100 and 1000 threads.  

All executions were repeated four times, and the 
values presented in Section 5.2.1, 5.2.2, 5.2.3, 5.2.4, 
5.2.5 and 5.2.6 are the average values of the three 
executions. In order to maintain all executions 
independent after each execution a computer restart 
was effected. Due to the increased speed of 
execution from the records in memory, this approach 
of testing allowed us to have isolated results whose 
runtimes are not influenced by the use of volatile 
memory or the effect of cache results. 

4.2 Speedup 

In this experiment we use the speedup metric. The 
speedup of a system is defined as the ratio between 
response time using a processor and using multiple 
processors or nodes (Karp and Flatt, 1990). The 
speedup measures the increase in gain in 
performance achieved using various processors 
instead of a single processor and is calculated using 
the following equation: 

 

The ratio of the execution time using 1 processor to 
the execution time with M processors. Ideally, one 
would like Speedup=M, which is called ideal 
speedup, although in practice this is rarely achieved. 
An ideal speedup means that when we increase the 
number of processors to M, the original response 
time will be reduced by the same factor.  

4.3 Cassandra Evaluation 

In this section the benchmarking results and analysis 
of execution time for workloads A, B, C, and D of 
uniform distribution with 10 million and 100 million 
records on 1 and 3 nodes will be presented. 

4.3.1 Workload A 

In this experiment we test workload A, which has 
50% reads and 50% updates with uniform 
distribution. Figure 1 shows the results for 10 
million records and 100 million records for a single 
node cluster and a 3 node cluster, with thread 
variation of 1,100 and 1000. 

Figure 1 shows workload A which has 50% reads 
and 50% updates. In this figure we observe that the 3 
node cluster was always faster than the 1 node 
cluster. This was especially noticeable when dealing 
with 100 and 1000 threads. We can see that the 
results for 100 and 1000 threads were almost the 
same in both scenarios. In Table 1 the speedup 
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results for 1 and 3 nodes are presented. 
 

 

Figure 1: Execution Time of Workload A. 

Table 1: Speedup results for 1 and 3 nodes (Workload A). 

 
1 Thread 

(1->3) 
100 Threads 

(1->3) 
1000 Threads 

(1->3) 
10 M Records 1.97 4.50 4.69 

100 M Records 1.15 3.33 3.36 
 

Analyzing Table 1 we conclude that in the 100 
and 1000 thread case for the 3 node cluster in 
comparison to the 1 node cluster the performance 
results were always superlinear. With 100 threads 
we obtained speedup results that were 4.5 times 
faster for 10 million records and 3.33 times faster for 
100 million records. For the 1000 thread case 
scenario we see that it was 4.69 and 3.36 times faster 
when using the 3 node cluster in comparison to the 1 
node cluster in both 10 million and 100 million 
records respectively. In both these cases the reason 
for these superlinear results is due to the fact that 
with one node there is always a limit, but if we 
increase the number of nodes to 3 we are 
incrementing power to a multiple factor of 3. The 
overall gain is limited by the processing power of 
the node which is not able to process all of the 100 
threads at the same time, however, when we increase 
the cluster size to 3 we are dividing more data and 
because of this more gain is achieved. What this 
means is that we are getting rid of this limit that 
exists with the single cluster because we increase 
processing power to 3 and therefore 300 threads are 
going to be working simultaneously for the 3 node 
cluster. However, when analyzing 1 thread we 
observe that a speedup result of only 1.97 was 
obtained for 10 million records, and a speedup result 
of 1.15 for 100 million records. The reason why the 
gain here was sublinear is because we increased 
computing power by 3 and the additional node 
overhead (any excess computation time, memory, 
bandwidth or other resources) of network 

communication is greater than this gain. 
In conclusion, we expected some factors from 

this experiment to have been different. For instance, 
the performance was expected to improve 
approximately 3 times more from the single node 
cluster to the 3 node cluster in all threads. However 
in the 1 thread scenario this did not happen because 
in the 3 node cluster the database had to transfer 
more information by network to execute each query. 
Also, there was no improvement in execution time 
from 100 to 1000 threads because of the network 
overheads and the processing overheads. This could 
be because the processor may not support more 
threads at the same time due to the fact that both the 
memory and the processor have a limit. Because of 
this, it is apparent that from 1 thread to 100 threads 
saturation was achieved. Since no improvements 
were calculated from 100 to 1000 threads, it 
becomes evident that at 100 threads our experiment 
reached the limit of hardware resources available. 
Table 2 presents the percentage gain obtained for 
workload A. 

Table 2: Percentage Gain for Workload A. 

  
1 –> 100 
Threads 

100 -> 1000 
Threads 

10 M Records – 1 Node 39% 5% 

10 M Records – 3 Nodes 73% 8% 

100 M Records – 1 Node 12% 5% 

100 M Records – 3 Nodes 70% 5% 
 

In terms of gain, we conclude from Table 2 that 
better results were achieved when going from 1 to 
100 threads in all four cases. Distinct values between 
different record sizes and nodes were noticed with 
100 threads especially when dealing with 3 nodes. In 
both 10 and 100 million records with 3 nodes there 
was a gain of 73% and 70% respectively. These 
results were undoubtedly better in comparison to 
using a single node. When using 10 million records 
and 100 million records when going from 1 to 100 
threads with the single node we see a percentage 
gain of 39% for 10 million records, and only a 12% 
gain with 100 million records. On the other hand, 
when going from 100 threads to 1000 threads we see 
that almost no gain was achieved.  Percentage gain 
in this case when dealing with 10 million records 
and 3 nodes was 8%, and only 5% when dealing 
with 100 million records with 1 and 3 nodes, and 10 
million records with 1 node. 

4.3.2 Workload B 

In this experiment workload B was tested with 
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uniform distribution. This workload has 95% reads 
and 5% updates. Figure 2 shows the results for 10 
and 100 million records for a 1 and 3 node cluster, 
with 3 different thread variations (1, 100 and 1000). 

 

Figure 2: Execution Time of Workload B. 

Figure 2 shows workload B, from this figure we 
conclude that that 3 node cluster always had faster 
execution times than the 1 node cluster. In Table 3 
we present the speedup results obtained for this 
workload. 

Table 3: Speedup results for 1 and 3 nodes (Workload B). 

 
1 Thread 

(1->3) 
100 Threads 

(1->3) 
1000 Threads 

(1->3) 
10 M Records 1.47 3.93 4.10 

100 M Records 1.10 2.78 2.92 
 

In the 100 and 1000 thread case the performance 
results obtained when using 10 million records from 
1 node to 3 nodes were superlinear in both cases. For 
100 threads it was 3.93 times faster and with 1000 
threads it was 4.10 times faster as can be seen from 
Table 3. With 100 million records the results we 
obtained were also good having achieved an almost 
linear speedup, 2.78 for 100 threads and 2.92 for 
1000 threads. When using 1 thread the results 
obtained were sublinear for both 10 million and 100 
million records. When using 10 million records we 
obtained a result of 1.47 from 1 node to 3 nodes, and 
a result of 1.10 was calculated when using 100 
million records. In both 100 and 1000 threads the 
results were very similar, varying only by a few 
seconds from 10 million records to 100 million 
records as we can see from Figure 8. This is because 
various threads are going through the CPU, and the 
CPU can only do so many things at a given time, 
therefore if a certain threshold is hit, it doesn’t 
matter how many more things are trying to get 
through the CPU, it is still limited by what the CPU 
can process at a given time. Just because we add 

more threads, does not mean we will obtain better 
performance results. This workload in general 
achieved slower results than those presented in 
workload A because Cassandra is optimized for 
write-heavy workloads. In Table 4 we present 
workload B’s percentage gain. 

Table 4: Percentage Gain for Workload B. 

 
1 -> 100 
Threads 

100 -> 1000 
Threads 

10 M Records – 1 Node 28% 2% 

10 M Records – 3 Nodes 73% 6% 

100 M Records – 1 Node 15% 2% 

100 M Records – 3 Nodes 66% 7% 
 

When comparing the results obtained from Table 
4 we can see that 100 and 1000 threads had very 
different behavior. From 1 to 100 threads the 3 node 
cluster once again had better results in both 10 and 
100 million records with 73% and 66% percentage 
gain respectively, while the single node cluster had a 
gain of 28% for 10 million nodes, and 15% for 100 
million nodes. However, when comparing the results 
obtained from 100 to 1000 threads we conclude that 
the gain was little to none in this experiment. The 3 
node cluster here once again had a bit more gain 
than the 1 node cluster with 6% for 10 million 
records, and 7% for 100 million records, while the 
single node cluster had a gain of only 2% for both 10 
and 100 million records. 

4.3.3 Workload C 

In this experiment we test workload C which has 
100% reads with uniform distribution. Figure 3 
shows the results for 10 million records and 100 
million records for a single node cluster and a 3 
node cluster, with thread variation of 1, 100 and 
1000. 
 

 

Figure 3: Execution Time of Workload C. 

In Figure 3 workload C results are presented. For 
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this workload we have 100% of reads. The results 
obtained from this experiment were similar to those 
obtained from workload B which had 95% reads and 
5% updates.  When comparing execution times, we 
can see a major improvement in time for 100 and 
1000 threads in both 10 million and 100 million 
records from 1 to 3 nodes. In Table 5 the speedup 
results for 1 and 3 nodes are presented. 

Table 5: Speedup results for 1 and 3 nodes (Workload C). 

 
1 Thread 

(1->3) 
100 Threads 

(1->3) 
1000 Threads

(1->3) 

10 M Records 1.59 3.54 3.61 

100 M Records 1.04 2.97 2.99 

 

From Table 5 we see that for 100 threads from 1 
to 3 nodes it is 3.54 times faster with 10 million 
records and 2.97 times faster with 100 million 
records. On the other hand with 1000 threads 
comparing the 1 node cluster to the 3 node cluster 
we conclude that with 10 million records we 
obtained an improvement of 3.61 and with 100 
million records we got and improvement in speedup 
of 2.99. Once again the same scenario from the two 
previous workloads was observed with 1 thread. 
With 10 million records the execution time was 1.59 
times faster comparing 1 node to 3 nodes and with 
100 million records the result was 1.04 times faster 
with the 3 node cluster. These results are sublinear, 
and have to do with the fact that the database had to 
transfer more information by network to execute 
each query and because computing power was 
increased to 3, the node overhead of network 
communication proved to be more than the gain we 
obtained. As mentioned before, Cassandra is 
optimized for write-heavy workloads, because of 
this Cassandra’s efficient sequential use of disk for 
updates reduces contention for the disk head. 
However, the results here for both 100 and 1000 
threads were as expected in terms of scalability 
because as the number of nodes increased from 1 to 
3, the results obtained also improved 3 times more 
seeing as the execution time decreased significantly 
from 1 to 3 nodes. Table 6 presents the gain in 
percentage we calculated for workload C. 

Table 6: Percentage Gain for Workload C. 

 1 -> 100 
Threads 

100 -> 1000 
Threads 

10 M Records – 1 Node 32% 3% 

10 M Records – 3 Nodes 70% 5% 

100 M Records – 1 Node 12% 1% 
100 M Records – 3 Nodes 69% 2% 

From Table 6 we conclude that from 1 to 100 
threads the results obtained were better than from 
100 to 1000 threads. With 100 threads we see that 
for the 3 node cluster we had better percentage gain 
in both 10 and 100 million records with 70% for 10 
million records and 69% for 100 million records. In 
case of the single cluster we see a gain of 32% for 
10 million records, and only 12% for 100 million 
records. However, for 1000 threads the gain was 
once again close to none. For 10 million records a 
gain of 3% was calculated in the single node cluster, 
and 5% in the 3 node cluster. For 100 million 
records a gain of only 1% for the 1 node cluster was 
obtained and 2% for the 3 node cluster. 

4.3.4 Workload D 

In this experiment we test workload D which has 5% 
inserts and 95% reads with uniform distribution. 
Figure 4 shows the results for 10 million and 100 
million records for a single node cluster and a 3 
node cluster, with thread variation of 1, 100 and 
1000. 

 

Figure 4: Execution Time of Workload D. 

Figure 4 shows workload D which includes 5% 
of insert and 95% of read operations. This workload 
is similar to workload B which has 95% reads and 
5% updates. In terms of execution times even though 
both workload B and D contain 95% reads, the insert 
and update part of the workload changed everything 
seeing as workload D presented faster results than 
workload B. This is because in workload B an 
update needs to firstly scan the whole table in order 
to get the records to update, and in workload D data 
is just simply inserted. For workload D the results 
displayed major differences when comparing 1 
thread to 100 and 1000 threads. Table 7 shows the 
speedup results for the single node and 3 node 
cluster. 
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Table 7: Speedup results for 1 and 3 nodes (Workload D). 

 
1 Thread 

(1->3) 
100 Threads 

(1->3) 
1000 Threads 

(1->3) 

10 M Records 1.44 5.53 5.96 

100 M Records 1.47 3.16 3.46 
 

From Table 7 we see that the 1 thread scenario 
has an improvement in terms of speedup that is 1.44 
times faster with 10 million records and 1.47 times 
faster with 100 million records when using the 3 
node cluster as opposed to the 1 node cluster. The 
results obtained here were not as expected in terms 
of scalability because as the number of nodes 
increased from 1 to 3, the results obtained were also 
supposed to improve nearly 3 times more. Just like 
in the previous workloads the explanation here is the 
same seeing as additional node overhead of network 
communication was greater than the gain.  However, 
when comparing the results for 100 and 1000 
threads we see an improvement in execution time in 
both threads. The results here were superlinear. With 
100 threads we obtained a speedup result of 5.53 
with 10 million records and 3.16 with 100 million 
records. In the 1000 thread case we obtained a 
speedup results that was 5.96 times faster with 10 
million records and 3.46 times faster with 100 
million records from 1 node to 3 nodes. In these four 
cases the time reduced by 3 from 1 node to 3 nodes, 
making these results super, seeing that as we 
increased the number of nodes from 1 to 3 the 
results also improved 3 times more. However, seeing 
as the results from 100 to 1000 threads were very 
similar in terms of execution time, saturation was 
achieved at 100 threads. Table 8 presents the 
percentage gain results for workload D. 

Table 8: Percentage Gain for Workload D. 

 1 -> 100 
Threads 

100 -> 1000 
Threads 

10 M Records – 1 Node 26% 5% 
10 M Records – 3 Nodes 81% 12% 
100 M Records – 1 Node 32% 2% 
100 M Records – 3 Nodes 69% 10% 

 

After analyzing Table 8 we conclude that the 
results here were much better when going from 1 to 
100 threads as opposed to 100 to 1000 threads. 100 
threads had superlinear results with 3 nodes having a 
gain of 81% for 10 million records and 69% for 100 
million records. For the single node cluster we 
obtained a gain of 26% for 10 million records, and 
32% for 100 million records. With 1000 threads we 
see that better results were calculated once again 
with the 3 node cluster in comparison to the 1 node 
cluster. Having the 3 node cluster a gain of 12% for 

10 million records, and 10% gain for 100 million 
records. For the single cluster only a 5% gain was 
obtained for 10 million records, and 2% for 100 
million records. 

5 CONCLUSIONS AND FUTURE 
WORK 

The popularity of NoSQL databases has increased in 
recent years because they bring a number of 
advantages compared to relational databases. In our 
work we experimentally evaluated Cassandra, one of 
the most popular Column family NoSQL databases.  

Throughout the experimental evaluation we 
assessed performance and scalability of the 
Cassandra database using the Yahoo! Cloud Serving 
Benchmark. The workloads that were used were 
defined in a range of scenarios. We tested factors 
such as data size, number of nodes, number of 
threads, workload characteristics, and analyzed 
whether desirable speedup and scalability properties 
were met. By analyzing the results we concluded 
that Cassandra exhibits good scaling capacity while 
maintaining the performance which leads us to say 
this database is highly optimized to work with large 
volumes of data. After concluding our results we 
expected some factors from this experiment to have 
been different. For instance, the performance was 
expected to improve 3 times more from the single 
node cluster to the 3 node cluster in all thread cases. 
However in the 1 thread scenario this did not happen 
in any workload because in the 3 node cluster the 
database had to transfer more information by 
network to execute each query making the gain 
sublinear because we increased computing power by 
three and the additional node overhead of network 
communication is greater than this gain. Also, there 
was no major improvement or difference in 
execution time when going from 100 to 1000 threads 
because of the network overheads and the processing 
overheads. This could be because the processor may 
not support more threads at the same time due to the 
fact that both the memory and the processor have a 
limit. Since various threads are going through the 
CPU, and the CPU can only do so many things at a 
given time, if a certain threshold is hit, it doesn’t 
matter how many more things are trying to get 
through the CPU, it is still limited by what the CPU 
can process at a given time. Just because we add 
more threads, does not mean we will obtain better 
performance results. Because of this, it is apparent 
that from 1 thread to 100 threads saturation was 
achieved. In terms of gain, we can also conclude that 
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far better results were achieved when going from 1 
to 100 threads when using 10 and 100 million 
records for 1 and for 3 nodes. Distinct values 
between different record sizes and nodes were 
noticed when going from 1 to 100 threads especially 
when dealing with 3 nodes. In both 10 and 100 
million records with 3 nodes there was almost 
always a better gain in comparison to using a single 
node.  

In general Cassandra’s workload executions are 
fast except when it is necessary to execute scans, in 
those cases the performance highly decreases and 
the system is not as fast. It is important to remember 
that regardless operation type the system must be 
scaled adequately, according to the database size.  

As future work, we intend to analyze and 
compare the variation of execution time, 
performance and scalability between different types 
of NoSQL databases using the YCSB benchmark by 
increasing record size, using more clusters and using 
more operations. This approach would enable us to 
better understand how NoSQL and relational 
databases differ from one another comparing which 
one is better for different purposes. 
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