
Business Process Aware Identification of Reusable Software
Components

Lerina Aversano, Marco Di Brino and Maria Tortorella
Department of Engineering, University of Sannio, p.za Roma 21, Benevento, Italy

Keywords: Business Process Modelling, Software Modelling, Impact Analysis, Software Reuse, Similarity Analysis.

Abstract: Enterprises need to follow the rapid evolution of their business processes and promptly adapt the existing
software systems. A preliminary requirement is that the software components are available, working and
interoperable. A widely diffused solution is moving the adopted software solution toward an evolving
architecture, such as the services-based one. The objective of this paper is to propose an approach for
supporting the identification of reusable components in software systems by analyzing the business process
using them. The proposed solution is based on the idea that a Service Oriented Architecture can be obtained
by using a wide range of existing pieces of code. Such code components can be extracted from the existing
software systems by identifying those ones supporting the business activities. Then, the paper proposes an
approach for identifying the software components supporting a business process activity and candidate them
for implementing a service. With this purpose, the recovery of the links existing between the business
process model and the supporting software systems is exploited. An impact analysis activity is also
performed starting from the initial traced components.

1 INTRODUCTION

Software systems are subject to a continuous
evolution due to the frequent changes of business
requirements. Actually, operative business processes
can change because the implementation rules change
and/or new laws are introduced. This evolution
forces to keep aligned software systems with the
business processes they support. This implies the
execution of maintenance activities for adapting the
software systems to the business process changes.

In order to facilitate the maintenance activities, a
widely diffused strategy is moving the adopted
software solutions toward an evolving architecture,
such as the services-based one. Indeed, the detection
of components impacted by the business change
requirements is not obvious to the maintainers and
they could be more easily identified in a service-
oriented architecture.

In this direction, to support the migration of a
software solution towards a service-oriented
architecture, a crucial aspect is the appropriate
identification and comprehension of the relations
existing between business process activities and
software system components. Such a kind of
knowledge represents a great help to detect the

software components candidate to be moved towards
services.

The identification of candidate services in a
structured legacy system during a migration process
is a challenging task (Khadka et al., 2013a;
Kontogiannis et al., 2008; Zillmann et al., 2011). In
fact, the lack of updated documentation and
resources makes very hard the code comprehension.

This paper proposes an approach based on the
analysis of the business process using the software
systems to be migrated. Indeed, a requirement
change is often expressed with reference to the
business activities it supports. In particular, the
proposed approach identifies the links between a
business process description with the components of
a software systems that could be used for the service
oriented architecture migration (Aversano et al.,
2015). It exploits a formal description of the
business process based on BPEL language and
identifies the software components of the examined
software system that are connectable to the business
activities. The application of an impact analysis
process completes the definition of all the software
components that could implement a service.

The following of the paper is structured as
follows: Section 2 discusses the related works

Aversano, L., Brino, M. and Tortorella, M.
Business Process Aware Identification of Reusable Software Components.
DOI: 10.5220/0005985700590068
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 59-68
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

59

regarding the identification and evaluation of
services; Section 3 describes the proposed approach
and supporting tool; Section 4 presents the
application of the approach to a case study; and
concluding remarks and future works are discussed
in the last section.

2 RELATED WORKS

In the literature there are several approaches
suggesting useful guidelines to identify services
during the legacy systems migration toward a
service-based architecture.

In (Khadka et al., 2013b), the authors proposes
two current practices for a correct candidate services
identification: top-down, where a business process is
initially modeled based on the requirements and then
it is subdivided into sub-processes until these can be
mapped to legacy functions; and bottom-up, utilizing
the legacy code to identify services by using various
techniques, such as information retrieval, concept
analysis (Zhang et al., 2006), business rule recovery
(Marchetto and Ricca, 2008) and source code
visualization (Van Geet and Demeyer, 2008).

In (Cetin et al., 2007), the authors describe a
mash-up based strategy to be applied during a legacy
system migration process. In this strategy, system
components might be reusable legacy components or
new developed ones, depending on if there is a gap
exiting between the existing legacy component and
the requirements.

In (Balasubramaniam et al., 2008) the authors
discusses an architecture-based and requirement-
driven service-oriented re-engineering method. This
method entails the availability of architectural and
requirement information. The services identification
is performed by the domain analysis and business
function identification.

There are also other approaches that can be used
to evaluate services. One of them is the one
proposed in (Matos and Heckel, 2008) that performs
either code pattern matching and graph
transformation. The approach is based on source
code analysis for identifying the contribution of code
fragments to architectural elements and graph
transformation for architectural migration, allowing
for a high degree of automation.

Another approach proposes to evaluate services
by feature location (Chen et al., 2005). The more
practical definition of a feature is used as a coherent
and identifiable bundle of system functionality that
is visible to the user via the user interface
(Eisenbarth et al., 2003; Turner et al., 1999). Then,

to discover feature implementation, feature location
is applied. It is a re-engineering technology used to
locate a particular feature in the most relevant code,
understand it and make the change so as to minimize
unwanted side effects (Turner et al., 1999). After
identifying the source code which is involved in the
implementation of a particular feature, the
implementation modules are aggregated into one
module. Therefore, the core source code of the
service operations can be extracted and the service
identification is achieved.

Another approach proposes to evaluate services
by formal concept analysis (Chen et al., 2009). The
identification process of service candidate is based
on the mapping between Functionality Ontology and
Software Component Ontology and adopts relational
concept analysis.

In (Sneed, 2006), an automatic approach to
evaluate candidate services in a migration process
from legacy system to SOA is proposed. Groups of
object-oriented classes are considered as candidate
services and evaluated in terms of development,
maintenance and estimated replacement costs. If
user organizations want to move toward a service
oriented architecture, it must make a portfolio
analysis of their existing applications and to list out
the essential business rules.

In (Sneed et al., 2012), the authors proposes a
tool for assisting the reuse of existing software
systems in a service oriented architecture by linking
the description of existing COBOL programs to the
overlying business processes. For linking models of
existing code to a business process model, this
approach applies the interpretation of the code
interfaces as separate service subjects. The approach
fits better to the concept of a service-oriented
architecture and is also more intuitive, as it is
possible to generate a service layer within a BPM
suite that links it to the underlying code. The actual
business process events take place above this layer.
They guide the human users through their tasks,
telling them what to do next. These higher level
control subjects are equivalent to work flow control
procedures written in a job control language (JCL).
In this way, a mixture of bottom-up and top-down
approach to SOA design is supported. First, access
subjects are created bottom-up to link the business
model to the underlying code base, then process
control subjects are defined top-down to depict the
actual business work flows, but based on the lower
level of BPM service layer.

Also the approch proposed in this paper exploits
the business knowledge derivig from the business
process using the software systems considered for

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

60

Figure 1: Overview of the approach for detecting candidate services.

identifying reusable components. As the approach
works on business and software models, it is
independent from the specific programming langage
and if the business process and software systems are
adequately modelled, it can be applied for
identifying reusable components of different
programming languages.

3 APPROACH FOR CANDIDATE
SERVICES DETECTION

The proposed approach aims at identifying the
traceability links between business process activities
and supporting software system components. It is
based on the analysis of the business process entities
and software components models. The software
components linked to the business process entities
represent the initial components for identifying
candidate pieces of software to be migrated toward
services.

The proposed approach is illustrated in Figure 1
and entails three processing phases described in the
following: Information extraction, Traceability
recovery and Impact analysis.

3.1 Information Extraction

The information extraction phase regards the

extraction of semantic information from both
business process and software system source code.
Figure1 shows that this phase in based on the use of
two parsers for analyzing Java code and BPEL files,
and obtaining all the needed information for
performing the next traceability recovery. The Java
and BPEL parsers used were implemented by using
the JavaCC (Java Compiler Compiler) parser
generator, after having defined the appropriate
grammars.

With reference to the business process, the BPEL
parser allowed the construction of the model
description syntax tree. This Abstract Syntax Tree
depicts the hierarchical relation existing between
business activities, composing sub-activities and
artefacts needed for executing them.
After obtaining the syntax tree, it was enriched with
additional nodes for inserting comments, and
identifying the associations existing between them
and code representing activities. Therefore, the
analysis of the BPEL AST allowed the identification
of the identifiers for describing the analysed
business process.

With reference to the software system, the Java
parser constructed a symbol table used to keep track
of the source program constructs and, in particular,
the semantics of the identifiers concerning the
packages, classes, methods, instance variables and
local method variable declarations.

Business Process Aware Identification of Reusable Software Components

61

Figure 2: Traceability recovery phase.

The produced symbol table structure is also
hierarchical. The first layer contains a list of all
packages declared in the considered project. Each
record of this first layer contains a reference to
another list, regarding the classes defined in the
considered package. The set of all classes is included
in the second layer of the symbol table. Therefore,
each class contains a references to the members it
declares, such as methods and instance variables,
and inner class. Each method could have another
layer representing the set of local variables it
declares. Each inner class may refer to other layers
grouping its methods and variables.

The comments are analysed in the pre-processing
phase. Once a comment is identified, it is saved into
a map, which also stores the appearance order of the
various comments.

When the pre-processing phase is completed, the
parser considers the comments for identifying
additional semantic information contained in the
code.

3.2 Traceability Recovery

The traceability recovery aims at discovering the
connections existing between the business activities
and software system components.

Once obtained the syntax tree for the BPEL
business description and the symbol table for the
Java software system, they are visited in a post-order
manner for collecting the information required for
continuing the analysis.

This processing phase was divided into 4
different steps, summarized in the chart drawn in
Figure 2.

Identification of Key Terms. This is the first step
of the traceability recovery phase. It requires the
visits of the BPEL syntax tree and the creation of an
array of BPEL activities, called Activity. Each

Activity objects includes the BPEL file name, the
task name and the set of related terms. As an
example, for every single invoke activity,
information is collected regarding its parameters,
like name and operations, while for every reply and
receive activities information is collected regarding
portType and partnerLink parameters. Similarly, the
visit of the Java symbols table permits to identify all
the key terms related to the methods. Once identified
one of the keys, a string set containing the method
name, any local variables name and inner classes, is
created.

Refinement of Terms. The second step of
traceability recovery phase entails 3 tasks. The first
task regards the tokenization of the selected terms.
Then, every composed term is split into two or more
words and each term is normalized. As an example,
for a method called GetCustomerName(), the terms
GetCustomerName, get, customer and name are
obtained and included in the collection. The second
task makes it possible a refinement of the terms,
eliminating the stopwords, that are the most
common words included in the English grammar,
and the Java and BPEL keywords, as they do not add
any additional information regarding Java methods
or BPEL process content. The third step aims at
collecting a set of synonyms for each term obtained
from the previous tasks. This operation is made by
using the WordNet library, which is a lexical-
semantic database for the English language,
developed from Princeton University. Therefore, a
vector of synonyms is generated for each term
within the set of created words, which is added to
the starting sets of terms.

Creation of Term Sets. The third step of
traceability recovery phase regards the creation of
different subsets of terms obtained by the previous
steps. Specifically, for the invoke activity of the
BPEL model, the following sets are obtained:

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

62

 a set of the terms included in the string
associated to the operation argument;

 a set of the terms included in the string
associated to the name argument;

 a complete set of the terms contained in strings
associated to the following arguments: operation,
name, partnerLink, inputVariabile and
outputVariable.

The created sets for the reply and/or receive
activities are the following:

 a set of the terms contained in the string
associated to portType argument;

 a set of the terms contained in the in the string
associated to partnerLink argument;

 a complete set including the terms contained in
the strings associated to the portType and
partnerLink arguments..

With reference to the Java methods, the following
sets are defined:

 a set with the terms of the considered method
identifier;

 a complete set including the method name, its
local variable names and inner classes.

Creation of the Traceability Matrix. Once
completed the terms preprocessing, it is possible to
continue computing the similarity between the
identified terms, in order to obtain the traceability
matrix. The adopted similarity coefficient is the
Jaccard index that is a statistical index used to
compare the similarity and diversity of sample sets.
The value of this coefficient is defined in a range of
values going from 0 to 1 and it is defined as the size
of the intersection of the sets of samples divided by
the size of their union:

In the proposed approach, the sets of terms used for
applying the Jaccard index are those described in the
previous section. Using the Jaccard similarity the
traceability matrix is produced. It is organized so
that the rows contain the method of the analysed
software system, and the columns regard the BPEL
activities extracted by the parser. Therefore, cell i,j
of the matrix contains the value of Jaccard index of
the terms regarding method i and those ones
concerning activity j.

A preliminary investigation suggested to
consider as relevant values of the traceability matrix,
those ones greater of 0.85. Then, whenever there is a
correspondence involving a Java method and a
BPEL activity with the relative Jaccard index higher

than 0.85, it is marked as meaningful and it is
indicated with a different colour.

3.3 Impact Analysis

Once the traceability matrix is obtained, it is
possible to make a further analysis of the software
components, focusing on the identification of the
software system classes connected to classes
identified in traceability recovery phase. This phase
is divided into 2 different steps as indicated in
Figure 3.

Creation of Call Graphs. Analysing from the
source code of Java software system, a call graph is
obtained representing the call relationship existing
between the methods of a software system.
Specifically, each node represents a class or a
method and each edge (a,b) indicates that method a
or a method included in class a calls method b or
one included in a class b. The Doxygen tool
(www.doxygen.org) was used for generating the call
relationship. In particular, Doxygen can produce
different outputs from a set of documented source
files. In the proposed approach, the considered
output was represented by files .dot, which contain
the call graph definition. Doxygen creates a .dot file
for each method of the analyzed software system
that calls at least another method of the software
system itself. Every single call graph starts from the
method node that is being analyzed and browse the
entire chain of calls it triggers.

Call Graphs Analysis. The second step of the
impact analysis phase visits the obtained call graphs
for identifying the impacted software components.
For improving the readability of this new graph and
performing a high-level analysis, each of its nodes
represents a single class of the software system,
rather than a class method. Furthermore, a numeric
label is associated to each edge for counting the
number of calls occurring between the two involved
classes. Furthermore, the various nodes have been
grouped into subgraphs, each of which represents a
package of the analyzed software product and
contains the nodes representing its classes.
The information obtained by analysing the
traceability recovery phase and regarding a
candidate method for a future migration to service
oriented architecture, is particularly relevant also in
the impact analysis step. Actually, it represents the
triggering software component that permits to obtain
the set of components it impacts and that can be
clustered together for being migrated to a service.

Business Process Aware Identification of Reusable Software Components

63

Figure 3: Impact Analysis phase.

BARC Plugin. A prototype tool has been
implemented for supporting the application of the
proposed approach. It is an Eclipse plugin named
BARC, that is an acronym for Business process
Aware identification of Reusable software
Components. The plugin requires the project path of
the various Java and BPEL files, through message
dialog, at runtime. After entering the path, the plugin
will analyses the source code and produces 2
outputs.

Figure 4: Screen shot of the implemented Eclipse plugin.

The first output is the traceability matrix, created
by Traceability recovery phase. While, the second
output is the result of the Impact analysis step, that is
a class call graph. In this graph, the nodes represent
Java classes and each edge represents a link between
two classes. The construction of this graph was
made by using JGraphX: it is a Java library that
allows the creation of the call graph and represents it
through a JFrame window.

4 VALIDATION

The effectiveness of the presented approach has
been validated using a case study regarding a web
Java project, dealing with the management of a
dealership. It consist of 1066 Java files (code lines
124459) and 33 BPEL files. The project provides
functionalities such as: user registration, access to
the services, browse the offered catalogue, add or
remove a product to the cart, confirm the purchase.

The BPEL model of the business process has
been obtained analyzing the executed processes and
using the available knowledge, without considering
the source code of the used software system. The
obtained model was also manually verified.

It follows a description of the application of the
approach, and the obtained results. This project
entails the execution of 3 macro operations:

 Sales: including the functionality allowing the
management of some services concerning the car
selling for both new and used cars, such as: Car
Selling (information service, choosing car,
providing price, negotiating and making contract
details, payment style etc.), Car Return (car
checking, invoke approvement etc.), Customer
Service (car cancellation, car fuelling, car
cleaning, car checking, car accident etc.),
Choosing Car and Customer Reception;

 Rental: including the operations allowing the
management of some services relating to the car
rental, such as: Car Renting (input customer and
car information, input pick-up/drop-off location
and date, price offer, rental acceptance, payment),
Car Reservation (reservation of a favourite car
model in a preferred date and location), Car
Insurance (Insurance to the rental car), Car Service
(car checking, car cleaning, car fuelling),
Reminder (reminding customer to pay, warning
payment expiry, arranging collection company),
etc.;

 Customer Communications: including the
operations concerning the communication form/to
a user, such as: get the information about a user, a
rental or an insurance.

The verification and interpretation of the results
required the selection of just five interesting Java
classes. Each of them contributes to implement the
previously described macro functionality, and
includes the needed methods. Each BPEL file
represents one of the macro service operations. They
are: NewCarSellingProcess.bpel, SaleInformation.bpel,
CheckDrivingLicenseProcess.bpel and so on.

In the following, the application of the steps
described in the previous section is discussed.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

64

Figure 5: Information extraction about an invoke activity.

Identification of Key Terms

The information regarding the activities are selected
by analyzing the BPEL AST. Figure 5 shows an
example of an invoke activity, which is called
getCustomerInfo, that is contained in the BPEL file
called CarAccidentCallProcess.bpel. This file
handles the calls arriving in dealer after a car
accident. The activities the figure shows are used for
getting personal information about the car driver.

Afterwards, all the information of interest is
extracted from the activity shown in Figure 5. The
values of the specific example are the following:

 inputVariable (getCustomerInfoRequest);

 operation (getDriverInfo);

 outputVariable (getCustomerInfoResponse);

 partnerLink (RentalSystemService);

 portType (ns1: RentalSystem).

The information regarding each method is extracted
from the Java symbol table, including the method
name and all the identifiers linked to it.

Figure 6 shows an example of a method, called
initialize, contained in a Java file called
RentalSystem.java, which is the Java class that deals
with the management of some services relating the
car rental. The figure highlights all the identifiers
that are caught in this step. They regard the name of:
the step that is equal to the method name (initialize),
local variables (maxX, maxY, minX, minY), and the
method inner class (initializeVector).

Refinement of Terms

All of attributes of the selected BPEL activity have a
compound name that can be split. For example, the
name of its operation attribute (getDriverInfo) can
be split into 3 different words: get, driver and info.
Similarly, the name of a Java method can be split
into different words without considering the list of
arguments.

The obtained set of words is then refined going
to remove the terms included in the list of English
stopwords, such as get. Then, the Java identifier
getDriverInfo provides just the two terms driver and
info for the next phase.

The synonyms of each identified single word are
searched by using the WordNet library. For
example, WordNet provides information as
synonym of info, and device driver and number one
wood for the term driver.

Creation of the Term Sets

With reference to the used invoke activity, three sets
of terms are created. For example, the following sets
are defined for activity getDriverInfo:

 a set containing the words: getDriverInfo, that is
the complete name of the operation attribute, and
driver and info, which are the words obtained by
the splitting;

 a set containing the words: getCustomerName,
that is the complete name of the name attribute,
and customer and name;

 a set containing the words: driver, info,
customer, rental, system (from its attributes),
information, client, lease, letting, renting,
scheme, organization, organisation, arrangement
(from WordNet).

In the same way, for each Java method, two set of
terms are created. For example, if method
getDriverInfo is considered, the first sets of terms
includes the words deriving from the method name,
while the second set contains the words driver, info,
information (obtained from its name), sql, stm, rset,
e, which are the names of the method local variables.

Creating Traceability Matrix

For calculating the Jaccard index for the set of
terms, the first sets that must be compared are the
BPEL set that includes information regarding
operation attribute (e.g., words: getDriverInfo,
driver, info) and the Java set that includes
information regarding the related method (e.g., the
words: getDriverInfo, driver, info). As it is possible
to see in the example, these sets contains the same
words, and, then, the Jaccard index resulting from
their comparison will be equal to 1, which indicates
a full matching.

If the match between the BPEL activity and Java
method has already been found, it is useless to make
comparisons with other sets of terms, and this step
may end with the setting of the obtained values
within the traceability matrix.

Business Process Aware Identification of Reusable Software Components

65

Figure 6: Information extraction about a Java method example.

Table 1 shows the Jaccard values of the method
and activity considered in the example, and
highlights the correspondence found between the
BPEL business process and Java system software.

Table 1: Example of matrix produced by prototype tool.

Figure 7: Information obtained from the Doxygen
analysis.

If the match between the BPEL activity and Java
method has already been found, it is useless to make
comparisons with other sets of terms, and this step
may end with the setting of the obtained values
within the traceability matrix. Table 1 shows the
Jaccard values of the method and activity considered
in the example, and highlights the correspondence
found between the BPEL business process and Java
system software.

Call Graphs Creation

This new processing phase required the analysis of
the Java source files and the information obtained in
the extraction phase.

Every single Java file in the analyzed software
product will examined by using Doxygen. A correct
use of this tool required the configuration of the file
including all information regarding the examined
software product.

The execution of Doxygen produced a temporary
folder with all the files created by the tool, such as

files with .dot extension.
Figure 7 include an example of a .dot file. Each

node is represented by a unique identifier (e.g.,
Node1) and some parameters, enclosed in square
brackets. In addition, for purely graphic purposes,
parameter label also defines the node name,
composed of the union of the package name, class
name and referenced method name. For example,
information relating method getDriverInfo are
contained in the label of a node called Node1. In the
same file, the various edges connecting two nodes
are also defined; in Figure 7, Node1 is connected
with Node3 (getCustomerInfo) and Node4 (getUser).

Call Graphs Analysis

Once the call graph of software system has been
obtained, it is possible to create a call graph at the
class level that includes all the obtained information.
For example, the nodes related to methods
getCustomerName and getDriverInfo can be grouped
into a new single node, that is RentalSystem. In the
same example, method getDriverInfo is one of those
methods identified in the Traceability recovery
phase as a possible candidate to be turned into a
service. This information is also saved into the new
call graph. Actually, in the label parameter of its
class, the candidate method name itself is added.

Figure 8: Classes call graph produced by prototype tool.

The final result regarding a call graph at the class
level, is shown in Figure 8. The figure includes a
screen shot of the Eclipse plugin that has been
implemented for supporting the application of the
approach. In the figure, there are 2 packages, called
Controller and Model, that enclose some nodes,

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

66

including node RentalSystem. The edge that
connects this node with the Customer class node has
a weight (in this case is equal to 5), which indicates
that RentalSystem class and its methods, interacts
with the Customer class and its methods for 5 times.

Table 2 contains a summary of the results
obtained for the case study in terms of identified
interactions in the traceability matrix between
business activities and software components. This
analysis has been performed by comparing the
automatically obtained results with those ones
attained through a manually investigation of the
software system. Table 2 includes indications of: the
false positives, indicating the detected but not real
correspondences; true positives, regarding detected
and real correspondences; false negatives,
concerning no found but actually present
correspondences; and true negatives indicating not
found and not really present correspondences. It can
be observed that the value of the false negatives is
very low, just 1, and this indicates that the proposed
approach detects the correspondence correctly, when
it exists. The number of false positives, 15, are due
to correspondences that do not exist, but they have
been detected because the analyzed activity has a
nomenclature similar to the one of a Java method,
but there is no real correspondence between them.

Tables 3 contains the results obtained by the
evaluation of the Precision, Recall and F-Measure in
the dealer project. It is possible to observe that the
obtained results are enough high, indicating the
goodness of the results regarding the obtained
correspondence among business and software terms.
This results have been achieved also thanks to the
meaninglessness of the used terms.

Table 2: Experimental results for dealership project.

Case study
False

Positives
False

Negatives
True

Positives
True

Negatives
Dealership 15 1 60 13769

Table 3: Precision, Recall, F-Measure for dealership
project.

Precision Recall F-Measure
0.8 0.98 0.88

Additional results can be obtained by considering
the comments in both BPEL and Java files. In this
case, the association of a single comment to the
BPEL activity requires the addition of further
comments nodes to the AST, including the detected
comments and relative source code.

The comment-based approach was also analysed
on the same software system and the new Jaccard

index values were compared with the previous ones.
Different results were obtained mainly due to the
considerable increase of terms to be considered in
the business and software term sets. Thus, because
of the considerable decrease of common terms
compared to the total number of terms, many of the
real correspondence existing between Java methods
and BPEL activities (i.e. true positives) were not
found. This experience indicated that considering
comments does not contribute to improve the results
but it just increases the number of terms to be
considered for identifying the correct
correspondence between BPEL and Java terms.

5 CONCLUSIONS

The paper presented an approach aiming at
supporting the reuse of the existing software systems
components connected to a business process. In
particular, this facilitation is provided through the
possibility of detecting the correspondences existing
between source code components and business
activities of a process modelled by using the BPEL
language.

The approach execution entailed the use of two
parsers. The information extracted by using the
parsers have been expanded and refined for being
used in the traceability link recovery. The evaluation
and selection of such correspondences have been
performed by using a similarity measure defined in
the paper. Each identified software component was
considered in an impact factor activity aimed at
searching all the software components it called for
encapsulating all of them in a service.

The BARC eclipse plug-in was implemented for
automatically supporting the application of the
approach.

The comments in the code were also initially
analysed, but successively discarded as it was
observed that their use leads to worse results.

The preliminary results obtained by the
application of the proposed approach are
encouraging and represent a starting point, for the
identification of parts of the code from an existing
software system with the aim of defining new
services to be used in a service oriented architecture.
The values of precision, recall, f-measure show the
potentiality of the proposed approach.

The future work will concern the refinement of
the selection of the correspondences in the matrix
(refining the values in the range used for the analysis
of Jaccard indexes), expanding test cases and
extending the analysis also to WSDL files.

Business Process Aware Identification of Reusable Software Components

67

REFERENCES

Aversano, L., Di Brino, M., Di Notte, P., Martino, D.,
Tortorella, M., 2015. Linking Business Process and
Software Syste. In BMSD 2015, 5th International
Symposium on Business Modeling and Software
Design. SCITEPRESS.

Balasubramaniam, S., Lewis, G. A., Morris, E. J.,
Simanta, S., Smith, D. B., 2008. SMART: application
of a method for migration of legacy systems to SOA
environments. In ICSOC'08, 6th International
Conference on Service-Oriented Computing. Springer-
Verlag.

Cetin, S., Altintas, N. I., Oguztuzun, H., Dogru, A. H.,
Tufekci, O., Suloglu, S., 2007. A mashup-based
strategy for migration to service-oriented computing.
In ICPS'07, International Conference on Pervasive
Services. IEEE Comp.Soc. Press.

Chen, F., Li, S., Chu, W. C., 2005. Feature analysis for
service-oriented reengineering. In APSEC'05, 12th
Asia-Pacific Software Engineering Conference. IEEE
Comp.Soc. Press.

Chen, F., Zhang, Z., Li, J., Kang, J., Yang, H., 2009.
Service identification via ontology mapping. In
COMPSAC'09, 33th Annual International Computer
Software and Applications Conference. IEEE
Comp.Soc. Press.

Eisenbarth, T., Koschke, R., Simon, D., 2003. Locating
features in source code. In IEEE Transaction on
Software Engineering, Vol. 29, No. 3.

Ganter, B., Wille, R., 1999. Formal Concept Analysis:
Mathematical Foundations, Springer-Verlag.

Khadka, R., Saeidi, A., Idu, A., Hage, J., Jansen, S.,
2013a. Legacy to SOA evolution: a systematic
literature review. In Migrating Legacy Applications:
Challenges in Service Oriented Architecture and
Cloud Computing Environments. A. D. Ionita, M.
Litoiu, G. Lewis Editions. IGI Global.

Khadka, R., Saeidi, A., Jansen, S., Hage, J., 2013b. A
structured legacy to SOA migration process and its
evaluation in practice. In MESOCA'13, 7th
International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based
Systems. IEEE Comp.Soc. Press.

Kontogiannis, K., Lewis, G., Smith, D., 2008. A research
agenda for service-oriented architecture. In SDSOA'08,
2nd international workshop on Systems development
in SOA environments. ACM press.

Marchetto, A., Ricca, F., 2008. Transforming a Java
application in an equivalent Web-services based
application: toward a tool supported stepwise
approach. In WSE'08, 10th International Symposium
on Web Site Evolution. IEEE Comp. Soc. press.

Matos, C. M. P., Heckel, R., 2008. Migrating legacy
systems to service-oriented architectures. In ICGT
2008, Doctoral Symposium at the International
Conference on Graph Transformation. Electronic
Communications of the EASST.

Sneed, H. M., 2006. Integrating legacy software into a
service oriented architecture. In CSMR'06, 10th

European Conference on Software Maintenance and
Reengineering. IEEE Comp. Soc. press.

Sneed, H. M., Schedl, M., Sneed, S. H., 2012. Linking
legacy services to the business process model. In
MESOCA'12, 6th IEEE International Workshop on the
Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems. IEEE Comp. Soc. press.

Turner, C. R., Fuggetta, A., Lavazza, L., Wolf, A. L.,
1999. A conceptual basis for feature engineering.
Journal of System and Software, Vol. 49, Issue 1.
Elsevier press.

Van Geet, J., Demeyer, S., 2008. Lightweight
visualisations of COBOL code for supporting
migration to SOA. In Evol’07, 3rd International
ERCIM Symposium on Software Evolution. Electronic
Communications of the EASST.

Zhang, Z., Yang, H., Chu, W., 2006. Extracting reusable
object-oriented legacy code segments with combined
formal concept analysis and slicing techniques for
service integration. In QSIC'06, 6th International
Conference on Quality Software. IEEE Comp. Soc.
press.

Zillmann, C., Winter, A., Herget, A., Teppe, W., Theurer,
M., Fuhr, A., Horn, T., Riediger, V., Erdmenger, U.,
Kaiser, U., et al., 2011. The SOAMIG Process Model
in Industrial Applications. In CMSR'11, 15th European
Conference on Software Maintenance and
Reengineering. IEEE Comp. Soc. press.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

68

