
Boosting an Embedded Relational Database Management System with
Graphics Processing Units

Samuel Cremer, Michel Bagein, Saı̈d Mahmoudi and Pierre Manneback
Computer Science Department, University of Mons, Rue de Houdain 9, 7000, Mons, Belgium

Keywords: In-memory Database Systems, Embedded Databases, Relational Database Management Systems, GPU.

Abstract: Concurrently, with the rise of Big Data systems, relational database management systems (RDBMS) are still
widely exploited in servers, client devices, and even embedded inside end-user applications. In this paper,
it is suggest to improve the performance of SQLite, the most deployed embedded RDBMS. The proposed
solution, named CuDB, is an ”In-Memory” Database System (IMDB) which attempts to exploit specificities
of modern CPU / GPU architectures. In this study massively parallel processing was combined with strategic
data placement, closer to computing units. According to content and selectivity of queries, the measurements
reveal an acceleration range between 5 to 120 times - with peak up to 411 - with one GPU GTX770 compared
to SQLite standard implementation on a Core i7 CPU.

1 INTRODUCTION

In recent years, to deal with the exponential growth
of data volumes, numerous new database techniques
have appeared. Major improvements have been ac-
complished, especially in the area of Big Data sys-
tems. The different issues involved in current data
growth do not only concern datacentres but also end-
user applications. Whether with desktop platforms or
mobile devices, numerous end-user applications em-
bed an RDBMS - such as SQLite, SQL Server Com-
pact or MySQL embedded. Such embedded RDBMS
usually serve as storage systems, as well as cache sys-
tems to reduce the number of interactions between
clients and servers, and hence preserve low latencies
of user interfaces. With mobile systems, they are
also used to compensate for long periods of connec-
tion loss. Increasing client-side computing capaci-
ties enables the processing of larger data volumes and
hence to reduce the number of client-server commu-
nications.

In this paper a hybrid implementation over CPU
and GPU is suggested in order to improve SQLite
performances, which is the most widely deployed
database engine throughout the world1 (it is part of
the majority of smartphone OS, browsers, Dropbox
clients, etc.). Standard implementation of the SQLite

1SQLite : Most Widely Deployed and Used Database En-
gine, www.sqlite.org/mostdeployed.html

engine is purely sequential. Its performances can be
improved by using all processing units of CPUs and
GPUs. For numerous applications, GPU architectures
are currently more efficient than CPUs (Huang et al.,
2009) and have become essential in modern systems,
even in small devices like smartphones. The major
contribution of this paper is to propose a data place-
ment strategy allowing the exploitation of a clever
parallelism offered by multicore CPU and GPU archi-
tectures. The benefit provided by the proposition here
is the improvement of the responsiveness of client ap-
plications and the energy efficiency of full ”client-
network-server” chains.

The remainder of this paper is structured as fol-
lows: Section 2 presents the state of the art and the
CuDBs position. Section 3 describes the internal ar-
chitecture of the system, its storage engine and how
join queries are processed. Evaluation results are pre-
sented in Section 4, and this paper ends with the con-
clusion and outlooks.

2 STATE OF THE ART

The idea of using hybrid CPU/GPU architectures to
accelerate the data processing of database engines
emerged in 2004 (Govindaraju et al., 2004), some
years before the release of general-purpose process-
ing on GPU (GPGPU) frameworks. Two main ap-
proaches have been proposed.
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The first one emerged in 2007 with GPUQP (Fang
et al., 2007). This approach divides query plans into
different action patterns which could be processed
with different levels of parallelism, either on CPU or
GPU targets. GPUQP introduced the basic design ar-
chitecture for most works which followed. So far, the
vast majority of research in this field is focused on
very specific aspects of DBMS, and does not provide
a complete database engine. For example, GPUTx,
proposed by the authors in (He and Xu Yu, 2011),
focused on transaction management and their lock-
ing mechanisms. OmniDB (Zhang et al., 2013), is
another system in which the authors paid more atten-
tion to the maintainability properties of source code.
The objective of GPUDB (Yuan et al., 2013), was
to analyse the abilities of GPUs for online analyti-
cal processing (OLAP). Ocelot (Heimel et al., 2013)
can also be mentioned, an extension of MonetDB, a
kernel-adapter approach to make a portable database
engine across different hardware architectures, and
CoGaDB (Breßet al., 2013) which is mainly designed
to study the generation of execution plans. From
what is known, the latest project which is closest to
a DBMS is Galactica (Yong et al., 2014), but with a
partial support of SQL, it is rather intended to be used
in Big Data environments.

The second approach, initiated by Sphyraena
(Bakkum and Skadron, 2010), forces full query plan
processing on the GPU side. Sphyraena mainly suf-
fers from numerous data exchange penalties through
PCI Express bus and does not exploit CPU’s paral-
lelism, but it seems to be more promising in terms
of speed and efficiency improvements for embedded
databases.

Most previous solutions are partial DBMS and
work with ”read-only” databases. These different
works are more targeted to Big Data systems and do
not encounter many of the issues of full relational
database managements systems.

With CuDB, it is suggested to boost embedded
RDBMS running inside end-user applications, which
is fully justified by size limitations and the lack of
extensibility of GPU memories. The aim is to im-
prove the performances at the RDBMS engine level,
which implicitly increases the responsiveness of ap-
plications, while leveraging capabilities of available
hardware architectures. CuDB is a hybrid CPU / GPU
fully read-write RDBMS engine. The proposal targets
a high performance solution for either server clusters,
personal computers (workstations, laptops) or small
devices (embedded systems). It can also be noted
that only two commercial products, GPUdb (GIS-
Federal, 2014) and Parstream (Hummel, 2010), use
database engines on hybrid architectures (numerous

CPUs and GPUs) but these are mainly oriented for
geographic information systems (GIS) and Big Data
environments.

3 DESIGN OF CUDB

3.1 Internal Architecture

Before understanding how the solution works, the ar-
chitecture of SQLite will be presented briefly. SQLite
can be subdivided into four logical units. The first unit
is the interface where the incoming SQL queries are
received and results are sent back to user application.
The second logical unit is the SQL Command Proces-
sor where incoming SQL queries are parsed and com-
piled to a resulting query plan (opcode list). These op-
code lists are comparable to an assembly style instruc-
tion list and are interpreted by the third unit of SQLite
named ”Virtual Database Engine” (VDE). This virtual
machine is in charge of executing those opcodes on
data stored and managed into the last unit of SQLite,
the Storage Engine (SE). In CuDB, the SQLite API
is preserved. The two first stages are also preserved
in order to maintain SQL language support and to re-
main compatible with existing applications.

Figure 1: Internal architecture of CuDB.

VDE and SE units are the two components that in-
tensely require the most resources. To exploit speci-
ficities of modern hardware architectures, CuDB em-
beds its own redesigned VDE and SE. (Figure 1). The
VDE of CuDB is designed as a Hybrid Virtual Ma-
chine (HVM) which incorporates two distinctive pro-
cessing engines. One is dedicated to the GPU, and the
other to the CPU, but both are based on the same par-
allel paradigm: each thread processes the query plan
on its own data rows. The workflow through the two
first stages does not differ from the SQLite implemen-
tation. Then, the system adapts the received query
plan in order to launch it for processing, either on the
CPU or GPU. To get some benefit from the hybrid
parallel hardware architecture, a same query-plan is
processed by each CPU or GPU thread on a differ-
ent dataset. Once a result row is calculated by a GPU
thread, it is sent to the main memory through an asyn-
chronous memory (pinned-memory). This technique
allows threads to start processing next rows without
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waiting for the end of the transfers, which increases
the overall system performances.

To get some benefit from the high memory band-
width between the graphic memory and GPU, the en-
tire database is hosted directly by the GPU global
memory (In-Memory-DB). The main advantage of
this design is to avoid most of the data transfers be-
tween the CPU and GPU, and delete most of the un-
necessary transfer latencies. With the “in-memory”
database and with the majority of the extraction
queries, experiments have revealed that performances
depend primarily on the available memory bandwidth
rather than computation power. Bandwidth between
the GPU and its dedicated memory is often higher
than that of a central RAM and CPU, and even more
than PCI-Express links. This fully justifies the usage
of GPUs for query processing.

As with the majority of GPGPU systems, a cer-
tain amount of data is required for processing be-
fore the GPU becomes more efficient than a CPU. To
make an efficient use of hybrid architectures, HVM
chooses to execute processing, either on CPU cores
or GPU cores according to the data volume they have
to process. The implementation of the multi-core
CPU engine is based on the same principle as the
GPU version, but using POSIX threads instead of the
CUDA framework. To ensure maximum performance
on CPU, table duplications are also kept in the main
memory. The entire database is not duplicated in the
central RAM memory, but only in tables which are
processed faster on CPU (tables with less than 1000
rows). With the first implementation of CuDB, a
separate memory management was used, with RAM
and GPU memory. The ”unified memory” method
provided by CUDA (from version 6) was tested to
avoid keeping a permanent copy of some tables. With
the ”unified memory”, CPUs and GPUs use a same
pointer to access the data. This makes writing code
much easier since automatically managing, different
memory transfers is achieved by the driver. However,
it was noted, over various experiments, that severe
slow-downs (between 2x to 9x) are introduced by the
”overhead” of automatic memory management: the
idea of using ”unified memory” on the engine was
abandoned. The work presented in (Landaverde et al.,
2014) also concludes that using ”unified memory” can
usually cause performance degradations.

3.2 Storage Engine

SQLite is one of the rare RDBMS which features a
dynamic typing system for each value: this is called
the ”Affinity” mechanism. To preserve compatibility
with existing applications, CuDB supports dynamic

data typing. However, such functionality entails a
fairly high increase in complexity of treatments (dy-
namic casting of all data), and makes memory ac-
cesses less consistent (customized size of all data).
Performances of GPGPU solutions are very sensi-
tive to coherency of memory accesses (van den Braak
et al., 2010), which makes CuDB efficiency and per-
formance suboptimal when it handles dynamically
typed columns. To reach the best performance, a se-
lector was implemented for three different storage en-
gine configurations:

- (1) Affinity: default storage configuration. It
supports only dynamic typing similar to SQLite. Each
tuple is always preceded by a header, which is re-
quired to support the ”Affinity” mechanism. Records
are stored in a linear way inside the memory, allowing
high data compactness.

- (2) Strict: storage configuration with only static
typing support. No longer need to store typing head-
ers for each record. The performance is better through
more consistent memory access, and by disabling
”check type”’ features. Like the ”Affinity” mode, this
is a row-oriented data structure.

- (3) Boost: to reach GPU peak performance, val-
ues are stored contiguously in the memory in order
to provide coalesced memory accesses. This can be
achieved thanks column-oriented and statically typed
storage configuration.

Like MySQL, each table of the database can use
distinguishing storage configurations. With these dif-
ferent storage engines, the database can be adjusted to
its context while boosting the performances of appli-
cations with static data typing. With CuDB, database
insertions do not block the entire table and are pro-
cessed asynchronously by the CPU. On each database
update, data persistency is provided by a ”write-only”
mirror database saved on the hard drive.

3.3 JOIN Queries

The processing time of join queries highly depends on
the selected storage engine, for this reason, a descrip-
tion follows in this subsection of how CuDB handles
JOIN clauses. As CuDB conserves the query com-
piler from SQLite, the query plans generated by the
SQL Command Processor have to be used. The chal-
lenge is to find the best way to automatically paral-
lelize the proposed plan. The query plan generated by
SQLite for a join-query with non-indexed columns,
like in query (1), proposes the creation of a temporary
indexation structure (B+ tree) for inserting records of
table t2. For each record of t1, corresponding records
of t2 are searched inside the transient indexed struc-
ture.
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(1) SELECT * FROM t1 JOIN t2 ON t1.col2=t2.col3

This query plan has a complexity of O(m.log(m))
for creation and filling, plus O(n.log(m)) for pars-
ing the data. The classical B+ tree data structure
used by the SQLite virtual machine is not optimal
for an efficiently implementation on GPU architec-
ture. To benefit from the massively parallel architec-
ture of a GPU, a data structure that can be filled con-
currently by numerous threads is required. Another
constraint is that each thread makes its own search
so that the traverse complexity of the structure must
be adapted to a sequential search. Several existing
GPU B+tree structures were investigated, for exam-
ple, T-trees and CSS-tree structures. However, it was
found that these structures cannot efficiently be filled
in a parallel way. Moreover, with the GPU B+tree,
a sequential pass through is slower than with a sim-
ple binary tree. Given that, once the temporary index
is filled, the structure is used in read only mode, the
approach is to use a simple vector of records. This
record-vector can be filled in a parallel way by all the
GPU threads, and can then be sorted, also in a par-
allel way. A sorted vector was obtained where each
thread could make a dichotomic search in O(log(n))
operations.

Several GPU sorting algorithms were investigated
and one of the fastest algorithms was the radix sort,
with a time complexity of O(n.w), in most cases,
where n is the number of keys of word length w. If all
keys are distinct, w is at least equal to log(n), but the
size of w can greatly increase when keys are strings.
With a database usage, the performances of a radix-
sort can be very variable depending on the key com-
plexity. For a database engine, the preference was to
select an algorithm which is independent of the sorted
values and datatypes. This is the reason why a bitonic
sorting algorithm was implemented. Figure 2 shows
the behaviour of such sorting algorithm.

The bitonic sorter is a sorting network with a worst
case complexity of O(n.log(n)2). The complexity of

Figure 2: Implementation of the bitonic sorter algorithm on
GPU. Each thread sorts 4 rows, and thread synchronizations
are required after every 4 comparisons. The bold compar-
isons are processed by thread 0.

the bitonic sorter is slightly worse than with a radix
sort, but the performances are stable regardless of the
complexity of the sorted keys. To reduce the num-
ber of synchronizations, some implementation opti-
mization techniques were carried out following (Ha-
gen et al., 2010).

4 EVALUATION

For the performance evaluations, the time required
to process two sets of SELECT queries (single table
queries and JOIN queries) was measured with tables
of varying sizes (between one hundred and one mil-
lion rows with several numerical values and 80 char-
acter strings). The execution time of prepared state-
ments was measured so that the compilation time of
queries was not taken into account. The transfer times
required to send the query plans to the GPU were
considered, as well as the times needed by the GPU
to send the results to the CPU. Different configura-
tions of CuDB were compared with SQLite 3.8.10.2
and MySQL Embedded 5.7.11, both using in-memory
databases. The experiments were run on a desk-
top with a 4-core Intel i7-2600K CPU with Hyper
Threading, a 384-core GT740G5 GPU, and a 1536-
core GTX770 GPU. The maximal available memory
bandwidths were: 21 GB/s for the main DDR3 mem-
ory, 80 GB/s for the GT740, and 224 GB/s with the
GTX770. As performances can slightly fluctuate,
each test was done a hundred times. The behaviour of
the system was quite constant, and for better readabil-
ity of this document, the average values are presented
here.

4.1 SELECT WHERE Queries

The different queries of this evaluation were applied
to non-indexed tables with columns of various data
types (numerical and strings). Figure 3 shows the
average speedups obtained by the different test con-
figurations with a standard implementation of SQLite
as reference engine. The performances of the three
storage engines were measured , but in order to not
overload this paper, only the slowest ”Affinity” and
the fastest ”Boost” storage mode are shown. With the
hybrid engine of CuDB, queries applied to tiny tables
were processed by CPU cores and when the table size
exceeded one thousand records, the CuDB switched
from the CPU to GPU processing engine.

For tables of one million records, and with the
GTX770 GPU, speedups of 117x in Boost mode,
101x in Strict mode and 84x with the ”Affinity” stor-
age engine were obtained. As the boosting of the
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Figure 3: Average speedups with SELECT queries.

client-side embedded RDBMS system was investi-
gated, the system was evaluated with an entry level
GPU. A ”modest” GT740 procured already substan-
tial speedups of 36x, 31x and 30x with the three
different storage setups. These impressive speedups
needed to be put into perspective; since SQLite is not
the fastest in-memory RDBMS when scanning single
tables. The ”memory” storage engine of MySQL 5.7
is more than 3 times faster than SQLite for large ta-
ble scans. CuDB is still 33 times faster when com-
paring it to MySQL. Note that, during the experi-
ments, the highest speedups were obtained (411x with
the GTX770 and 107x with the GT740) for queries
applied on fixed size string columns, and with a
”WHERE col LIKE susbstring%” search criterion.

4.2 SELECT JOIN Queries

In the previous subsection, it was shown that GPUs
are extremely fast at processing full table scans thanks
to their high memory bandwidth. In this subsection
the results for JOIN queries will be presented. The
subset of queries used for this evaluation includes
multi-table join queries (with up to five involved ta-
bles) and also ”self-join” queries. The tables were not
indexed and the join conditions were done on numer-
ical data. The join queries were always done in tables
with the same number of records. The average results
are shown in Figure 4. Like the previous evaluations,
for better readability, the results of the ”Strict” storage
engine are not shown.

For tables of one million records each, the
GTX770 GPU achieved an average speedup of 44x
in Boost mode, 21x in Strict mode and 7,5x in ”Affin-
ity” mode while the GT740 GPU obtained speedups
of 17x, 8x and 4x. Unlike single table scans, the per-
formance gaps between the different storage engines
were significant. For large datasets, switching from
”Affinity” to ”Strict” makes join queries more than 2
times faster, and switching from ”Strict” to ”Boost”
produces again a 2x gain. As explained in subsec-
tion 3.3, for each table join, the GPU has to perform
a parallel sort. With ”Strict” tables, GPU threads do

Figure 4: Average speedups with JOIN queries.

not have to check each type of each data and with
”Boost” tables, the memory accesses are coalesced.
During sorting operations, each GPU thread has to ac-
cess and compare multiple tuples several times, unlike
single table scans where each thread accesses only
one record. That is why the performances of join
queries were impacted by the choice of an appropri-
ate storage engine. Moreover with the need to access
multiple records inside a single thread, the sorting al-
gorithm needs global synchronizations. With current
GPU architectures, there is no robust way to imple-
ment global synchronization without using the CPU.
With CuDB, most synchronizations imply a save and
restore of the GPU execution context. This is also
the reason why general speedups obtained with join
queries are lower than with single table scans.

The CPU-GPU engine switch still occurs at one
thousand records, but with join queries, the GT740
becomes faster than the CPU when involved tables
count a minimum of ten thousand records. That is
why there is a slight performance drop at five thou-
sand rows on Figure 4. Note that the peak speedups
were obtained with ”self-join” queries (66x with the
GTX770 and 28x with the GT740).

The results with MySQL are not shown on Fig-
ure 4 because MySQL was always much slower than
SQLite with the set of join queries. As was explained
in section 3.3, to reduce the time complexity for pro-
cessing big datasets, SQLite uses transient indexes to
compute join queries. MySQL does not, and imple-
ments such operations as nested loops. This results
in multiple days of computing time for joining tables
of a million records, while CuDB needs less than a
second.

4.3 Energy Efficiency

As with the performance tests, two query cate-
gories were considered: single table queries, and join
queries. Based on energy consumption measurements
of all the queries with every platform configuration,
for the following short report, an average of all en-
ergy efficiency ratios is proposed. Energy efficiency
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is defined as a ratio of energy consumed by SQLite
over energy consumed by tested platform. Figure 5
shows the average calculated energy efficiencies.

Figure 5: Energy efficiency: higher is better.

For a better readability, only results obtained with
CuDB in ”Boost” configuration are shown. These re-
sults confirm that the energy efficiency of embedded
RDBMS can be significantly boosted by using a hy-
brid CPU/GPU query processing engine.

5 CONCLUSION AND FUTURE
WORKS

In this paper, it has been shown that GPU archi-
tectures can be exploited to speed up processing of
RDBMS. CuDB, an embedded RDBMS that is a per-
formance upgrade of SQLite in the context of par-
allel hybrid architecture, has been presented. CuDB
preserves the SQL support of SQLite as it retains its
API. It has also been shown that speedups of more
than 411x for queries on tables containing a million
entries were achieved. Here the different measures
have also shown that it is not necessary to have the
most powerful GPU to achieve satisfactory accelera-
tions. Weaknesses of GPGPU solutions for process-
ing small amounts of data were also tackled by using
a hybrid engine where light treatments remained on
the CPU. As perspectivess, the support of some ad-
ditional SQL clauses will be considered in order to
be compliant with TPC-H and SSB benchmarks. A
port of CuDB on OpenCL is also planned to target
other GPU manufacturers. Another important chal-
lenge is to overcome the limitations of the GPU mem-
ory capacity which is currently limited to 16GB for
high end GPUs. To overcome these size limitation,
the proposal is to pipeline the query processing en-
gine in order to mask memory transfers, and to trans-
fer the data through circular buffer mechanisms. The
overhead of transient memory requirements involved
in complex join queries could also be larger than the
physical GPU memory size. This will be also tackled
by pipelining and circular buffering.
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