
A Multi-platform End User Software Product Line Meta-model for
Smart Environments

Vasilios Tzeremes and Hassan Gomaa
Computer Science Dept., George Mason University, Fairfax, Virginia, U.S.A

Keywords: End User Development, Software Product Lines (SPL), Meta-modeling, Variability Modeling, Middleware,
Smart Environments, Smart Spaces, Software Product Line Architecture.

Abstract: End User (EU) architectures for smart environments aim to enable end users to create and deploy software
applications for their smart spaces. EU Software Product Lines (SPL) extend EU architectures for smart
environments with product line support to promote reuse and software application portability. This paper
describes a meta-modeling approach for developing EU SPLs for smart environments. We present a meta-
model as the basis for developing a framework for creating EU SPLs and deriving EU applications. The meta-
model is composed of platform independent and platform specific meta-models. This paper describes in detail
both parts of the meta-model and discusses the relationships and mappings between them. This paper also
presents the XANA EU SPL framework that was developed using the proposed platform specific meta-model
and discusses XANA’s product line creation and application derivation process.

1 INTRODUCTION

Smart environments, also called smart spaces, are
environments equipped with visual and audio sensing
systems, pervasive devices, sensors, and networks
that can perceive and react to people, sense on-going
human activities and respond to them (Kindberg and
Fox, 2002). Several End User (EU) architectures have
been proposed to assist end users to create
applications for their smart environments. EU
architectures act as the middleware between software
applications and devices deployed in the smart space
while providing friendly user interfaces for end users
to create software applications. Team Computing
(TeC) (Sousa et al., 2010) and Puzzle (Danado and
Paternò, 2012) are examples of EU architectures for
smart environments.

Even though EU architectures enable end users to
create applications for their spaces, not all smart
environments are configured the same way.
Furthermore device capabilities vary across different
smart environments. This causes end users to have to
create similar applications from scratch for different
environments. Software Product Line (SPL) methods
address software reuse by explicitly analysing and
developing the common and variable parts of a family
of systems (Gomaa, 2005). However, existing SPL
methods target software engineers instead of end

users and their processes are rigid. In an end user
environment, the process is more agile and end users
are not familiar with SPL methods. Furthermore,
product derivation in a traditional SPL environment
is based on feature selection and products must be
compliant with the SPL architecture. End user
environments vary and are not guaranteed to match
the SPL architecture.

EU SPLs for smart spaces provide a lightweight
approach for SPL development while addressing the
dynamic nature of these environments. In particular,
EU SPLs extend EU architectures to create a family
of applications that are then customized for different
smart environments (Tzeremes and Gomaa, 2016).
Figure 1 shows the EU SPL process. SPL designers
create EU SPLs and end users derive applications for
their smart spaces. SPL designers are technical end
users or domain experts that develop software
applications either for personal or commercial
purposes. End users are ordinary users that want to
create applications for their smart spaces. The XANA
EU SPL framework provides an example of tool
support for the implementation of EU SPLs.

This research investigates the extension of EU
architecture meta-models for supporting the creation
of EU SPLs. In detail, this paper describes a meta-
modeling approach and framework for creating EU
SPLs for smart environments. Our approach provides

290
Tzeremes, V. and Gomaa, H.
A Multi-platform End User Software Product Line Meta-model for Smart Environments.
DOI: 10.5220/0006003802900297
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 290-297
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

platform independent and platform specific EU SPL
modeling support. In the platform independent phase,
EU SPL engineers create platform independent
models that can be tailored to different EU
architectures through an application derivation
process. In the platform specific phase, EU SPL
engineers create platform specific models that are
bound to specific EU platforms. Platform specific
models provide an additional capability, since they
have access to platform specific functionality that is
not available to the platform independent models.

Figure 1: End User Software Product Line Process.

This paper is organized as follows. Section 2
discusses related work that this research builds on.
Section 3 describes the overall EU SPL meta-
modeling approach for smart environments. Sections
4 and 5 describe in detail the platform specific and
platform independent meta-models respectively.
Section 6 describes the XANA EU SPL process
flows. Finally, section 7 provides conclusions and
discusses future work.

2 RELATED WORK

Several middleware architectures have been proposed
for implementing smart environments (Whitmore et
al., 2015). Some of those initiatives are the ROS
(Quigley et al., 2009), JCAF (Bardram, 2005) and the
Smart Products (Mühlhäuser, 2008) projects. EU
architectures extend middleware architectures by
adding end user support. They provide user friendly
interfaces for end users to be able to develop
programs for their spaces. Some of the most
important EU architectures are Puzzle (Danado and
Paternò, 2012), PIP (Chin et al., 2010), FedNet
(Kawsar et al., 2008) and TeC. This research presents
an approach for extending EU architectures for smart
spaces with product line concepts to promote reuse
and application portability.

Model Driven Architecture (MDA) is a software

development framework based on automatic
transformations of models (Debnath et al., 2008).
MDA separates business and application logic from
underlying platform technology, distinguishing the
following models: Computation Independent Model
(CIM), Platform Independent Model (PIM), Platform
Specific Model (PSM) and code. The Common
Variability Language (CVL) adds variability to MDA
models. In particular CVL, is a Domain Specific
Language (DSL) for modeling variability in models
that are based on Meta Object Facility (MOF)
standard defined by the Object Management Group
(OMG) (Reinhartz-Berger et al., 2014). Our approach
is influenced by the PSM, PIM and CVL concepts but
was expanded to end user development for smart
spaces.

3 OVERVIEW OF THE EU SPL
META-MODEL FOR SMART
ENVIRONMENTS

There are several common characteristics across EU
architectures for smart spaces. For example all event
driven EU architectures consist of components that
are abstractions of devices, sensors, actuators,
application, services etc. and connections between the
components to create application logic. There is also
significant variability between EU architectures. For
example some EU architectures account for user-
context, location, temporal relationships while others
do not. There is commonality and variability across
EU SPLs for smart spaces. For example, a feature
implementation of one EU architecture can be
significantly different from one architecture to
another. To capture the commonality and variability
of EU architectures and EU SPLs, we propose the EU
SPL meta-model. Figure 2 shows the EU SPL meta-
model for smart environments. This meta-model
consists of platform independent and platform
specific meta-models. The platform independent
meta-model is composed of the Platform Independent
Product Line (PIPL) and the Platform Independent
Product (PIP) meta-models. PIPL captures product
line metadata for creating software product lines for
smart environments, in particular the product line
features and the component architecture that
implements each feature. The component architecture
describes the smart environment components,
connectors and other artefacts that are needed for the
feature implementation. The PIP meta-model
describes the structure of software applications that
can be derived from the PIPL model. To derive PIP

A Multi-platform End User Software Product Line Meta-model for Smart Environments

291

models application engineers select product line
features from the PIPL model. The selected features,
combined with the application component
architecture are used to create the PIP. Both PIPL and
PIP models are platform independent models that can
be instantiated for different platforms.

Figure 2: End User SPL Meta-model.

The platform specific meta-model consists of the
Platform Specific Product Line (PSPL) and the
Platform Specific Product (PSP) meta-models. The
PSPL meta-model is used for creating EU SPL
models for specific EU applications on specific
platforms. Similar to the PIPL meta-model, the PSPL
meta-model captures the product line features and
their inter-dependencies, in addition to the component
architecture that implements each feature. The PSPL
meta-model is platform specific. PSPL models are
derived from PIPL models. The PSP meta-model
captures the application architecture. A shown in
Figure 2, PSP models can be derived from PSPL
models or alternatively from PIP models.

There is a one-to-many relationship between the
platform independent and the platform specific
models. For instance, multiple PSPL models for
different platforms can be created from the PIPL
model. Product line engineers can model platform
independent EU SPLs using the PIPL meta-model
that can be converted to PSPL models for different
platforms. Similarly, many PSP models can be
generated from the PIP model. Application engineers
can generate different PIP models that can then be
converted to PSP models for different platforms.

The PIPL to PIP and PSPL to PSP model
relationships are also one-to-many. This implies that
several PIP models can be created from one PIPL
model. Although multiple PSP models can be derived
from one PSPL model, the PSPL and PSP models
need to be for the same target platform. For example
a PSPL model designed for the TeC EU architecture
can generate PSP models that apply only to the TeC
platform. The following sections of this paper
describe the platform specific and platform
independent meta-models.

4 PLATFORM SPECIFIC
META-MODELS

This section describes the platform specific meta-
models, in particular the PSL and PSPL meta-models
for the Team Computing (TeC) EU architecture,
before describing how they can be generalized into
platform independent meta-models in Section 4. In
particular, section 4.1 introduces TeC and presents its
application (PSP) meta-model, section 4.2 discusses
how we extended the TeC application meta-model to
create the TeC PSPL.

4.1 Platform Specific Product for TeC

Team Computing (TeC) is an event driven generic
architectural style that enables end users to design and
deploy personalized software for their spaces. It
provides a diagrammatic language for application
creation of a collection of activities that work together
to achieve a common goal. TeC applications, also
called Teams, have no central control: elements play
their roles autonomously and their behavior is
emergent (Sousa et al., 2010).

Figure 3 shows the application meta-model for
TeC. In detail, the Team Design entity captures
information about TeC teams. Team designs can be
deployed to zero-or-more locations. For example one
Team Design might apply to devices available to the
family room of a smart home versus another one that
applies to the entire house. A team design is realized
by one-or-more Activity Sheets. Activities Sheets are
software components, devices, and humans operating
in ubiquitous computing environments. Activities
Sheets have zero-or-more Inputs and Outputs. Inputs
are component interfaces for receiving data. Outputs
are also component interfaces but they are used for
sending data. Outputs are bound by triggering
conditions that when evaluated to true causes the
output to be sent. In TeC, device connectivity can be
achieved by having outputs from one Activity Sheet
sent to inputs of another Activity Sheet. Inputs and
Outputs can contain zero-or-more Payloads. Payloads
capture data that are in the form of key-value pairs
that are sent from Outputs to Inputs. The Activity
Connector entity is responsible for capturing the
Activity Sheet’s connectivity within a Team Design.
The Activity Connector is composed by zero-or-more
Inputs and Outputs.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

292

Activity Sheet

Output InputPayload

Activity
Connector

has

contains contains

isSend

has

Activity
Parameter

isParameterized

0..*

0..*
0..*

0..*

0..*

isReceived

Team Design

1..*

Location
isDeployed

isRealized

0..*

isConfigured

isConnected

0..* 0..*

0..*

Figure 3: TeC Application Meta-model (PSP).

Figure 4 shows the Team Design of a “Flood
Alert” team. The “Flood Alert” Team Design is
composed of a flood detector and a Phone TeC
Activity Sheets. The flood detector Activity Sheet
represent moisture sensors deployed in the
environment and the Phone Activity Sheet a house
phone that supports landline messaging. The flood
detector Activity Sheet has an Output called “alert”
that sends flood notifications to the “text” Input of the
Phone Activity Sheet. The Activity Connector entity
for the Team Design is composed of the “alert”
Output and the “text” Input. The “alert” output has a
triggering condition that is evaluated to true when the
flood detector detects moisture. When moisture is
detected, “alert” sends two Payloads to the “text”
input. The keys of the payloads are phone_number
and message. The Phone Activity Sheet will interpret
the phone_number payload value as the number to
text and the message payload value as the contents of
the message to send. An Activity Sheet can have zero-
or-more Activity Parameters. Activity Parameters
capture internal parameters of Activity Sheets. An
example of an Activity Parameter in the “Flood
Alert” example can be moisture threshold values for
the flood detector Activity Sheet. When the moisture
threshold values are exceeded then the sensor can
report moisture.

Figure 4: Flood Alert – TeC Team.

4.2 Platform Specific Product Line for
TeC

We extended the TeC PSP model with product line
support to create the TeC PSPL meta-model shown in
Figure 5. The objective of the TeC PSPL meta-model
is to be able to derive multiple TeC PSP models from
one TeC PSPL model. The TeC PSPL meta-model is
composed of the feature and the component meta-
models. The feature meta-model is platform
independent and describes the relationship of the EU
SPL with features and the dependency among
features. The component meta-model is specific to
the TeC platform and describes the relationships
between product line features and the TeC Product
Line component architecture that realizes each
feature.

As shown in Figure 5, an EU SPL is composed of
one or more features. Each feature describes a
specific functionality that the EU SPL supports.
Features can be common, optional, alternative,
default, or parameterized. Common features are
features that exist in all products derived from the
product line. Optional features are features that can be
found in only some products derived from the product
line. Alternative features are features that are
mutually exclusive. Default features are one of a
group of alternative features that the EU SPL designer
has pre-selected for product derivation.
Parameterized features are features that can be
parameterized by end users during application
derivation. Features can belong to feature groups.
Feature groups can be thought as a set of features that
share a common set of constraints. The Feature
Dependency entity captures the dependency among
features. A feature condition is used to identify
whether a given feature is selected or not in a derived
architecture.

A Multi-platform End User Software Product Line Meta-model for Smart Environments

293

Figure 5: TeC Platform Specific Product Line (PSPL) Meta-model.

The TeC PL component architecture extends the
TeC application meta-model with product line
support. In particular, EU SPL features are realised
by one-or-more PL Activity Sheets and are connected
to zero-or-more PL Activity Connectors. PL Activity
Sheets can be common, optional or variant. Common
PL Activity Sheets are available to all PSPs derived
from the PSPL. Optional PL Activity Sheets might be
available only to some PSPs. Variant PL Activity
Sheets are mutually exclusive PL Activity Sheets. PL
Activity Sheets can have zero-or-more PL Inputs and
PL Outputs. PL Inputs and PL Outputs can have zero-
or-more PL Payloads. PL Activity Connectors can
also be common, optional or variant. A feature is
parameterized by zero-or-more PL Activity
Parameters. Finally, features can be deployed in zero-
or-more PL Locations.

The application derivation process from the TeC
PSPL to the PSP model involves a set of model
conversions. The PSPL component model for each
derived feature is converted to the PSP component
model and is added to the TeC application
architecture. PL Activity Sheets in the PSPL model
are converted to Activity Sheets in the PSP model.

Similarly, PL Activity Connectors are converted to
Activity Connectors, PL Activity Parameters are
converted to Activity Parameters and PL Locations
are converted to Location entities.

5 PLATFORM INDEPENDENT
META-MODELS

We further extended the PSPL and PSP meta-models
to create the Platform Independent Product Line
(PIPL) and the Platform Independent Product (PIP)
meta-models, which do not depend on any particular
EU platform. The platform independent models apply
to all EU architectures that support component and
connector architectures.

5.1 Platform Independent Product
Line (PIPL)

Similar to the PSPL, the PIPL meta-model is
composed of the feature and the component meta-
models. The feature meta-model is the same as the

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

294

Feature

PL Component PL Output PL Input

PL Component
Connector

has

isSend

has

PL Component
Parameter

isConfigured

0..*

0..*

0..*

0..*

0..*

isReceived
0..*

1..*

isConnected

isParameterized

isRealized

0..*

Common
PL Component
Connector

Optional
PL Component
Connector

Variant
PL Component
Connector

Common
PL Component

Optional
PL Component

Variant
PL Component

Component Metamodel

Figure 6: Platform Independent Product Line (PIPL) Meta-model.

PSPL shown on Figure 5. The component meta-
model is designed to support common component
connector functionality across different EU
architectures. Figure 6 shows the PIPL component
meta-model. In particular, each feature in the PIPL is
realised by one-or-more PL Components, is
connected by zero-or-more PL Component
Connectors, and is parameterized by zero-or-more PL
Component Parameters. PL Components are similar
to PL Activity Sheets of the TeC PSPL. PL
Components are generic components that represent
software and hardware entities that are part of the
smart environment. PL Components can be common,
optional or variant and they have zero-or-more PL
Inputs and PL Outputs. PL Component Connectors
indicate how PL Components are connected. PL
Component Connectors can be common, optional or
variant. PL Component Parameters are used to
parameterize PL Components.

5.2 Platform Independent Product
(PIP)

The Platform Independent Product (PIP) meta-model
describes the structure of models derived from PIPL
models. Figure 7 shows the PIP meta-model. End user
applications in the PIP meta-model are represented by
the Product entity in PIP. Products are members of the
product line. The Product is composed of one-or-
more Components, is connected by zero-or-more
Component Connectors, and is configured by zero-or-
more Component Parameters. Components can have
zero-or-more inputs to receive input and zero-or-
more outputs to send data.

To derive a PIP model from PIPL features the

following conversion must occur: 1) Each PL
Component that is part of the feature realization must
be converted to a Component in the PIP model 2) PL
Component Connectors must be converted to
Component Connectors and 3) PL Component
Parameters must be converted to Component
Parameters in the PIP model.

6 XANA EU SPL FRAMEWORK

To validate our approach we used the proposed EU
SPL meta-models to implement the XANA EU SPL
framework for smart spaces. The XANA framework
enables EU SPL designers to create EU SPLs and end
users to derive applications for their smart spaces.
Figure 8 shows XANA’s product line creation and
application derivation process flows.

XANA is a platform specific EU SPL framework
for TeC. The EU SPL is created using the TeC PSPL
meta-model and derived applications (PSPs) are TeC
application models that can be deployed to different
TeC environments. To validate this research, we
implemented the XANA prototype, developed EU
SPLs for smart spaces, and deployed derived
applications to the TeC Android simulator.

6.1 EU SPL Creation

The uppermost part of Figure 8 shows the EU SPL
creation process in XANA. During product line
creation, EU SPL designers define the product line
features and create the product line architecture. The
XANA prototype SPL creation user interface is
divided into four sections: 1) Feature Model, 2) Fea-

A Multi-platform End User Software Product Line Meta-model for Smart Environments

295

Component Output Input

Component
Connector

has

isSend
has

Component
Parameter

isConfigured

0..*

0..*
0..*

0..*

0..*

isReceived

0..*

1..*
0..*

isConnectedisParameterized

isRealized

Product
(End User Application)

0..*

Figure 7: Platform Independent Product (PIP) Meta-model.

ture Component Architecture Editor 3) Component
Selector and 4) Feature Parameter table.

The Feature Model organizes product line features
in a tree structure. Each feature is decorated with a
feature symbol to indicate the feature type. The
Feature Component Architecture Editor captures the
component and connector architecture that realizes
each feature. The component selector section lists the
available TeC components that can be used to realize
a feature. The Parameter table captures connection
details between connected TeC components.

After SPL designers complete creating the
product line features they submit the EU SPL to the
XANA’s SPL Creation subsystem for storage. The
SPL Creation subsystem stores the XANA EU SPL
visual representation shown on step “1.1” in Figure 8.
Then the SPL Creation subsystem transforms the EU
SPL visual representation to a Java object structure
representing the product line. The Java objects are
serialized to JSON objects in the file system for long
term storage shown on step “1.2” in Figure 8. Both
the Java and JSON representations are based on the
TeC PSPL meta-model shown in Figure 5.

6.2 Application Derivation

The bottom part of Figure 8 shows the EU application
derivation process in XANA. During application
derivation, end users are presented with the end user
view of the feature model and the feature parameter
table. End users, based on their requirements, select
features from the feature model, configure the feature
parameter table, and submit their selections to the
XANA’s Application Derivation subsystem as shown
on step “2 Feature Selection” in Figure 8.

The Application Derivation subsystem extracts
the component architecture of the selected features
from the PSPL shown on step “2.1” in Figure 8 and
composes the TeC App (PSP). The TeC App is

serialized to JSON in the file system shown on step
“2.2” in Figure 8. The Application Derivation
subsystem distributes the JSON representation of the
TeC App to the target TeC platform shown on step
“2.3” in Figure 8. The TeC platform will store the
TeC App as shown on step “2.4” in Figure 8 and
deploy it to the smart space devices.

Figure 8: XANA EU SPL Creation and Application
Derivation Process flow.

7 CONCLUSIONS

As EU architectures for smart spaces expand, end
users will be faced with the challenge of having to
develop the same types of applications for different
environments. EU SPLs for smart spaces enable end
users to derive and port software applications
developed for individual spaces. In this paper we
presented an EU SPL meta-model for creating end
user product lines. The EU SPL meta-model is

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

296

composed of platform independent and platform
specific meta-models. The platform specific meta-
model was discussed in the context of the TeC EU
architecture. The platform independent meta-model is
a meta-model for creating product lines for EU
applications that support component and connector
architecture. The paper also presented the XANA EU
SPL framework, which is based on the EU SPL
platform specific meta-model, that was developed to
validate this work.

The benefits of our approach are a) the EU SPL
meta-model is used to add product line support to end
user architectures defined for smart spaces b) product
lines are designed to be platform independent and are
adapted for different platforms. Currently we are
investigating expanding the platform independent
product line meta-model to directly derive
applications for different platforms. Furthermore,
additional work is needed in the evolution and
validation of end user product lines. In particular,
processes need to be defined to handle EU SPL
evolution that involve new requirements, defect
reporting, and product line versioning etc. In addition,
a validation framework needs to be investigated for
verifying the end user product lines.

ACKNOWLEDGEMENTS

This work is partially supported by the AFOSR award
FA9550-16-1-0030.

REFERENCES

Bardram J. E., (2005) The Java Context Awareness
Framework – a Service Infrastructure and
Programming Framework for Context-aware
Applications, Proc. Third International Conf. on
Pervasive Computing. Springer, Berlin, pp 98–115

Chin J., Callaghan V., Clarke G., (2010) End-user
Customization of Intelligent Environments. In:
Nakashima H et al (eds) Handbook of Ambient
Intelligence and Smart Environments. Springer US,
Boston, MA, pp 371–407

Danado J., Paternò F., (2012) Puzzle: a visual-based
environment for end user development in touch-based
mobile phones. In: Human-Centered Software
Engineering. Springer, pp 199–216.

Debnath N, Leonardi MC, Mauco MV, et al (2008)
Improving Model Driven Architecture with
Requirements Models. In: ITNG 2008 5th International
Conference pp 21–26.

Kawsar F, Nakajima T, Fujinami K (2008) Deploy Sponta-
neously: Supporting End-Users in Building and

Enhancing a Smart Home. In: 10th International Conf.
in Ubiquitous Computing. Seoul, pp 282–291

Gomaa, H., Designing Software Product Lines with UML,
Addison-Wesley, 2005.

Kindberg J, Fox A (2002) System Software for Ubiquitous
Computing. IEEE Pervasive Comput 70–81.

Mühlhäuser M (2008) Smart Products: An Introduction. In:
Mühlhäuser et al (eds) Constructing Ambient
Intelligence: AmI 2007 Workshops, Revised Papers.
Springer Berlin, Heidelberg, pp 158–164.

Quigley M, Conley K, Gerkey BP, et al (2009) ROS: an
open-source Robot Operating System. In: ICRA
Workshop on Open Source Software.

Reinhartz-Berger I, Figl K, Haugen Ø (2014) Model-
Driven Engineering Languages and Systems: 17th
International Conference, MODELS, Valencia, Spain.
Proceedings. In: Dingel J, Schulte W, Ramos I, et al.
(eds). Springer, Cham, pp 501–517.

Sousa JP, Tzeremes V, El Masri A (2010) Space-aware
TeC: End-user Development of Safety and Control
Systems for Smart Spaces. In: Systems Man and
Cybernetics, IEEE International Conference on.
Istanbul, Turkey, pp 2914–2921.

Tzeremes V, Gomaa H (2016) XANA: An End User
Software Product Line Framework for Smart Spaces.
In: 2016 49th Hawaii International Conference on
System Sciences, pp 5831–5840.

Whitmore A, Agarwal A, Xu L (2015) The Internet of
Things–A Survey of Topics and Trends. Inf Syst Front
17:261–274. doi: 10.1007/s10796-014-9489-2.

A Multi-platform End User Software Product Line Meta-model for Smart Environments

297

