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Abstract: Self-healing and self-configuration are highly desirable properties in software systems so that components 
can dynamically adapt to changing environments and recover from failure with minimal human intervention. 
This paper discusses a model-based approach for self-healing and self-configuration using recovery 
connectors. A recovery connector extends connectors in component-based software architectures and service-
oriented architectures with self-healing and self-configuration capabilities so that a component or service can 
be dynamically adapted and recovered from failures. The design of the recovery connector is based on the 
MAPE-K loop model and can handle both recovery and adaptation.  

1 INTRODUCTION 

Connectors in component-based software 
architectures (CBSA) are objects that interconnect 
components and encapsulate a communication 
protocol (Gomaa, 2011). Connectors encapsulate 
frequently used communication patterns such as 
asynchronous communication and synchronous 
communication with reply. Previous papers 
investigated adaptation connectors which are used to 
adapt service-oriented software systems after original 
deployment (Gomaa et al., 2010).  

This paper investigates how a model-based 
recovery connector integrates self-healing and self-
configuration capabilities. Recovery connectors are 
used to separate adaptation and recovery concerns 
from service concerns so that a service can be 
transparently adapted and recovered from failures. 

Recovery connectors are described for 
architectural communication patterns that are 
frequently used in service-oriented architectures 
(SOA). The main architectural pattern in a SOA is the 
client/coordinator/service pattern in which a 
coordinator is an intermediary between clients and 
service, with the goal of allowing services to be 
autonomous and relatively independent of each other. 
Within this overarching pattern, several other 
communication patterns are used including 
synchronous communication with reply, 

asynchronous communication with callback, and 
various brokering patterns including service 
registration, and brokered communication.  

Software adaptation involves dynamically 
replacing, adding, or removing service, coordinator, 
or client components at run-time in service-oriented 
applications. Software recovery involves 
dynamically replacing service, coordinator, or client 
components after a run-time failure. 

The contributions of this paper are the design and 
validation of recovery connectors that dynamically 
adapt and recover stateless and stateful services, 
when client requests are idempotent, for different 
architectural communication patterns in service-
oriented architectures. 

The paper is organized as follows:  Section 2 
highlights key concepts and assumptions. Section 3 
discusses the design of recovery connectors. Section 
4 describes how recovery connectors can be used in 
different SOA patterns. Section 5 contains validation 
results. Section 6 discusses related work. Section 7 
concludes the paper and discusses future work. 

2 KEY CONCEPTS 

This section describes the key concepts for providing a 
systematic and reusable approach for self-healing and 
self-configuration of CBSAs (Taylor et al., 2009). 
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Autonomic Control. Manual management of large 
and complex software systems is difficult and costly. 
Consequently, such systems should have the 
following autonomic properties: self-healing, self-
configuration, self-optimization, and self-protection 
(Kephart and Chess, 2003). The MAPE-K loop model 
is widely used to implement autonomic controllers 
and consists of four activities (monitoring, analysis, 
planning, and execution) that operate on a 
knowledge-base of the system. We use the general 
MAPE-K loop model to support self-healing and self-
configuration of autonomic services. 

Recovery Connectors. Recovery connectors are 
used to separate adaptation and recovery concerns 
from service concerns so that a service can be 
transparently adapted and recovered from failures. 

Recovery Patterns. A recovery pattern defines how 
components in an architectural pattern can be 
dynamically relocated and recovered to a consistent 
state after a component has failed.  

Message-Based Transactions. A transaction in 
CBSAs is defined by Kramer and Magee as an 
information exchange between multiple components 
through messages (Kramer and Magee, 1990) while a 
transaction in transactional processing systems is 
defined as an atomic unit of work (Bernstein and 
Newcomer, 2009). We combine these two definitions 
as: a transaction is an information exchange between 
two or more components through messages such that 
either all messages in a transaction are eventually 
exchanged or none of them are.   

We make the following assumptions here: 

• Only one component can fail permanently at a 
time based on the fail-stop failure model 
(Avizienis et al., 2004) in which components do 
not send any erroneous messages but simply 
cease functioning when they fail. Furthermore, 
we assume that failures are not caused by 
malicious attacks.  

• Message delivery uses a reliable network 
transport protocol. 

• Recovery connectors do not fail.  
• Clocks are synchronized between all nodes. 
• Services can be either stateless of stateful with 

idempotent operations.  

3 RECOVERY CONNECTORS  

This section describes the design of the basic 
structure of a recovery connector for service-oriented 
architectures.  We assume that there are multiple 

clients and a single service that processes multiple 
client requests concurrently. The service responds to 
each request from the client. The next section shows 
how the same recovery connector design can handle 
adaptation and recovery in other, more complex 
architectural patterns.  

The recovery connector manages transactions 
between a client and a service that comprise either 
single request/response messages or a dialog.  

3.1 Design of the Recovery Connector 

The service recovery connector (fig. 1) behaves as a 
proxy for the service by receiving requests from 
clients and then forwarding these requests to the 
service. The recovery connector also receives 
responses from the service, which are then forwarded 
to requesting clients. 

To ensure safe adaptation at run-time and 
recoverability of service failures, the service recovery 
connector must keep track of the transactions that the 
service is currently engaged in and must maintain 
messages (i.e. requests and responses) that pass 
through it, so that these messages can be held during 
adaptation and can be recovered in case the service 
fails.  

The service recovery connector has a control 
object (Connector Control in fig. 1) that handles 
sending messages to and receiving responses from 
application components, and also handles adaptation 
and recovery concerns of the service. To facilitate 
maintenance of application messages, requests and 
responses are stored by the connector in queues 
located at the Service Request Manager and the 
Service Response Manager (fig. 1), respectively. 
Each manager is provided with a coordinator 
component for controlling the queues it manages. The 
goal of these coordinators is to separate the concerns 
of queue management from adaptation and recovery 
concerns handled by Connector Control. 

3.2 Service Request Manager 

Every request sent by a client to the service passes 
through the Service Request Coordinator (fig 1). The 
Service Request Coordinator maintains three queues 
for storing client requests based on the status of these 
requests, as follows:   

 Service Pending Queue (SPQ). The SPQ stores 
requests received by the recovery connector from 
clients but that have not yet been forwarded to the 
service. The purpose of this queue is to buffer 
requests for the service so that any requests received 
by    the    connector    while    the    service   is being 
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Figure 1: Design of service recovery connector showing messages during normal execution. 

dynamically adapted or is in the failed state are held 
in this queue until the service becomes active again. 
Thus, the SPQ ensures that no requests to the service 
are lost due to dynamic adaptation or recovery.  

Service Active Queue (SAQ). This queue stores 
client requests that have been forwarded to the service 
but do not have corresponding service responses at 
the recovery connector, either because the service is 
still processing the request and has not generated the 
corresponding response yet or because the service 
response was lost due to service failure. 

The service recovery connector uses this queue to 
determine pending requests that must be processed by 
the service first before the service can be dynamically 
adapted. Furthermore, the recovery connector uses 
this queue to recover requests that were lost by the 
service (due to service failure) before the 
corresponding responses of these requests are 
received by the service recovery connector.  

Service Recovery Queue (SRQ). This queue 
stores client requests that have corresponding service 
responses at the service recovery connector. This 
queue ensures that previous requests of each dialog 
that the service is currently engaged in are stored in 
SRQ so that these dialogs can also be recovered in 
case they were interrupted due to service failure.  

 
 

3.3 Service Response Manager 

Responses sent by the service are received by the 
Service Response Coordinator (fig. 1). The Service 
Response Coordinator maintains two queues for 
storing service responses:   

Response Forwarding Queue (RFQ): stores 
responses from the service that have been received by 
the recovery connector but have not been yet 
forwarded to the requesting client.  

Response Recovery Queue (RRQ): stores service 
responses after they have been forwarded to 
requesting clients. This queue ensures that a service 
response that has been forwarded by the service 
recovery connector to the requesting client cannot be 
lost due to client failure. In this case, when the service 
recovery connector receives a duplicate request from 
a recovered client, the corresponding response is 
obtained from the RRQ and then forwarded to the 
recovered client, without requiring the service to 
process the request again. 

3.4 Connector Control State Machine  

Connector Control (fig. 1) is a state-dependent 
control component that handles recovery and 
adaptation of the service by tracking its current state.  
While the service is active, Connector Control keeps 
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track of whether the service is currently engaged in 
any transactions with its clients so that it can base its 
adaptation and recovery decisions accordingly.    

The Connector Control state machine (fig. 2) 
consists of two orthogonal state machines (STMs). 
Integrated Adaptation and Recovery is the orthogonal 
STM that handles service adaption and recovery. The 
Message Queue Management state machine is 
responsible for notifying the Service Request 
Coordinator and the Service Response Coordinator 
when a client acknowledges the completion of a 
transaction to enable these coordinators to remove the 
requests and responses of this transaction from their 
queues. 

The orthogonal integrated adaptation and 
recovery state machine (fig. 3) consists of three 
composite states: (1) Active, which defines behaviour 
during normal service execution, (2) Adapting, which 
defines behaviour during dynamic service adaptation, 
and (3) Recovering, which defines behaviour during 
recovery. 

Connector Control STM

Message Queue 
Management STM

Integrated 
Adaptation and 
Recovery STM

ACK/
Transaction

Completed {to coordinators}

 

Figure 2: State machine executed by Connector Control. 

3.4.1 Normal Service Execution  

Initially, Connector Control is in the Waiting for 
Request state (fig. 3) indicating that the service is 
currently not engaged in any transactions with its 
clients. When Connector Control receives a client 
request, it forwards the request to the service, 
increments the number of active transactions that the 
service is currently engaged in, and then transitions to 
the Processing state. While in the Processing state, 
Connector Control forwards requests to the service 
and forwards responses to requesting clients. 
Connector Control remains in the Processing state as 
long as the service is engaged in one or more 
transactions. Furthermore, Connector Control 
increments the number of active transactions when it 
forwards a request that initiates a new transaction 
with the service and decrements this number when it 
receives the final response of a transaction from the 
service. When Connector Control receives the final 
response of the last transaction that the service is 
currently engaged in, then Connector Control 

forwards that response to the requesting client and 
transitions back to the Waiting for Request state. 

3.4.2 Dynamic Service Adaptation 

In order to safely adapt the service at run-time, the 
service must be in a quiescent state (Kramer and 
Magee, 1990) in which it is not involved in any 
transactions and will not receive any new transactions 
from its clients. That is, the service can be removed 
or replaced at run-time after the service has sent the 
final response of every transaction that it is currently 
engaged in. In passivating state, Connector Control 
must not forward any requests that initiate new 
transactions with the service, so that the service can 
eventually transition to a quiescent state where it can 
be safely adapted. 

If Connector Control receives the Passivate 
command from Change Management (Kramer and 
Magee, 1990) while it is in the Waiting for Request 
state (fig. 3), then the service is not engaged in any 
transactions with its clients. It thus transitions 
immediately to the Quiescent state, and notifies 
Service Requests Coordinator that the service is 
quiescent so that it holds all requests it receives from 
clients in SPQ. On the other hand, if Connector 
Control receives the Passivate command while it is in 
the Processing state, then the service is engaged in 
one or more transactions with its clients. In this case, 
Connector Control transition to the Passivating state, 
where the service completes existing transactions. 
While in the Passivating state, Connector Control 
forwards intermediate requests it receives to the 
service and forwards service responses it receives to 
requesting clients. Eventually, when all active 
transactions are completed, Connector Control 
notifies Service Requests Coordinator that the service 
is transitioning to the Quiescent State where the 
service can be safely adapted.  

3.4.3 Service Recovery  

While the service is in the recovering state, Connector 
Control must not forward any requests and must 
ensure that all failed transactions are restarted when 
the service is recovered. 

Recovering a service from failure is handled by 
the connector using the MAPE-K loop model for self-
healing and self-configuration.  

The monitoring activity of MAPE-K notifies the 
recovery connector of service failure. When 
Connector Control receives a failure notification, it 
notifies Service Requests Coordinator of the failure 
and then transitions to Analyzing Failure Events state 
(fig. 3).
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Figure 3: Integrated adaptation and recovery state machine executed by Connector Control. 

 The Analyzing Failure Events state corresponds 
to the analysis activity of MAPE-K where the 
recovery connector identifies all transactions that 
were interrupted due to service failure. The service 
recovery connector determines that a transaction has 
failed if either SAQ or SRQ contains a request that 
initiates a transaction with the service but neither 
RFQ nor RRQ contains a response that completes that 
transaction. When failure analysis is completed, 
connector control transitions to Planning for 
Recovery state. 

The Planning for Recovery state corresponds to 
the planning activity of MAPE-K where the recovery 
connector determines the recovery plan for the failed 
transactions. The plan identifies which requests must 
be resent to the recovered service so that failed 
transactions are restarted at the recovered service. 
The recovery plan is determined by executing the 
following recovery policy: 

• First, the service recovery connector forwards 
previous requests of every failed dialog that the 
service was engaged in before it failed. These 
requests are recovered from SRQ and are 
forwarded sequentially in the same order they 
were processed before service failure to ensure 
that the recovered service also processes these 
requests in that order. 

• Second, the recovery connector forwards the 
requests of failed transactions queued in SAQ, 
which contains pending requests that were lost 
by the failed service before the service recovery 
connector received the responses to these 
requests. Note that at this step, if a request that is 
being forwarded is of a dialog, then (from the 
previous step) the service must have already 
received all previous requests of this dialog.    

• Third, the recovery connector forwards all 
requests in the SPQ, which are new requests that 
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have been received while the service is in the 
recovering state, to the recovered service. 

The Executing Recovery Plan state corresponds to the 
execution activity of MAPE-K where the recovery 
connector restores all requests that must be resent to 
the recovered service by moving these requests from 
SRQ and SAQ to SPQ, as specified in the recovery 
plan. When all requests are restored, Connector 
Control transitions to the Component Recovering 
state in which the connector waits until the service is 
relocated and instantiated by Change Management, 
and then has its connection with the recovered service 
established. Eventually, when Connector Control 
receives the Reactive command, Connector Control 
transitions to Active State and notifies Service 
Requests Coordinator that the service is active so that 
Service Requests Coordinator resumes sending 
requests queued in SPQ to Connector Control. 

3.5 Service Request Coordinator STM 

Based on the discussion in the previous section, the 
Service Request Coordinator must forward to 
Connector Control certain types of client requests 
based on the current state of the service, as shown in 
fig. 4. While the service is active (fig. 4), the Service 
Request Coordinator forwards all client requests it 
receives to Connector Control and also queues these 
requests in the SPQ.  

When the Service Request Coordinator is notified 
that the service is passivating, it transitions to the 
Passivating state. The behavior of the Service 
Requests Coordinator while in this state is similar to 
its behavior in the Active state with one exception: in 
the Passivating state, the Service Request Coordinator 
does not forward to Connector Control any requests 
that initiate a new transaction with the service, and 
instead, queues such requests in the SPQ. Eventually, 
the Service Request Coordinator is notified that the 
service has become quiescent, causing the Service 
Request Coordinator to transition to the Quiescent 
state. While in the Quiescent state, the Service 
Request Coordinator does not forward any requests to 
Connector Control and instead queues them in the 
SPQ. Finally, when service adaptation is completed, 
the Service Request Coordinator receives a 
notification from Connector Control that the service 
is active, causing the Service Requests Coordinator to 
transition to the Active state and to forward all 
requests queued in the SPQ to Connector Control.  

When service failures occur, the Service Request 
Coordinator transitions to the Failed state. While in 
the Failed state, the Service Request Coordinator 
holds all client requests it receives in the SPQ. The 

Service Request Coordinator may also receive 
messages from the execution activity of MAPE-K to 
restore any client requests that were lost due to 
service failure. As a result, the Service Request 
Coordinator moves these requests from the SRQ and 
the SAQ to the head of the SPQ so that these requests 
are resent to the recovered service. Finally, when the 
service is recovered, the Service Request Coordinator 
forwards all requests stored in the SPQ to Connector 
Control and then transitions back to Active state. 

4 RECOVERY AND 
ADAPTATION PATTERNS  

This section describes how the recovery connector 
design discussed in the previous section can be used 
to handle adaptation and recovery of components in 
other architectural patterns (Gomaa, 2011). 

Typical client/service communication uses the 
Synchronous Message Communication with Reply 
pattern, in which the client sends a message to the 
service and waits for a response. In the 
Asynchronous Message Communication with 
Callback pattern, a client sends an asynchronous 
request to the service but can continue executing and 
receive the service response later. The asynchronous 
request sent by the client to the service contains a 
callback handle that the service uses when it finishes 
processing the client request so that it can send the 
response back to the client. A client in this pattern 
does not send another request to the service until it 
receives a response to the previous request. 

Since in this pattern, a client sends one request at 
a time to the service, the service recovery connector 
(shown in fig. 1) handles requests and responses for 
this pattern in the same way as for synchronous 
communication with reply. Thus, although the client 
behaviour is different, the service behaviour is not. 
For this reason, the adaptation and recovery for the 
Asynchronous Message Communication with 
Callback pattern is handled in the same way as that 
described in section 3.4. 

In service-oriented architectures, a service 
registers its name, location and service description 
with a broker, which acts as an intermediary between 
the clients and the service. In the Service 
Registration pattern, the service initiates a 
transaction with the broker by sending it a registration 
request containing the service information. The 
broker then registers the service and sends an 
acknowledgement to the service. The service can also 
re-register  with  the  broker  if it  moves its location,  
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Figure 4: State Machine executed by Service Request Coordinator.

which    requires   another  transaction   between   the 
service and the broker.  

From the adaptation and recovery point of view, 
this pattern can be treated as a client that 
communicates with a service using the Synchronous 
Message Communication with Reply pattern. Thus, 
the adaptation and recovery patterns for this 
architectural pattern are exactly the same as those 
described in section 3.4. 

After the service has registered with the broker, 
clients use the broker to locate the service. In the 
Broker Handle pattern, a client sends a request to the 
broker to obtain the service’s handle. The broker then 
sends a response to the client containing the service’s 
handle as a parameter. The client then uses the 
service’s handle to interact with the service.  

In this pattern, a client initiates two sequential 
transactions by first initiating a transaction with the 
broker to obtain the service’s handle and then by 
initiating a transaction with the service using the 
service’s callback handle. As a result, these 
transactions can fail and be recovered independently 
of each other.  

A broker is adapted after it has completed all the 
requests it has received, including brokering requests 
from clients requesting a handle and service requests 
for registration. New requests are held up until the 
broker has been relocated. In the case of a broker 
failure, all requests it is dealing with are aborted and 
only restarted when the broker has been relocated and 
instantiated. Both adaptation and recovery are carried 
out as described in Section 3. 

In service-oriented architectures, the goal is to 
increase loose coupling between services so that 
instead of services depending on each other, 

coordinators are provided for situations where 
multiple services need to be accessed, and access to 
them needs to be coordinated and/or sequenced. 

The coordinator may interact with the services 
sequentially and/or concurrently. We consider a 
coordinator interacting with multiple services as a 
compound transaction that can be broken down into 
an atomic transaction between the coordinator and 
each service. In this case, when any of the services 
fail, the service’s recovery connector restarts a failed 
transaction with the service without affecting other 
transactions that the coordinator is currently engaged 
in with other services. Thus, the recovery and 
adaptation patterns for services in this pattern are 
exactly the same as discussed in section 3.4.    

In the case of a client interacting with a 
coordinator, if the coordinator needs to be adapted, 
then the entire compound transaction must complete 
before adaptation. In the coordinator failure, then the 
entire compound transaction is aborted and is only 
restarted after the coordinator has been recovered. 

5 VALIDATION 

This approach of self-healing and self-configuration 
was validated by means of detailed simulation of self-
healing and self-configuration scenarios by 1) 
executing each scenario, 2) simulating and 
monitoring the behavior of the recovery connector 
during adaptation or recovery, and 3) resuming the 
application from a consistent state after recovery or 
dynamic adaptation is completed.  
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Components and connectors in the simulation are 
implemented in Java and have a thread of control. In 
addition, Java RMI is used as the middleware for 
message delivery. The simulation runs on a single 
machine. Thus, components are concurrent but 
distribution is simulated.  

The adaptation and recovery scenarios consist of 
simulating adaptation and service failure, 
respectively, while three transactions are being 
processed.  During simulation, every application 
message contains in its header  (1) a transaction 
identifier that  uniquely identifies the transaction of 
this message, (2) the identifier of the message 
producer component, (3) the identifier of the message 
consumer component, (4) the timestamp at which the 
message producer sent the message, (5) a message 
type identifying whether the message initiates a 
transaction, completes a transaction, or is an 
intermediate message of a transaction, and (6) a 
sequence number for detecting duplicate messages.  

In the remaining of this section, we use the 
notation msg(tid, s, r, ts, p) to represent messages, 
where msg can be either request or response, tid is the 
transaction identifier of the message, s is the identifier 
of message sender, r is the identifier of message 
receiver, ts is the timestamp of the message, and p 
identifies the message type.  

5.1 Recovery Scenario  

In the failure scenario, the connector analyzes the 
failure and determines which transactions need to be 
recovered and sends them to the new service, after the 
service has been instantiated on a different node. At 
the time of service failure, the execution trace (fig. 5) 
revealed that the service was engaged in three 
transactions with three clients: two transactions 
involving dialogs (transactions c1_1 and c2_1) and 
one transaction involving a single request/response 
messages (transaction c3_1). At the time of failure, 
the execution trace shows that the messages queued 
at the connector are as follows: 

• SPQ contains no requests that have been received 
by the connector but not forwarded to the service. 

• SAQ contains three requests (received by the 
connector and forwarded to the service):  

o request(c2_1, client2, service, 1, begin) 
o request(c3_1, client3, service, 1, none) 
o request(c1_1, client1, service, 6, end) 

• SRQ contains one request (for which a service 
response is received at the connector):  

o request(c1_1, client1, service, 1, begin) 
• RFQ contains one response (received by the 

connector but not forwarded yet to the client): 

o response(c2_1, service, client2, 6, 
intermediate) 

• RRQ contains one response (received by the 
connector and forwarded to the client) 

o response(c1_1, service, client1, 3, 
intermediate) 

During failure analysis, the execution trace indicates 
that the recovery connector determined transactions 
c1_1, c2_1, and c3_1 as having failed because none 
of them have a response that completes the 
transaction in either RFQ or RRQ.  

The recovery plan created while the connector is 
in the Planning for Recovery state consists of a list 
that identifies the messages that must be restored 
from the SRQ and the SAQ to recover the failed 
transactions. The list obtained from the execution 
trace indicates that the first request to be recovered is 
request(c1_1, client1, service, 1, begin), which is 
queued in the SRQ, since this request was the first 
request processed by the service before it failed. The 
second request in the list was request(c2_1, client2, 
service, 1, begin) queued in the SAQ since this 
request was also processed by the service and its 
response is queued in the RFQ. The list also contains 
actions to recover request(c3_1, client3, service, 1, 
none) and request(c1_1, client1, service, 6, end), in 
that order, which are queued in the SAQ. 

 While in the Executing Recovery Plan state, the 
connector executed the recovery plan by restoring 
messages from the SRQ and the SAQ to the SPQ. 
After all messages are recovered, the execution trace 
shows that the messages queued in the SPQ (starting 
from the   head of the SPQ) are as follows:  

• request(c1_1,client1,service,1, begin) 
• request(c2_1,client2,service,1, begin)  
• request(c3_1,client3,service,1, none)  
• request(c1_1,client1,service,6, end)  

The execution trace also indicates that while the 
connector is in the Component Recovering state, it 
received a new request(c4_1, client4, service,1, 
none). This request is queued at the tail of the SPQ, 
so that it is sent last when the service is recovered.  

After the service is recovered, the connector 
resumed forwarding requests to the recovered service. 
As shown in fig. 5, requests recovered from the SRQ 
and SAQ are first resent sequentially, in the same 
order specified in the recovery plan. Note that 
response(c1_1, service, client1, 3, intermediate) has 
already been forwarded to the client before the 
service failure, so this response is discarded because 
it is a duplicate. Then, new requests queued at the tail 
of the SPQ are forwarded to the recovered service. 
These requests need not be forwarded sequentially. 
At this point, the connector resumes forwarding 
requests and responses normally. 
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Figure 5: Fragment of execution trace of simulation for recovery scenario. 

5.2 Adaptation Scenario  

The goal of the adaptation scenario is to ensure that 
the connector behavior handles dynamic service 
adaptation without losing requests. In this scenario, 
the connector transitions to the passivating state first 
before adaptation takes place, until the three 
transactions are completed. The execution trace (fig. 
6) indicates that Connector Control received the 
Passivate command while the service is engaged in 
the three transactions. The requests that were 
forwarded to the service when the connector 
transitioned to the Passivating state are as follows: 

• request(c1_1,client1,service,1, begin) 
• request(c2_1,client2,service,1, begin)  
• request(c3_1,client1,service,1, none)  
• request(c1_1,client1,service,6, end)  

The execution trace also indicates that the 
recovery connector has received and forwarded the 
intermediate responses of the first two requests as 
follows: 

• response(c1_1, service, client1, 3, intermediate) 
• response(c2_1, service, client2, 6, intermediate) 

Since the service is still engaged in three transactions, 
both Connector Control and Service Request 
Coordinator transition to the Passivating state, where 
the service continues servicing transactions c1_1, 
c2_1, and c3_1. The execution trace indicates that 
while the Service Request Coordinator is in the 
Passivating state, it received request(c4_1, client4, 
service,1, none). The action was to hold that request 
in the SPQ. However, when the Service Requests 

Coordinator received request(c2_1, client2, service, 
9, end), it forwarded that request to Connector 
Control, since this request  must be serviced in order 
for the service to become quiescent. Eventually, 
Connector Control received all responses to 
transactions c1_1, c2_1, and c3_1. At this point, all 
active transactions are completed and both Connector 
Control and Service Request Coordinator transitioned 
to the Quiescent state. When service adaptation is 
completed and the connector is reactivated, the 
execution trace reveals that the connector forwarded 
request(c4_1, client4, service,1, none) queued in the 
SPQ to the service and that the connector resumed 
execution normally. 

5.3 Random Failure and Adaptation 

In addition to planned scenarios, our validation 
consists of simulating failure and adaptation 
occurring at random points during service execution. 
The simulation consists of several runs in which the 
recovery connector may randomly receive up to 50 
dialogs from 50 clients. The service might fail or 
receive the Passivate command from Change 
Management at a random point during its execution.    

As an example, in one run, the service received 
the Passivate command while it was processing 9 
transactions. Execution trace showed that Connector 
Control and Service Requests Coordinator 
transitioned to the Passivating state so that the service 
continued processing these transactions. In this state, 
execution trace shows that the recovery connector 
continued forwarding requests of existing 
transactions but held requests of new  transactions in  

Requests forwarded 
to and responses 
received from 
service before 
service failure. 

Request recovered 
from SRQ 

Requests recovered 
from SAQ 

New request held in 
SPQ 
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Figure 6: Fragment of execution trace of simulation for adaptation scenario. 

the SPQ.  When the 9 transactions were processed by 
the service, both Connector Control and Service 
Requests Coordinator transitioned to the Quiescent 
state. After the service was adapted and the recovery 
connector reactivated, Connector Control forwarded 
41 new requests, which had been previously held in 
the SPQ while the service was being adapted. While 
processing these transactions, the execution trace 
indicates that the service failed. As a result, the 
recovery connector recovered the requests of these 
transactions, as explained previously in section 3.4.3. 
When the service recovered, the recovery connector 
restarted the failed transactions with the recovered 
service, and then the service continued processing 
these transactions normally. At the end of the run, the 
execution trace shows that all 50 transactions were 
processed and that every client received a response 
for every request it had sent.   

6 RELATED WORK 

Research into self-adaptive, self-configuration, and 
self-healing (Garlan et al., 2004; Kramer and Magee, 
2007; Menasce et al., 2011; Stojnic et al., 2012) 
investigated various automated approaches for 
monitoring software systems at run-time and adapting 
the software behavior dynamically by changing the 
configuration of the software system from one 
configuration to another in order to meet certain 
system-level constraints and maximize the overall 
system utility. 

In the area of dynamic software adaptation, 
Kramer and Magee investigated how a component 

must transition to a quiescent state before safe 
adaptation (Kramer and Magee, 1990). Ramirez et al. 
discussed various design patterns, including 
reconfiguration patterns,  for self-adaptive systems 
(Ramirez and Cheng, 2010). Gomaa et al discussed 
dynamic software adaptation patterns for SOAs 
including patterns for different types of service 
coordination and distributed transactions (Gomaa et 
al., 2010; Gomaa and Hashimoto, 2011, 2012). Li et 
al. proposed an adaptable connector that can be used 
to reconfigure service connections without affecting 
application execution (Li et al., 2006). Irmert et al. 
suggest a framework in which service 
implementation can be replaced at run-time 
transparently and atomically (Irmert et al., 2008). 

In the area of self-healing for service-oriented 
computing and SOAs, Danilecki et al. suggest a 
rollback recovery protocol tailored to the distinctive 
characteristics of SOAs (Danilecki et al., 2013). 
Candea et al. investigated a platform-dependent 
recovery server for J2EE applications using a 
modified version of JBoss (Candea et al., 2003). Silva 
et al. proposed an automated self-healing software 
rejuvenation approach using virtualization where the 
focus is to ensure that no messages can be lost due to 
software aging and transient faults (Silva et al., 2009). 
Salatge et al. suggest the use of fault-tolerance 
connectors to increase service dependability in SOAs 
(Salatge and Fabre, 2007).  

Compared to these approaches, this paper 
investigates the problem of integrating adaptation and 
recovery patterns for SOAs, which is an area that has 
received little attention in the literature. The goal is to 
achieve a recovery connector that can be used to 
handle both adaptation and recovery of services 
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processing existing 
transactions while 
passivating. 

New transaction is 
held in SPQ while 
passivating. 

New transaction held in SPQ is 
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safely and transparently without losing any 
application messages. The approach is platform-
independent to increase reuse of these connectors. 

7 CONCLUSIONS  

This paper has described an approach for self-
configuration and self-healing in which services are 
safely adapted at run-time and recovered 
transparently from failure to a consistent state using 
recovery connectors. Furthermore, the same recovery 
connector design is used to handle stateless and 
stateful services, in which client requests are 
idempotent, in different architectural patterns.  

In this research, we consider the atomicity and 
consistency properties of transactions (Bernstein and 
Newcomer, 2009). Transaction atomicity is achieved 
by ensuring that transaction requests and responses 
are maintained at the connector for the duration of the 
transaction and that no requests can be lost due to 
service adaptation or failure. Thus, if a partially 
executed transaction is interrupted due to service 
failure, it can be restarted. Transaction consistency is 
achieved by ensuring that the service always recovers 
to a state where lost transaction requests are resent 
and redundant messages are detected and removed. 
The connector also ensures that previous requests of 
a failed dialog are resent to recovered service in the 
same order they were processed before failure to 
ensure that the recovered service also process these 
requests in that order. 

Long-living transactions, which contain a human 
in the loop, are also supported by our approach since 
these transactions can be split into multiple, 
independent stateless transactions. In addition, our 
approach supports services in which requests are self-
contained. For instance, many web services use 
cookies as a state maintenance mechanism. In this 
case, the service can be treated as stateless. We are 
currently investigating extending our approach to 
handle stateful services that handle non-idempotent 
client requests, as well as distributed transactions that 
involve multiple stateful transactions (e.g. two-phase 
commit protocol).    

We assume that only a single component can fail 
at a time. However in certain types of applications, 
such as safety-critical systems, this assumption may 
not be acceptable. We are investigating relaxing our 
failure assumptions by extending our approach to 
handle concurrent node failures. Furthermore, we are 
considering tolerating failures occurring at the 
recovery connectors by using replication techniques. 

Future work includes (1) extending recovery 
connectors to handle recovery and adaptation of 
other, fully asynchronous architectural patterns such 
as the master/slave and control patterns, (2) 
incorporating software product line technology to 
support multiple recovery strategies for architectural 
patterns, (3) investigating recovery in software 
systems by incorporating combinations of 
architectural patterns, (4) extending the approach to 
stateful services that receive non-idempotent 
requests, and (5) considering different 
communication patterns, including dialogs between 
components and distributed transactions. 
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