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Abstract: The ability of capturingunknownattacks is an attractive feature of anomaly-based intrusion detection and it
is not surprising that research on such a topic represents one of the most promising directions in the field
of network security. In this work we consider two different traffic descriptors and evaluate their ability in
capturing different kinds of anomalies, taking into account three different measures of similarity in order to
discriminate between the normal network behaviour and the presence of anomalies. An extensive performance
analysis, carried out over the publicly available MAWILab dataset, has highlighted that a proper choice of
the relevant traffic descriptor and the similarity measure can be particularly efficient in the eagenofvn
attacks, i.e. those attacks that cannot be detected by standard misuse-based systems.

1 INTRODUCTION histogram for each bucket) differs from the normal
ones. To this aim, we compared the performance of

The ever growing use of the Internet for all kinds of entropy-based approaches (namely we considered the
activities and transactions is unavoidably connected Kullback—Leibler and Jensen—Shannon divergences),
to the development of novel (and more sophisticated) widely used in intrusion detection, with a simple ge-
network attacks, that cannot be detected by traditional ometric approach, based on the traditional Euclidean
signature-based (also known as misuse-based) Intru-distance between the points in the multi-dimensional
sion Detection Systems (IDS), at least until the cor- space corresponding to the two histograms.
responding “rules” are detected and the users update In a nutshell, the contribution of this paper is two-
their software tools. The ability of capturimmknown fold: on the one side, we compare the ability of dif-
attacks is the key motivation for research in the field ferent traffic descriptors in capturing anomalies (note
of anomaly-based IDS: in a nutshell, a normal behav- that the structure of our IDS is flexible and other pa-
ior of the network traffic is identified anslignificant rameters could be used), highlighting as esénilar
deviations from it are tagged as attacks. parameters might lead to different performance. On

In spite of the simple rationale behind anomaly the other side, we consider several similarity mea-
detection, the design of efficient IDSs is an open re- sures, drawn from information theory and classical
search issue at least for two reasons: the identifica-geometry, and for each of them we construct the cor-
tion of suitable traffic descriptors and the definition responding ROC curve for the well-known MAWILab
of a quantitative measure for the deviation from the traffic traces, taking into account the different labels
normal behavior. In this paper we address both the that describe the attacks in the original data base.
above-mentioned issues. In more detail, we took into ~ The remainder of this paper is organized as fol-
account two different traffic descriptors, number of lows: Section 2 discusses related work, while Section
flows and number of bytes, for random node aggre- 3 provides an overview of the theoretical background,
gates. Since we are dealing with backbone traffic, focusing on the description of the different distance
some kind of aggregation is needed to ensure scalabil-definitions used in this work. Then, Section 4 de-
ity, and random aggregation via sketches outperformsscribes the architecture of the proposed system. The
standard deterministic approaches based on the netdataset used for testing and validating our proposal
work prefix and input/output routers (Callegari et al., is described in Section 5 and in Section 6 we describe
2010a). As mentioned above, an anomaly is detectedthe experimental results. Finally, in Section 7 we con-
if the current behavior (in our case represented by a clude the paper with some final remarks.
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2 RELATED WORK to understand which kinds of attacks are better identi-
fied by our IDS.

Anomaly detection has attracted many research ef-

forts in the last decade as testified by the many re-

search paper on the topic. Referring to the “gen- 3 THEORETICAL BACKGROUND

eral” field of network anomaly detection, a thorough

overview of the different approaches is given, for In this section, after a brief description of the re-
instance, in (Thottan et al., 2010), while (Callegari versible sketches, we recall different definitions and
et al., 2013b) focuses on the features of network data,concepts related to the level of similarity of two
providing some guidelines for the design of an IDS. probability distributions, representing the normal be-
A complete review is beyond the scope of this paper haviour of the system and the currenttime bin. Taking
and in this section we only focus on the papers at the into account the nature of traffic data and the system
basis of our experimental comparisons. architecture, we will focus on discrete distributions

Although sketches can not be considered as a de-with a finite numbet of elements. In the rest of this
tection method, they can be used as a building block section we will refer to the probability distributions as
of several IDSs (Subhabrata et al., 2003; Dewaele vectorsP,Q € R-.
et al.,, 2007; Borgnat et al., 2009; Cormode and
Muthukrishnan, 2005; Callegari et al., 2010b; Cal- 3.1 Reversible Sketches
legari et al., 2010a; Pukkawanna and Fukuda, 2010;

Lakhina et al., 2005; Callegari et al., 2011; Salem A sketch is a probabilistic data structure (a two-
et al.,, 2010). Indeed, as already mentioned in the dimensional array) that can be used to summarise
Introduction, the use of sketches corresponds to aa data stream, by exploiting the properties of the
random aggregation that “efficiently” reduces the di- hash functions (Cormode and Muthukrishnan, 2005).
mension of the data (wrt other deterministic aggrega- Sketches differ in how they update hash buckets and
tions (Callegari et al., 2010a)); moreover, the use of use hashed data to derive estimates.

reversible sketches (Schweller et al., 2004a) permits  In more detail, a sketch is a two-dimensiodal w

to trace back the flows responsible for the anomalies. arrayTpxw, where eachrow (d=0,--- ,D—1)is as-

In (Kind et al., 2009), Kind et al. present a sociated to a given hash functibg. These functions
histogram-based IDS; the behavior of the monitored give an output in the interveD, --- ,w— 1) and these
network during every time bin is characterized by outputs are associated to the columns of the array. As
means of histograms representing the distribution of an example, the elemeiit{d][j] is associated to the
the number of flows, packets or bytes over the val- output valuej of the hash functiohy.
ues of a traffic feature. Anomalies are then detected ~ When a new item arrives, the following update
by comparing the current histogram with a reference procedure is carried out for all the different hash func-
one, built during the training phase, by means of a tions:
distance function (typical examples are the Euclidean T[d][hqg(it)] < T[d][hg(it)] +ct (1)
distance, the Manhattan distance, the Mahalanobiswherei; denotes the key (e.g., the IP destination ad-
distance, the Kullback-Leibler divergence, and the dress) and; the corresponding weight (e.g., the num-
Jensen-Shannon divergence). ber of bytes received by that IP address).

In (Brauckhoff et al., 2012) the histogram cloning Given the use of the hash functions, such data
method is introduced: multiple randomized his- structures are not reversible, which makes impossible
tograms are obtained through independent hash func-o identify the IP addresses responsible of an anomaly,
tions (corresponding to the different “lines” of a after the detection. To overcome such a limitation, in
sketch) and the Kullback-Leibler divergence is used our system we have used an improved version of the
to detect anomalies. Association rules are then usedsketch, that is the reversible sketch (Schweller et al.,
to extract and summarize anomalous flows from the 2004b).
set of suspicious flows provided by several histogram-
based detectors. 3.2 Euclidean Distance

The novelty of the present papers is represented by
the performance comparison, based on publicly avail- The Euclidean distance (or Euclidean metric) corre-
able real traffic data, of two different traffic descrip- sponds to the usual distance between two points in an
tors taking into account three different measure of Euclidean space (ifR? it is equivalent to the well-
similarity between the corresponding histograms and known Pythagorean theorem). It can be seen as a spe-
employing the labels available in the traffic database cial case (forp = 2) of the Minkowski distance of
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orderp
L

1/p
dp(P.Q) = <lzl|p| —q |p>

We recall that forp > 1, the Minkowski distance is a
metric (as a result of the Minkowski inequality); in-
stead forp < 1 the triangle inequality does not hold
(see, for instance, (Kolmogorov and Fomin, 1999)
for further details).
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whereM is the average of the two distributions, i.e.

1
M=35(P+Q)

It can be shown that, using the standard (in informa-

tion theory) base 2 logarithm, the JS is bounded by

0<Dys(PlQ) <1

3.3 Kullback-Leibler divergence 4 SYSTEM ARCHITECTURE
The Kullback-Leibler divergence (also known as in- First of all the input data are processed by a module
formanon_ divergence, mformatlon gain or relative responsible of reading the network traffic (e.g., Net-
entropy) is a “measure” of the difference between oW traces (Claise, 2004)) and of parsing them (e.g.,
two probability distributiond® andQ (Kullback and  py ysing the Flow-Tools (flo, ), in case of NetFlow
Leibler, 1951). o data), so as to produce plain ASCII containing the in-
In case of discrete probability distributions, the put data.
Kullback—Leibler divergence (KL) ofQ from P is In more detail this first module will output a dis-
given by tinct file for each considered time-bin (let us assume
we haveT distinct time-bins), each file containing a
list of keys observed in the time-bin (e.g., in our case
the list of destination IP addresses) and the associated
weights (e.g., the number of bytes or flows received
by that IP address).

L
Dk (P|Q) = 3 p log™ ()
(=1 a

and it is defined only ify = 0 impliesp, = 0 VI (ab-
solute continuity).

From an information theory point of view,
Dk (P||Q) is the amount of information lost when After the data have been correctly formatted, they

Q is used to approximate; in other words, it mea-  are passed to the module responsible for the construc-
sures the expected number of extra bits required toion of the reversible sketch tables.  In our system,
code samples fror® using a code optimized fo® such sketch tables will contain a histogram of dize

rather than the code optimized fBr in each bucket. NS
Itis easy to show that Hence, at this point, we have obtain&dlistinct

sketchedT{, \y., wheret € [1,T] is the time-bin (in
DL (P[Q) =0 the experimental tests we have ¥ét=512,D = 16,
and equality holds iff°P = Q almost everywhere, in

andL = 64).
accordance with the intuitive idea of distance between Once t?]e sketches have been constructed, they
distributions; however, KL is not a metric in the space are passed in input to the actual anomaly detection
of probability distributions since it is not symmetric phase, where the system compares each bucket (i.e.,

Dke (P||Q) # Dkw (Q||P) a histogram) of the current sketch with the same

and does not satisfy the triangle inequality. bucket of the reference sketch (defined as the last

non-anomalous processed sketch), by computing one
of the previously discussed distances (namely, Eu-
clidean, KL, or JS).

Thus such a distance is compared with a thresh-
old to decide if there is an anomaly or not. For each
time-bin, the output of this phase is a binary matrix
(A € Np«w), that contains a “1” if the corresponding
sketch bucket is considered anomalous at that time-
bin , “0” otherwise.

Note that, given the nature of the sketches, each

IKullback and Leibler themselves actually defined the di- traffic flow is part of several random aggregates
vergence aB, (P||Q) + Dk (Q|[P), which is symmetric (namelyD aggr_egates),_correspondlng_to thellffer—

2Note that JS can be generalized for the comparison of more €Nt hash functions. This means that, in practice, any
than two distributions, but this goes beyond the goal of our flow will be checkedD times to verify if it presents
theoretical background any anomaly (this is done because an anomalous flow

3.4 Jensen-Shannon divergence

The Jensen—Shannon divergence (JS) is another pop
ular method of measuring the similarity between two
probability distributions (Lin, 1991) and can be inter-
preted as a symmetrized and smoothed version of KL.
It is defined by

Dys= 3DkL (P[[M)+ 3Dke (Q[M) )
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could be masked in a given traffic aggregate, while e suspicioustraffic that is probably anomalous, but
being detectable in another one). not clearly identified by the MAWI classification
Due to this fact, a voting algorithm is applied to methods;

the matrixA. The algorithm simply verifies if at least

H rows of A contain at least a bucket set to “1F(

is a tunable parameter). If so, the system reveals an
anomaly, otherwise the matriis discarded and the
reference sketch is updated. e benign normal traffic.

In case an anomaly is revealed, the responsible IPThe anomaliesghomalousandsuspiciouglows) are
addresses are identified (by using the reversible sketchjisted in an xml file for each trace, identifying them by
functionalities). means of traffic features as source and destination IP

addresses, source port, destination port and transport
protocol. Furthermore, some information about the

5 MAWILab DATASET kind of anomaly are also given:

~ e attack anomalies representing a well known at-
The dataset used to evaluate our anomaly detection  tack:

methods consists of packet traces from the MAWI
(Measurement and Analysis on the WIDE Internet)
archive (sample-points B and F), publicly available e unknown unknown kinds of anomalies.

at (maw, a). Each trace in this database collects the  ance the effectiveness of an IDS can be evalu-

traffic captured for 15 minutesin a sp_e_cifi_c day, since gieq comparing the alarms generated by the new IDS
2001 until nowadays, on a trans-Pacific link between it the |abeled flows in the traffic traces, possibly
Japan and the USA. referring to the three above-mentioned anomalous be-

As with almost all existing databases, the key payiors Nevertheless, it is important to take into ac-
problemin testing the IDS performance is represented ., 0t the probabilistic hature of the MAWI classifica-

by a precise knowledge of the anomalies existing in yjon, in the interpretation of the achieved resullts.
the captured traffic. Such information are essential

for building a proper ROC curve and evaluating new

approaches. Although also for the MAWI archive an

exact description of the attacks is not available, the 6 EXPERIMENTAL RESULTS

dataset presents two important features that made it

suitable for the performance evaluation procedure: ~ The most widely used performance indicators are rep-

¢ unlike the widely-used DARPA dataset, the net- resented by jgje ROC curve and the Area under the
work is not emulated and the traffic mixture is Curve (AUC)' T%kmg Into a_ccognt the MAWI labels,
representative of the current mixtures of network S conS|de“r as "false pnosn!‘ves t_h_e floxv_s that are not
services and applications: Iabel_ed as “anomalous” or suspicious” in the MAWI
_ ) ) archive, but that are anomalous according to the tested
* inthe framework of the successive project MAW- |pg, 5o the false alarm probabiliBa is the ratio be-

ILab (maw, b), every traffic flow is classified by tween the number of “false positive flows” and the
means of labels, which indicate the probability number of flows that are neither “anomalous” nor
(according to well-known anomaly detection al- «syspicious”.
gorithms) that an anomaly is present. Since these  On the other hand, the false negative r&g
labels are available together with the traces, they (note that the detection probabil@s can be obtained
can be used as a common reference for testing agimply asP, = 1— Pry) is the ratio between the num-
new IDS. ber of false negatives and the number of “anomalous”
In more detail, the traces classification has been flows. But, in this casé*n depends on the actual

obtained combining the output of four anomaly detec- interpretation of the MAWILab labels, and can be de-

tors (based respectively on the Hough transform, the fined in several ways.

Gamma distribution, the Kullback-Leibler divergence In more detail, as discussed in (Callegari et al.,

and the Principal Component Analysis) (Fontugne 2013a), the number of false negatives can be calcu-

et al., 2010). As a result, the traffic is split into four lated as (the labels are used in the following figures to

categories: identifies the corresponding definitionsk):

e notice non anomalous traffic, but that has been
reported by at least one of the four anomaly de-
tectors;

e special anomalies involving well known ports;

e anomalous traffic that is anomalous with high e “all”: the number of unrevealed flows labeled as
probability; “anomalous”

106



Pp

Pp

0.8 |

0.6 |

04 |

0.2 |

1

0.8 |
0.6
04

0.2 |

“fn 2 detector”: the number of unrevealed flows
labeled as “anomalous” and detected at least by
two/three/four of the four detectors used in MAWI

(/_./
Po
&
A x
: fn 2 detector —+—
fn 3 detector 7
v fn 4 detector -
fn attack special =
v fn attack
all
&2 5° fn unknown 4 detector -~
i ‘ ‘ _ fnunknown ——--
0 0.2 0.4 0.6 0.8 1
Pea

Figure 1: ROC: Euclidean distance (Byte).

_~_ fn2detector —+—
577 fn3 detector 7
fn 4 detector -
fn attack special =
fn attack
) all
S Tie fn unknown 4 detector -+~

By ‘ . fnunknown - -

0 0.2 0.4 0.6 0.8 1

Pea

Figure 2: ROC: KL (Byte).

classification;
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the “unknown” category and detected by all the
four detectors used in MAWI classification.

Given these definitions, in the following we dis-
cuss the results achieved by our system when tak-
ing into consideration, as traffic descriptors, either
the number of flows with the same destination IP ad-
dress or the quantity of traffic received by each IP ad-
dress expressed in bytes. From the technical point of
view this means that each bucket of the sketch con-
tains a histogram of number of either distinct flows
or bytes received by each aggregate of destination IP
addresses.

1
0.8 r
0.6 )
o e
o -
fn 2 detector —+—
04 r fn 3 detector 1
fn 4 detector —-x---
fn attack special
0.2 fn attack
all
# fn unknown 4 detector - - -
i fn unknown - -+ -
0 bt \ ‘ ‘ ‘
0 0.2 0.4 0.6 08 1
Pea

Figure 3: ROC: JS (Byte).

In the first set of figures we present the perfor-
mance achieved by the system when using the number
of Bytes as traffic descriptor. In Figure 1, we show
the ROC curves obtained by using the Euclidean dis-
tance, when varying the definition &yn. As it can
be clearly seen, the system does not offer good per-

“fn 3 detector”: the number of unrevealed flows formance when considering the most “general” defi-
labeled as “anomalous” and detected at least by nition of Pz (i.e., “all” case), with a plot that is not

three of the four detectors used in MAWI classifi-

cation;

“fn 4 detector”: the number of unrevealed flows
labeled as “anomalous” and detected by all the

four detectors used in MAWI classification;

“fn attack™ the number of unrevealed flows la-
beled as “anomalous” belonging to the “attack”

category (known attacks);

“fn attack special”: the number of unrevealed
flows labeled as “anomalous” belonging to the
“attack” category or the “special” category (at-

tacks involving well-known ports);

“fn unknown”: the number of unrevealed flows
labeled as “anomalous” belonging to the “un-
known” category (unknown anomalous activi-

ties);

“fn

unknown 4 detector”:

the number of unre-
vealed flows labeled as “anomalous” belonging to

far from the diagonal case. Nonetheless, given that
anomaly detection systems are usually combined to-
gether with misuse-based IDSs, we can easily con-
clude that the most significative cases are given by
those definitions oPry that only consider the “un-
known” anomalies (being all the other cases “cov-
ered” by misuse-based IDSs). Hence, referring to the
“fn unknown” and “fn unknown 4 detector” we can
see the system is able to provide good performance.

Figures 2 and 3 present an analogous performance
analysis, when applying respectively KL and JS di-
vergences instead than the Euclidean distance over
the same kind of data. In these cases we can easily
conclude that the system cannot provide good perfor-
mance, independently of the considered definition of
PeN.

The previous considerations are confirmed in Ta-
ble 1 where all the values of the AuC are reported.

Figures 4, 5, and 6 show the performance achieved
by the system when applying the previously discussed
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Table 1: AuC (Byte). 1
Method Label AuC 1
Euclidean distance all 0.566218 08 1 ]
Euclidean distancg fn 2 detector 0.566777 A
Euclidean distancg fn 3 detector 0.567148 06 ]
Euclidean distance fn 4 detector 0.593179 o
Euclidean distancg fn attack 0.517885 0.4 | In2 detector — |
Euclidean distance fn attack special 0.49092 7 i " a{'t‘a‘ékd:g;‘g‘;rl -
Euclidean distance fn unknown 0.59376 02 ooy fn attack i
Euclidean distancg fn unknown 4 detector] 0.619295 — fn unknown 4 detec{j‘)'r'
KC al 0.43864 N L ‘ _fmunknown - -
KL fn 2 detector 0.437062 0 0.2 0.4 0.6 0.8 1
KL fn 3 detector 0.434724 Pea
KL fn 4 detector 0.391628 Figure 5: ROC: KL (Flow).
KL fn attack 0.572724
KL fn attack special 0.540628 1 _
KL fn unknown 0.401305 /
KL fn unknown 4 detector] 0.371248 o8 | gt
JS all 0.472176 o
JS fn 2 detector 0.471619
35 f 3 detector 0.469437 _oer 1
JS fn 4 detector 0.438708 a fn 2 detector ——
JS fn attack 0.573483 ' fn 3 detector - 1
JS fn attack special 0.54829 fn attack special =
JS fn unknown 0.444348 fin attack 1
JS fn unknown 4 detectory 0.429052 fn unknown 4 detector ----
i ‘ ‘ _ fnunknown -~
N ) 0 0.2 0.4 0.6 08 1
. PEa
08 L | Figure 6: ROC: JS (Flow).
06 | 1 and flows, and evaluated their ability in capturing dif-
Q2 ferent kinds of anomalies. In more detail, we con-
04 . o e sidered random traffic aggregates (through the use of
3 PR sketches) and for each bucket we assumed that the
021 - fn attack | distribution of received bytes and flows may be used
fn unknown 4 detector -+ to identify anomalies. To this aim we considered
0¥ . fnunknown - -

three measures of similarity, namely the classical Eu-
clidean distance as well as the Kullback-Leibler and
Jensen-Shannon divergences. We carried out an ex-
tensive performance analysis over the publicly avail-
) o able MAWILab dataset, taking advantage of the avail-
methods to the histograms of the number of distinct gple |apels to understand what kinds of attacks are
flows directed to a given aggregate of IP addresses. petter identified by different combinations of traffic
Differently from the previous case, we can notice gescriptors and distances.
here, that the system does not offer acceptable perfor-
mance (despite the different definitionsRpfy and the
different distances), revealing the inadequacy of such
a traffic descriptor for anomaly detection purposes.
For sake of completeness, also in this case, we
present all the value of the AuC in Table 2.

0 0.2 0.4 0.6 0.8 1
Pea

Figure 4: ROC: Euclidean distance (Flow).

Our main finding is that the combined use of
the number of bytes and Euclidean distance leads to
good performance, especially in the detectiorunf
knownattacks, which represent the most significant
case from the point of view of anomaly detection,
since known attacks can be preliminarily identified by
state-of-the-art misuse-based IDSs.

Finally, it is important to point out that, indepen-
7 CONCLUSIONS dently of the used metric, the distribution of the num-

ber of flows, although it might seem that it is closely
In this paper we have compared two different traf- related to the same statistic in terms of bytes, does
fic descriptors, namely the number of received bytes not change significantly in presence of attacks. This

108



A Novel Histogram-based Network Anomaly Detection

Table 2: AuC (Flow). Brauckhoff, D., Dimitropoulos, X., Wagner, A., and Sala-
Method Label AUC matian, K. (2012). Anomaly extraction in backbone
Euciidean distance all 0.546382 networks using association rule$EEE/ACM Trans.
Euclidean distance fn 2 detector 0.546917 Netw, 20(6):1788-1799.
Euclidean distance fn 3 detector 0.546582 Callegari, C., Casella, A., Giordano, S., Pagano, M., and
Euclidean distance fn 4 detector 0.570564 Pepe, T. (2013a). Sketch-based multidimensional
Euclidean distancd fn attack 0.520335 IDS: A new approach for network anomaly detection.
Euclidean distancd fn attack special 0.481449 In IEEE Conference on Communications and Network
Euclidean distance fn unknown 0.57054 Security, CNS 2013, National Harbor, MD, USA, Oc-
Euclidean distancd fn unknown 4 detecto] 0.590988 tober 14-16, 2013pages 350-358.
KL all 0.494823 Callegari, C., Coluccia, A., D’Alconzo, A., Ellens, W.,
KL fn 2 detector 0.494804 Giordano, S., Mandjes, M., Pagano, M., Pepe, T., Ric-
KL fn 3 detector 0.4943 ciato, F., and Zuraniewski, P. (2013b). A methodolog-
KL fn 4 detector 0.491971 ical overview on anomaly detection. Data Traf-
KL fn attack 0.51984 fic Monitoring and Analysispages 148-183. Springer
KL fn attack special 0.513451 Berlin Heidelberg.
KL fn unknown 0.488019 Callegari, C., Gazzarrini, L., Giordano, S., Pagano, M.,
KL fn unknown 4 detector] 0.495547 and Pepe, T. (2010a). When randomness improves
JS all 0.505141 the anomaly detection performance. Froceedings
JS fn 2 detector 0.505257 of 3rd International Symposium on Applied Sciences
JS fn 3 detector 0.505373 in Biomedical and Communication Technologies (IS-
JS fn 4 detector 0.505256 ABEL)
jg ;2 :::23: special 8232?22 Callegari, C., Giordano, S., Pagano, M., and Pepe, T.

, (2010b). On the use of sketches and wavelet anal-

IS fn unknown 507279 ysis for network anomaly detection. IWCMC '10:
JS fn unknown 4 detector] 0.511053 Proceedings of the 6th International Wireless Commu-

nications and Mobile Computing Conferengeages

result highlights that the choice of a proper traffic de- 331-335, New York, NY, USA. ACM.

scriptor is a key factor in anomaly detection. Callegari, C., Giordano, S., Pagano, M., and Pepe, T.
(2011). Forecasting the Distribution of Network Traf-
fic for Anomlay Detection. INTRUSTCOM ’11 Pro-
ceedings of the 2011 IEEE 10th International Confer-
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