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Abstract: With the complexity of real world problems, optimization of these problems often has multiple objectives to 
be considered simultaneously. Solving this kind of problems is very difficult because there is no unique 
solution, but rather a set of trade-off solutions. Moreover, evaluating all possible solutions requires 
tremendous computer resources that normally are not available. Therefore, an efficient optimization 
algorithm is developed in this paper to guide the search process to the promising areas of the solution space 
for obtaining the optimal solutions in reasonable time, which can aid the decision makers in arriving at an 
optimal solution/decision efficiently. In this paper, a hybrid multi-objective immune optimization algorithm 
based on the concepts of the biological evolution and the biological immune system including clonal 
selection and expansion, affinity maturation, metadynamics, immune suppression and crossover is 
developed. Numerical experiments are conducted to assess the performance of the proposed hybrid 
algorithm using several benchmark problems. Its performance is measured and compared with other well-
known multi-objective optimization algorithms. The results show that for most cases the proposed hybrid 
algorithm outperforms the other benchmarking algorithms especially in terms of solution diversity. 

1 INTRODUCTION 

In real world, many problems, no matter whether 
they are in the domain of engineering, business or 
science, can be formulated into different forms of 
optimization problems. Most of these problems 
normally involve multiple objectives rather than one 
single objective, in which some objectives conflict 
with others. As such, these problems that require 
meeting several objectives simultaneously are called 
multi-objective optimization problems. Solving this 
kind of problems is never an easy task because 
objectives of such problems are often found to be at 
least partly non-commensurable and conflicting. 
Very often, there is no single best solution to the 
multi-objectives optimization problems, but rather a 
set of optimal trade-off solutions which cannot be 
improved without disadvantaging the optimality of 
other objectives. During the solution evaluation 
process, a huge number of alternative solutions are 
required to be evaluated. However, it is very 
difficult to evaluate all possible solutions as this 
requires tremendous computer resources that 
normally are not available. Thus, an effective and 

efficient optimization algorithm is needed to guide 
the search process to the promising areas of the 
solution space and hence the optimal solutions in 
reasonable time. 

Over the last decades, different metaheuristic 
algorithms have been developed for solving multi-
objective optimization problems. Among the 
appealing metaheuristic algorithms, Artificial 
Immune Systems (AIS) based on biological immune 
system have received special attention among the 
research community because the immune system 
provides a rich source of stimulation and inspiration 
to the research community with their interesting 
characteristics: distributed nature, self-organization, 
memory and learning capabilities. Motivated by its 
great potential for solving multiple-objective 
optimization problems, the study reported in this 
paper is to develop a hybrid multi-objective 
algorithm based on the engineering analogue of the 
biological immune system – AIS incorporating some 
ideas from GA for solving multi-objective 
optimization problems.  

The rest of this paper is organized as follows: 
Section 2 gives an overview of related research 
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studies and the basis for the design and development 
of the proposed algorithm. Section 3 presents the 
proposed algorithm and its major features. Section 4 
assesses the performance of the algorithm through 
the numerical optimization experiments with results 
presented and analyzed. Finally, summary and 
potential research directions are given in Section 5.  

2 IMMUNITY-BASED MULTI-
OBJECTIVE OPTIMIZATION 

2.1 Biological Immune System 

The biological immune system consists of diverse 
sets of specialized cells, molecules, and organs with 
a collection of defense mechanisms working 
collaboratively. The interactions among various 
cells, molecules, and organs result in complicated 
immunological behaviors for the purposes of 
provoking suitable immune responses, and 
defending, recognizing, and memorizing pathogens 
for protecting a given host against infections, thus 
keeping the host healthy (Goldsby et al., 2003). 
Many researchers have successfully developed a 
number of powerful multi-objective optimization 
algorithms based on the concepts of the biological 
immune system. The major inspiration for our 
proposed algorithm comes from the clonal selection 
principle and the immune network theory. For a 
review of immune algorithms, one can refer to 
Ataser (2013). 

2.1.1 Clonal Selection Principle 

Clonal selection principle was developed by Burnet 
(1959). It states that only those B-cells capable of 
binding with foreign antigens will produce clones 
having identical receptors to the original B-cells. 
This process is known as clonal expansion. When 
the B-cells undergo clonal expansion after binding to 
foreign antigens with the help of a second signal 
from accessory cells, their average antibody affinity 
will increase for the non-self antigens in order to 
boost the speed and effectiveness of the immune 
response to secondary encounters. Such a process is 
known as affinity maturation and results from 
somatic hypermutation and selection mechanism. 
The hypermutation can change the specificity of 
antibodies (cells) by introducing randomness to their 
genes, hence introducing diversity into the B-cell 
population. Once this process is completed, the B-
cells possessing higher affinity antibodies will be 
selected to differentiate into a mature form - 

antibody-producing plasma cells, with each 
secreting only one type of antibodies. Other than 
developing into plasma cells, the activated B-cells 
with high affinity are selected to become long-lived 
memory B-cells. These cells can be activated by a 
very low concentration of the antigen that had 
triggered the primary response so that they can be 
ready for re-stimulation caused by secondary 
antigenic stimulus. Meanwhile, the antibodies of 
self-reactive B-cells are given an opportunity to 
rearrange their conformation for changing their 
specificity through the receptor editing process so as 
to prevent them from apoptosis. 

Our proposed algorithm mimics the essence of 
the clonal selection principle to generate a varied, 
enlarged population of antibodies around their 
parents based on the corresponding antigenic affinity 
through the processes of the cloning and mutation. 
In these processes, antibodies perform local 
exploitation in different directions along the 
objective space, while the receptor editing process 
performs global exploration through the whole 
search space. At the end of each generation, the 
population will return to its original size with elitist 
antibodies having better affinity. This principle 
ensures the selection pressure is only placed on good 
individuals evolving towards the optimal solution set 
with reduced redundant search as well as strikes a 
balance between exploitation and exploration for 
assuring the achievement of a good result. 

2.1.2 Immune Network Theory 

The immune network theory describes the behavior 
of one of the key working principles of the adaptive 
immune system, which was mainly developed by 
Jerne (1974). The theory explains the properties of 
the immune system including immunological 
memory and tolerance through the existence of a 
mutually reinforcing network of B-cells that have 
variable region, i.e. idiotope and paratope. These 
variable regions bind not only to antigens, but also 
to other variable regions in the system. The 
interactions between B-cells result in stimulation on 
the B-cells with a paratope that has recognized an 
antigen. However, suppression can also result from 
the interactions between B-cells where an anti-
idiotypic antibody is involved, hence bringing about 
a regulatory mechanism.  

Our proposed algorithm bases on the immune 
network theory to introduce a suppression operator 
to the antibody population after the cloning and 
mutation processes for avoiding antibody 
redundancy and maintaining the population diversity 
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so as to acquire the uniformly distributed Pareto 
front. To achieve this, the affinity among all 
antibodies is determined in order to determine 
whether to retain or discard individual antibody. 

2.2 Multi-objective Optimization 
Algorithms 

Finding the solutions to the multi-objective 
optimization problems has long been a challenge to 
researchers because both the Pareto optimality and 
the diversity of the generated solutions must be 
simultaneously addressed. Unlike solutions in single 
objective optimization problems, which can easily 
be compared according to the value of the objective 
function, solutions in multi-objective problems 
cannot directly be compared with each other unless 
employing classical techniques, such as, weighted 
objective aggregation methods and constraint 
approaches. As such, the multi-objective 
optimization problems are simplified and solved by 
converting the multi-objective problems into the 
single objective problems. Although these 
approaches are simple, they have some drawbacks 
for solving multi-objective problems such as the 
limited spread of non-dominated solutions, the lack 
of the ability of capturing the characteristics of all 
objectives, the lack of the ability of generating 
concave and nonconvex portions of the Pareto front, 
and their high dependence on user experiences and 
preference information.  

Due to the complexities of real world problems 
and the limitations of these classical methods, 
modern evolutionary optimization algorithms such 
as GA, ES, AIS, etc. incorporating the concept of 
Pareto optimality with capability of generating 
diversified solutions have been proposed and have 
become popular. The reason of employing the 
concept of Pareto optimality is that it can facilitate 
the determination of the relative strength between 
candidate solutions based on their fitness value 
without converting the multiple-objective problems 
into the single objective problems, thus resulting in a 
set of non-dominated solutions or Pareto optimal 
solutions. They are said to be globally optimal to 
multi-objective optimization problems because no 
improvement in any one objective can be obtained 
without sacrificing the optimality of other 
objectives. 

During the past few decades, evolutionary 
algorithms have received great interest and a 
significant number of publications have been done in 
multi-objective optimization domain since the first 
multi-objective evolutionary algorithm has been 

developed by Schaffer (1985). These algorithms 
have been proved to be effective ways for solving 
multi-objective optimization problems by finding the 
approximated Pareto front, including NSGA-II (Deb 
et al., 2000), SPEA2 (Zitzler et al., 2001), PESA-II 
(Corne et al., 2001), micro-GA2 (Pulido and Coello 
Coello, 2003), omni-aiNet (Coelho and Von Zuben, 
2006), NNIA (Gong et al., 2008), omni-AIOS 
(Zhang, 2011), etc. For a comprehensive review of 
multi-objective evolutionary algorithms, one can 
refer to Deb (2001) and Coello Coello (2007). 

Recently, the hybridization of AIS with other 
evolutionary algorithms has increasingly become a 
prevalent trend. For example, Luh et al. (2003) 
introduced an algorithm called Multi-objective 
Immune Algorithm (MOIA), which is devised based 
on the features of the biological immune system and 
gene evolution for efficiently solving multi-objective 
optimization problems. Cutello et al. (2006) 
extended the algorithm called Pareto Archived 
Evolution Strategy (PAES) (Knowles and Corne, 
1999) with a different representation based on 
immune inspired computing principles in order to 
devise a modified version of PAES denoted by I-
PAES. This algorithm is applied to a multi-objective 
Protein Structure Prediction (PSP) problem. Wong et 
al. (2009) developed an immunity-based hybrid EA 
called Hybrid Artificial Immune Systems (HAIS) for 
solving constrained multi-objective global container 
repositioning problems. Qiu and Lau (2014) 
proposed a new AIS-based hybrid algorithm which 
hybridizes two AIS theories: clonal selection 
principle and immune network theory with particle 
swarm optimization (PSO) theory for solving  static 
job shop scheduling problems with the objective of 
makespan minimization.  

Based on these studies, it is true to point out that 
complementarily combing the various optimization 
techniques can usually offer better performance in 
terms of convergence, computational efficiency, 
diversity and solution quality than individually 
employing them by overcoming their own 
weaknesses. In our proposed multi-objective 
optimization immune algorithm, other than immune 
operators, a crossover operator of GAs is adopted to 
enhance the performance in terms of diversity and 
convergence (Coello Coello et al., 2007). 

3 OPTIMIZATION ALGORITHM 
DESIGN AND DEVELOPMENT 

In this section, an innovative hybrid multi-objective 
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optimizer – Suppression-controlled Multi-objective 
Immune Algorithm (SCMIA) based on the clonal 
selection principle and immune network theory as 
well as incorporated the ideas from GA is 
developed. The mapping between the biological 
immune system and the proposed artificial one is 
given in Table 1. 

Table 1: Mapping between the biological immune system 
and SCMIA.  

Biological 
Immune 
System 

SCMIA 

Antigen (Ag) Objective function to be optimized 
Antibody (Ab) Candidate solution (a set of 

decision variables) to be optimized 
Ag-Ab affinity Fitness value of each candidate 

solution evaluated based on Pareto 
dominance 

Ab-Ab affinity Crowding-distance working as a 
measure of population diversity  

Immune 
suppression 

Mechanism to control the number 
of nearby candidate solutions based 
on similarity among candidate 
solutions in both the objective 
space and decision variable space 

Memory cell Current best non-dominated 
solution 

 

The proposed SCMIA comprises five immune 
operators: cloning, hypermutation, suppression, 
selection & receptor editing, and memory updating, 
and one genetic operator: crossover. Each of them 
takes responsibility for different tasks for the 
purpose of finding uniformly distributed Pareto 
front. The cloning operator generates a number of 
copies to explore the solution space where better 
individuals are given more chances for being cloned. 
The hypermutation operator works on the clones to 
bring variation to the clone population, hoping for 
producing better offspring and increasing population 
diversity. The crossover operator is used to enhance 
the diversity of the clone population and the 
convergence of the algorithm by avoiding getting 
trapped into local optima. The suppression operator 
works on the whole population including the 
mutated clones and parent cells to eliminate similar 
individuals in order to avoid a particular search 
space being over exploited. The selection & receptor 
editing operator works like a director to guide the 
search towards the promising regions of a given 
fitness landscape by selecting the best antibodies to 
form the next generation and allowing the genes of 
the less-fit to be randomly restructured for changing 
their specificity through the receptor editing process. 

The memory updating operator works as an elitist 
mechanism for helping preserve the best solutions 
that represent the Pareto front found over the search 
process. The proposed algorithm is conducted by 
applying these heuristic and stochastic operators on 
the antibody population for balancing both the local 
and global search capabilities. SCMIA is indeed a 
specific multi-objective algorithm, but its basic 
structure can be considered a generic framework for 
multi-objective optimization which can be 
implemented in different ways according to the 
problem at hand. Details of the proposed algorithm 
are discussed below and the block diagram showing 
the computational steps for the proposed SCMIA is 
presented in Figure 1. 

 

Figure 1: Computational steps for the proposed SCMIA. 

Step 1: A random uniformly distributed antibody 
population Ab(t) = {abi: i = 1, 2, …, N} is initially 
generated, where t is the iteration counter, N is the 
size of the population, and abi = {xj: j = 1, 2, …, m} 
is a candidate solution containing m decision 
variables to the fitness function. Other than this 
online population, an external memory population 
P(t-1) with the size of Nm for storing the non-
dominated solutions is also created and initialized to 
be empty.  

Step 2: The values of objective functions of each 
antibody abi are evaluated. In this way, a fitness 
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array ab(f) storing the values of all objective 
functions for each parent can be determined. And 
then the Pareto dominance relation of each antibody 
is determined by comparing their fitness values with 
respect to each objective. Through this comparison, 
each of them is assigned an antigenic Ab-Ag affinity 
called Pareto fitness pfi. The Pareto fitness of each 
antibody is computed as follows: 

pfi = Di (1)

where Di is the number of antibodies that 
dominates the antibody abi. It is noted that when the 
fitness of an antibody pf is equal to 0, this antibody 
is considered a non-dominated solution as it is not 
dominated by any other antibodies in the population.  

Step 3: Based on the idea proposed by Gong in 
NNIA (Gong et al., 2008), only non-dominated 
antibodies are selected to form an active parent 
population A(t) with the size of NA for undergoing 
cloning, crossover and hypermutation. If the number 
of non-dominated antibodies is smaller than NA, all 
non-dominated antibodies are selected to form A(t). 
However, if the number of non-dominated 
antibodies is larger than NA, an antibody density 
measure called crowding-distance (Deb et al., 2002) 
analogous with Ab-Ab affinity in biological immune 
system is employed. The crowding-distance for a 
non-dominated antibody is computed as follows: ݀(ܾܽ௜∗) = ∑ ห௔௕೔శభ∗ ൫௙ೕ൯	ି	௔௕೔షభ∗ ൫௙ೕ൯ห௔௕(௙ೕ೘ೌೣ)	ି	௔௕(௙ೕ೘೔೙)௥௝ୀଵ  (2)

where ݀(ܾܽ௜∗) is the crowding-distance of the i-
th non-dominated antibody ab*, ܾܽ( ௝݂௠௔௫)	 and ܾܽ( ௝݂௠௜௡)  are the maximum and minimum fitness 

values of the j-th objective, ܾܽ௜ାଵ∗ ൫ ௝݂൯ and ܾܽ௜ିଵ∗ ൫ ௝݂൯ 
are the fitness values of the nearest neighboring 
antibodies from both sides in terms of the fitness. 
With this measure, NA antibodies with a larger 
crowding-distance value are selected to form A(t) in 
order to enhance the population diversity. It is worth 
emphasizing that this approach guides the search 
paying more attention to the less-crowded regions in 
the current Pareto front at each generation. 

Step 4: Cloning operator enlarges the population 
by generating a number of copies of each antibody 
in A(t) and the number of copies is directly 
proportional to its Ab-Ab affinity, thus forming a 
clone population C(t). Hence the size of the 
population now is N + Nc and Nc is obtained by: 

ci round(cmax×݀(ܾܽ௜∗))               (3)

               Nc = ∑ci                       (4)

where Nc is the total number of copies produced, 

ci is the clone size for the antibody, cmaxis the pre-
defined maximum clone size of each antibody, and 
round() is an operator for rounding its argument to 
the closest integer. Clearly, the higher the Ab-Ab 
affinity an antibody has, the more the number of 
copies it can generate. 

Step 5: The hypermutation operator induces 
multi-point mutations to the clones. The mutation 
depends on the Ab-Ab affinity of their active 
parents. The reason to take account of the Ab-Ab 
affinity is to maintain the population diversity and 
prevent the crowding of antibodies. The clones are 
mutated proportionally as follows:     

      α = ݁ି௣ × ௗ(௔௕∗)		                      (5)

Cm(t) = C(t) + α × R                                 (6)

where α represents the mutation rate inversely 
proportional to the Ab-Ab affinity ݀(ܾܽ∗), ݌	is an 
exponential coefficient controlling the decay of α, R 
∈  [-1, 1] is a m-dimensional random vector 
obtained with uniform distribution, and Cm(t) is the 
mutated clone population. 

Step 6: A modified single point crossover 
operator works on the mutated clone population to 
generate a mature clone population Cc(t) with the 
size of Nc. With this crossover operator, each 
offspring is generated by randomly selecting a single 
crossover point on a clone and then swapping its 
content beyond that point with that of an active 
parent antibody randomly selected from A(t). The 
diversity can be further enhanced through the 
crossover operation while the quick convergence can 
be ensured because some good genes from the active 
parent can be passed to the offspring. 

Step 7: Objective functions of each mature clone 
are evaluated. And then a combined population is 
formed by combining both the parent cells and their 
mature clones for fitness assignment. For each cell 
in the active parent population and mature clone 
population, the Pareto dominance relation is 
determined and the Pareto fitness value ݌ ௜݂ᇱ is 
assigned. As such, the Pareto fitness being assigned 
to each cell is dependent on the performance of all 
other cells in the combined population. 

Step 8: Suppression operator is introduced and 
works on each cell in the combined population A(t) 
∪ Cc(t) to avoid antibody redundancy and maintain 
the population diversity so as to acquire the 
uniformly distributed Pareto front based on the idea 
of immune network theory (Jerne, 1974). To achieve 
this, the antibody similarity among all antibodies has 
to be determined. Different from other AIS-based 
multi-objective optimization algorithms, the 
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similarity among antibodies in this algorithm is 
determined in terms of both the objective space and 
the decision variable space so as to determine 
whether to retain or discard individual antibody. The 
suppression operation has two phases: in 1st phase, 
the suppression will be applied to all antibodies and 
the similarity between two antibodies is defined as 
follows: 

dO(aba, abb)j = หܾܽ௔൫ ௝݂൯ − ܾܽ௕൫ ௝݂൯ห  ≤ ߜ௝ (7)

where dO(aba, abb)j is the distance between 
antibodies aba and abb in terms of j-th objective and δ௝	refers to the threshold value for j-th objective. In 
this phase, if the distances for all objectives between 
two cells are smaller than the thresholds, the two 
cells are said to be similar and hence the cell with 
poorer Pareto fitness will be suppressed and 
eliminated from the population. This procedure is 
repeated until all antibodies in the combined 
population are compared in order to ensure the 
population diversity. 

In 2nd phase, the suppression will only be applied 
to the similarity between non-dominated cells and 
dominated cells and the similarity between two 
antibodies is defined as follows:  

dV(aba, abb) = ට∑ [ܾܽ௔൫ݔ௝൯ − ܾܽ௕൫ݔ௝൯௠௝ୀଵ ]ଶ ≤ ε (8)

where dV(aba, abb) is the Euclidean distance in 
decision variable space between the two antibodies 
aba (dominated cell) and abb (non-dominated cell) 
and ߝ refers to the threshold value for the decision 
space. In this phase, if the distance between two 
antibodies is smaller than the thresholds in decision 
variable space, they are said to be similar and hence 
the dominated cell will be suppressed and eliminated 
from the population. This procedure is repeated until 
all antibodies between non-dominated and 
dominated are compared in order to avoid redundant 
search. Eventually, surviving populations As(t) ∪ 
Cs(t) are obtained and then enter into the selection & 
receptor editing process and memory updating 
process simultaneously. 

To enhance the population diversity and facilitate 
the search of uniformly distributed non-dominated 
solutions along the Pareto front of a given problem, 
the threshold values for the decision variable space 
and the objective space are dynamically calculated 
according to the maximum and minimum values 
found so far, hence adapting to the new values that 
appear in the population. 

Step 9A: An evolutionary selection operator is 
used to select all non-dominated antibodies with 
respect to the Pareto fitness from the surviving 

populations to form a new population Ab(t+1) with 
the size of N for the next generation. If Ab(t+1) is 
not full, dominated antibodies with a better Pareto 
fitness are selected and some genes of these 
antibodies are then randomly selected to be replaced 
by randomly generated genes. These restructured 
antibodies are finally added to the new population 
until the population is full in order to further 
enhance the population diversity. This process 
actually mimics the process of receptor editing in the 
biological immune system.  However, if the number 
of non-dominated antibodies found exceeds the 
population limit, only N non-dominated antibodies 
with higher Ab-Ab affinity are selected.  

Step 9B: The memory set P(t) is updated and 
used to store all the non-dominated solutions from 
the surviving populations for the replacement of the 
previous memory set P(t-1). These best solutions are 
non-dominated with regard to both the antibodies in 
the current generation and the antibodies that tried to 
enter the memory set in previous generations.  

Step 10: The termination function returns True if 
an optimal Pareto front is found, i.e., no significant 
changes (change within an acceptable range, η) on 
performance metrics of the memory set over 
successive iterations, term_max. The optimization 
process will also terminate if the predetermined 
maximum number of iterations Tmax is performed. If 
these conditions are not satisfied Steps 3 to 9 are 
repeated until one of the predetermined termination 
conditions is met.   

4 NUMERICAL EXPERIMENTS 

In this benchmarking study, a set of experiments 
based on several multi-objective numerical 
optimization problems was performed to benchmark 
the proposed algorithm with other well-known 
multi-objective optimization algorithms, that is, two 
immune algorithms – MISA (Coello Coello and 
Cortés, 2005) and NNIA (Gong et al., 2008) and two 
other evolutionary algorithms – NSGA-II (Deb et 
al., 2000) and SPEA2 (Zitzler et al., 2001). All these 
experiments were conducted using a computer with 
Xeon E5-2620 2 GHz CPU with 2 GB RAM and the 
Excel with VBA was used as an implementation 
platform.  

4.1 Test Problems for Multi-objective 
Optimization 

Several numerical functions with different 
characteristics and degrees of complexity reported in 
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the literature are selected to validate SCMIA. The 
test functions employed in this study are taken from 
three sources, including the traditional test problems 
used in early multi-objective optimization studies, 
namely SCH proposed by Schaffer (Schaffer, 1984) 
and FON proposed by Fonseca & Fleming (Fonseca 
and Fleming, 1995), as well as the ZDT test suite 
proposed by Zitzler et al. (Zitzler et al., 2000). In 
this study, ZDT5 is not selected for the 
benchmarking study largely because it is formulated 
based on binary coding, which is different from our 
study with the focus on real coding. 

4.2 Performance Metrics 

Three performance metrics are adopted to examine 
the quality of solution set in terms of the optimality 
and diversity in order to provide a quantitative 
comparison of the results, including 1) Error Ratio 
(ER) (Van Veldhuizen, 1999), 2) Spacing (S) 
(Schott, 1995), and 3) Inverted Generational 
Distance (IGD) (D. A. Van Veldhuizen and G. B. 
Lamont, 1998).  

4.3 Experimental Setup  

To conduct the experiments, the true Pareto front for 
each test problem is required. The true Pareto fronts 
of the test problems are generated by enumeration. 
However, since infinite number of solutions to be 
generated along the true Pareto fronts is impossible, 
a large number of random solutions, that is, 10,000 
solutions are generated for representing the true 
Pareto fronts. In this research, the decision variables 
of all algorithms are real coded despite some of them 
originally are binary coded. Since the experimental 
results may be sensitive to runtime parameters of 
SCMIA, the runtime parameters are manually tuned 
based on preliminary sensitivity analysis. Three 
parameters, namely active population size, 
maximum clone size and mutation factor, are chosen 
for the sensitivity analysis. Based on the results of 
the sensitivity analysis, the parameters of SCMIA 
were set as follows: Initial population size, N = 100; 
Size of active population, ஺ܰ  = 40; Size of the 
memory population, ܰ௠  = 100; Maximum number 
of clone for each cell, max_clone = 20; Exponential 
distribution coefficient, ρ = 0.05. To allow a fair 
comparison among the algorithms compared, the 
parameters of the benchmarking algorithms were set 
with same values and the values suggested by the 
researchers in their original papers as follows: 
MISA: Initial population size, N = 100; Size of 
clone population, ௖ܰ  = 600; Size of the memory 

population, ܰ௠ = 100; Number of grid subdivisions, 
subd_size = 25; Initial mutation rate, ω = 0.6 (it 
decreases linearly over time until reaching the rate 
of 1/m, where m is the number of decision 
variables.). NNIA: Size of dominant population, ௣ܰ 
= 100; Size of active population, ஺ܰ  = 20; Size of 
clone population, ௖ܰ  = 100; Crossover probability, ݌௖  = 0.9; Mutation probability, ݌௠  = 1/m; 
Distribution indexes for crossover and mutation 
operators, ݊௖  and ݊௠  = 20. NSGA-II: Initial 
population size, N = 100; Crossover probability, ݌௖ 
= 0.9; Mutation probability, ݌௠ = 1/m; Distribution 
indexes for crossover and mutation operators, ݊௖ and ݊௠ = 20.  SPEA2: Initial population size, N = 100; 
Archive size, ܰ௠ = 100; Crossover probability, ݌௖ = 
0.9; Mutation probability, ݌௠  = 1/m; Distribution 
indexes for crossover and mutation operators, ݊௖ and ݊௠ = 20. 

4.4 Experimental Results and Analysis 

For test problems, the same parameters and 
hardware configurations are used with 100 
generations over 15 trials being performed. The 
results of comparing the proposed algorithm with the 
benchmarking algorithms are shown in the following 
tables.  

Table 2: Spacing (S). 

 SCMIA MISA NNIA NSGA-

II 

SPEA2 

 Mean 

(Standard Deviation) 

FON 1.28E-02 

(1.47E-

03) 

1.60E-02 

(4.23E-

03) 

1.80E-02 

(1.44E-

03) 

1.49E-02 

(3.53E-

03) 

1.84E-02 

(1.07E-

02) 

SCH 9.95E-02 

(1.42E-

01) 

2.23E-02 

(2.07E-

02) 

1.15E-01 

(2.29E-

02) 

1.02E-01 

(2.57E-

02) 

2.31E-01 

(7.42E-

02) 

ZDT

1 

1.41E-02 

(4.16E-

03) 

8.99E-02 

(6.48E-

02) 

1.76E-02 

(1.52E-

03) 

2.46E-02 

(4.61E-

03) 

1.18E-01 

(9.79E-

02) 

ZDT

2 

1.12E-02 

(1.94E-

03) 

2.24E-02 

(2.48E-

02) 

2.03E-02 

(2.58E-

03) 

2.44E-02 

(5.02E-

03) 

1.42E-01 

(9.82E-

02) 

ZDT

3 

2.40E-02 

(7.42E-

03) 

1.24E-01 

(7.10E-

02) 

3.02E-02 

(5.80E-

03) 

2.64E-02 

(5.78E-

03) 

1.26E-01 

(8.21E-

02) 

ZDT

4 

2.74E-02 

(2.19E-

02) 

0.27  

(0.32) 

1.73E-02 

(1.25E-

03) 

2.59E-01 

(4.30E-

01) 

3.05E-01 

(1.28E-

01) 

ZDT

6 

3.22E-02 

(3.51E-

02) 

3.41E-02 

(5.00E-

03) 

1.39E-02 

(1.64E-

03) 

2.26E-02 

(1.86E-

02) 

8.28E-02 

(2.57E-

02) 
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Table 3: Error Ratio (ER). 

 SCMIA MISA NNIA NSGA-

II 

SPEA2 

 Mean 

(Standard Deviation) 

FON 2.08E-01 

(1.17E-

01) 

0.00 

(0.00) 

8.87E-02 

(3.02E-

02) 

8.00E-03 

(7.75E-

03) 

4.28E-01 

(2.33E-

01) 

SCH 7.33E-03 

(1.28E-

02) 

0.00 

(0.00) 

0.00 

(0.00) 

0.00 

(0.00) 

3.73E-02 

(4.37E-

02) 

ZDT

1 

8.00E-03 

(6.76E-

03) 

1.00 

(0.00) 

1.33E-03 

(3.52E-

03) 

2.00E-03 

(5.61E-

03) 

1.00 

(0.00) 

ZDT

2 

7.33E-03 

(4.58E-

03) 

1.00 

(0.00) 

0.00 

(0.00) 

2.00E-02 

(4.34E-

02) 

1.00 

(0.00) 

ZDT

3 

1.43E-02 

(7.64E-

03) 

1.00 

(0.00) 

0.00 

(0.00) 

7.33E-03 

(1.16E-

02) 

1.00 

(0.00) 

ZDT

4 

2.53E-02 

(1.81E-

02) 

1.00 

(0.00) 

0.00 

(0.00) 

2.59E-01 

(4.30E-

01) 

1.00 

(0.00) 

ZDT

6 

0.00 

(0.00) 

1.00 

(0.00) 

0.00 

(0.00) 

1.00 

(0.00) 

1.00 

(0.00) 

Table 4: Inverted Generational Distance (IGD). 

 SCMIA MISA NNIA NSGA-

II 

SPEA2 

 Mean 

(Standard Deviation) 

FON 1.28E-03 

(4.59E-

04) 

1.15E-04 

(1.54E-

05) 

7.18E-04 

(1.10E-

04) 

3.37E-04 

(5.17E-

05) 

7.52E-03 

(1.36E-

02) 

SCH 1.39E-03 

(4.32E-

03) 

5.59E-05 

(8.09E-

06) 

5.49E-05 

(1.55E-

05) 

5.54E-05 

(1.08E-

05) 

3.70E-03 

(6.26E-

03) 

ZDT

1 

5.43E-04 

(3.90E-

04) 

3.65E-02 

(5.44E-

03) 

2.06E-04 

(9.30E-

05) 

4.14E-04 

(2.37E-

04) 

6.47E-02 

(1.65E-

02) 

ZDT

2 

4.03E-04 

(2.90E-

04) 

6.19E-02 

(1.63E-

02) 

4.17E-05 

(3.59E-

05) 

9.37E-04 

(7.99E-

04) 

9.19E-02 

(1.40E-

02) 

ZDT

3 

4.81E-04 

(1.62E-

04) 

3.86E-02 

(7.73E-

03) 

1.14E-04 

(5.80E-

05) 

2.95E-04 

(1.25E-

04) 

5.50E-02 

(1.70E-

02) 

ZDT

4 

7.45E-03 

(4.37E-

03) 

3.45  

(1.08) 

7.45E-05 

(5.40E-

05) 

1.14E-03 

(1.41E-

03) 

4.41E-01 

(1.42E-

01) 

ZDT

6 

1.09E-02 

(5.20E-

03) 

4.05E-01 

(1.13E-

02) 

4.43E-05 

(1.24E-

05) 

1.17E-01 

(2.60E-

02) 

3.68E-01 

(7.66E-

02) 

 

Firstly, we compare the results of the mean and 
standard deviation of the three metrics, namely, ER, 

S and IGD over 15 trials obtained by the proposed 
algorithm - SCMIA with that of the other immune 
algorithms, namely, MISA and NNIA. From the 
above tables, we found that SCMIA generally is able 
to provide a similar result as other immune 
algorithms do, which is close to the true Pareto front 
PFtrue and in some cases SCMIA can even 
outperform them. As for the traditional test problems 
(FON and SCH), MISA, NNIA and NSGA-II can 
generate slightly better results in the proximity 
aspect by achieving better performances in terms of 
ER and IGD. For the ZDT test suite, SCMIA and 
NNIA can generate much better results, which 
completely outperform the results generated by 
MISA in terms of the proximity and diversity with 
much lower values in the three metrics in all of the 
five ZDT test problems. By comparing SCMIA with 
NNIA, SCMIA performs better in diversity aspect 
with smaller S values in three (ZDT 1, 2 and 3) of 
the five ZDT test problems while NNIA performs 
better in proximity aspect with lower ER in four 
(ZDT 1, 2, 3 and 4) of the five ZDT test problems 
and the standard deviation of zero in ER indicates 
NNIA can consistently achieve the best performance 
in all trials. With regard to the convergence rate, 
MISA is the worst one among these three 
algorithms, which is revealed through the much 
higher ER and IGD in all of the five ZDT test 
problems. The standard deviation of zero in ER 
indicates MISA consistently cannot converge to the 
true Pareto front within 100 generations in all trials. 
In conclusion, it is shown that although NNIA is the 
best one in the proximity aspect, SCMIA is able to 
achieve better results in the diversity aspect among 
these three immune algorithms. 

Secondly, we compare the results obtained by 
SCMIA with that of the other evolutionary 
algorithms, namely, NSGA-II and SPEA2. For the 
traditional test problems, NSGA-II can generate the 
best results in the proximity aspect because it 
achieves the best performance in terms of ER and 
IGD for the two traditional test problems, whereas 
SCMIA and SPEA2 obtain the similar results in the 
proximity aspect. With respect to the diversity, 
SCMIA achieves the best performance in terms of S 
for the traditional test problems. For the ZDT test 
suite, SCMIA can generate the best results in terms 
of the diversity with much lower values in S in 
almost all of the five ZDT test problems except 
ZDT6. In terms of the proximity, SCMIA can also 
outperform NSGA-II and SPEA2 in three (ZDT 2, 4 
and 6) of the five ZDT test problems because 
SCMIA has lower values in ER and IGD. With 
respect to the convergence rate, SPEA2 is the worst 

ECTA 2016 - 8th International Conference on Evolutionary Computation Theory and Applications

112



one among these three algorithms, which is revealed 
through the very high ER in all of the five ZDT test 
problems. The standard deviation of zero in ER 
indicates SPEA2 consistently cannot converge to the 
true Pareto front within 100 generations in all trials. 
In conclusion, it is shown that SCMIA outperforms 
the other evolutionary algorithms for most of the 
benchmark test problems especially in the diversity 
aspect.  

Several important points can be concluded based 
on the results. Firstly, the proposed SCMIA provides 
comparable results regarding the other four 
algorithms against which it is compared. Although it 
does not always provide the best performance in 
terms of the three metrics adopted, it is able to 
generate reasonably good approximations of the true 
Pareto front of each test problem under 
investigation, including those with a convex, a 
nonconvex or a disconnected Pareto front. Also, it is 
generally shown to outperform MISA and SPEA2 
with the quality of solution being similar to NNIA 
and NSGA-II in approximating the true Pareto front 
in terms of the proximity, diversity and convergence 
in almost all test problems. Finally, SCMIA clearly 
performs better than other benchmarking algorithms 
in the diversity aspect. This is largely attributed to 
the operators employed in the algorithm, including 
selection, cloning, hypermutation, crossover, and 
suppression. The selection operator, cloning operator 
and hypermutation operator incorporate the 
crowding-distance as a measure to select antibodies 
for undergoing the subsequent evolutionary 
processes, generate a number of copies to explore 
the solution space especially the less-crowded 
regions, and bring variation to the clone population 
respectively, in order to produce better offspring and 
increasing population diversity. The diversity is 
further enhanced through the crossover operation 
while the quick convergence can be ensured by 
preventing from being trapped into local optima 
because some good genes from the active parent can 
be passed to the offspring while bad genes would 
have a chance to be replaced with better genes 
through hypermutation. The suppression operator 
helps reduce antibody redundancy, hence 
significantly minimizes the number of unnecessary 
searches and increases the population diversity.  

5 CONCLUSION AND FUTURE 
WORK 

This research develops a hybrid immune algorithm - 

SCMIA for solving multi-objective optimization 
problems. The results show that SCMIA is able to 
generate a well-distributed set of solutions while it 
represents good approximation to the true Pareto-
optimal set for most of the benchmark problems. 
Such satisfactory results are largely attributed to the 
characteristics of the algorithm, namely, distributed 
nature, self-organization, specificity, memory and 
learning capabilities from AIS as well as the 
complementary effect from crossover operation of 
GA to the hypermutation operation in AIS due to 
their different style of solution space traversal.  

Future research could extend this approach to 
solve real world complex business problems with 
real world dynamics and to solve large scale 
problems with a large number of parameters, 
operators and equipment involved in order to 
establish the practical value of the algorithm in 
multi-objective optimization context. 
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