
Classification of Emotional Signals from the DEAP Dataset 

Giuseppe Placidi1, Paolo Di Giamberardino2, Andrea Petracca1, Matteo Spezialetti1 

and Daniela Iacoviello2 
1A2VI_Lab, c/o Department of Life, Health and Environmental Sciences, University of L’Aquila,  

Via Vetoio, 67100, L’Aquila, Italy  
2Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome,  

Via Ariosto 25, 00185, Rome, Italy 
  

 

Keywords: BCI, Emotional Signals, DEAP Dataset, Machine Learning, PCA, SVM. 

Abstract: A Brain Computer Interface (BCI) is a useful instrument to support human communication, frequently 
implemented by using electroencephalography (EEG). Regarding the used communication paradigm, a very 
large number of strategies exist and, recently, self-induced emotions have been introduced. However, in 
general the actual emotion-based BCIs are just binary, since they are capable of recognizing just a single 
emotion. A crucial node is the introduction of more than a single emotional state for improving the 
efficiency of a BCI. In order to be used in BCIs, signals from different emotional states have to be collected, 
recognized and classified. In the present paper, a method for mapping several emotional states was 
described and tested on EEG signals collected from a publicly available dataset for emotion analysis using 
physiological signals (DEAP). The proposed method, its experimental protocol, and preliminary numerical 
results on three different emotional states were presented and discussed. The method, based on multiple 
binary classification, was capable of optimizing the most discriminative channels and the features 
combination for each emotional state and of recognizing between several emotional states through a polling 
system.

1 INTRODUCTION 

BCIs provide new channels of output for the brain, 
(Shih, 2012), yielding an enormous help to disabled 
people (Shih, 2012; Kubler et al., 2005; Hochberg et 
al., 2006). The neural activity is often recorded by 
EEG (Fisch, 1999) and is based on event-related 
signals (Babiloni et al., 2000). Recently, in (Placidi 
et al., 2015a) an EEG-based BCI that used the 
stimulus generated by the disgust produced by 
remembering an unpleasant odor has been proposed 
and it has been demonstrated to be particularly 
useful for severely disabled people (Pistoia et al., 
2015).  

Being the signals resulting by a self-induced  
emotion weak, a series of competitive classification 
strategies have been proposed (Placidi et al., 2015b; 
Iacoviello et al., 2015a; Iacoviello et al., 2015b; 
Iacoviello et al., 2015c). However, the BCI obtained 
by using just “disgust” versus “relax” was only 
binary, (Placidi et al., 2015c). In order to improve  

 

Figure 1: Electrodes used in the 10-20 international brain 
positioning system. 

the efficiency of an emotional BCI (i.e. to increase 
the cardinality of the “alphabet” and to reduce the 
time necessary for communication), a series of 
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different emotions should be recognized and used 
(Guler and Ubeyli, 2007). Before using different 
emotions on a BCI, their characteristic expressions 
(activation sites and specific features) have to be 
discovered and compared. In the present paper, the 
classification strategy proposed in (Iacoviello et al., 
2015c) is used on EEG signals collected in the 
DEAP dataset (Koelstra et al., 2012), a database 
containing a collection of physiological EEG signals 
of emotions from different subjects both for negative 
and positive emotions. In particular the participants 
watched music videos and rated each video in terms 
of arousal, valence, like/dislike, dominance, and 
familiarity. As the subjects watched the videos, their 
EEG and physiological signals were recorded. The 
stimuli used in the experiment were selected in 
different steps: first, 120 initial stimuli were 
selected; then, a one-minute highlight part was 
determined for each stimulus; finally, through a 
web-based subjective assessment experiment, 40 
final stimuli were selected. Being DEAP a reference 
database for tagged EEG emotional signals freely 
usable, we selected some of the stored experiments 
in order to study the brain activations due both to 
negative and positive emotions and to recognize the 
most significant. In particular, goals of this paper 
are: a) to verify that, for a subset of subjects from 
the DEAP dataset, the activated brain region for a 
negative emotion (negative valence and high 
arousal) is located in the right brain hemisphere; b) 
to classify positive emotions (high valence and high 
arousal) from the selected subjects; c) to verify the 
separation, in terms of activated channels and 
selected features, between negative and positive 
patterns; d) to propose a method for classifying 
several emotional states to be used in future multi-
emotional BCI. The paper is organized as follows. In 
Section II, the DEAP dataset and the experimental 
protocol adopted are described along with the 
considered classification method. In Section III the 
obtained results are proposed and discussed, whereas 
in Section IV the conclusions and future works are 
outlined. 

2 MATERIALS AND METHODS 

The DEAP database consists of the EEG 
physiological signals of 32 participants (16 men and 
16 women, aged between 19 and 37, average: 26.9) 
recorded while watching 40 one-minute long music 
videos on different arguments. Before starting the 
viewing, a two-minutes long EEG signal was 
collected by each subject while relaxing watching a 

fixation cross on the screen. The EEG signals, 
sampled at 512 Hz, were recorded from the follo-
wing 32 positions (according to the international 10-
20 positioning system, see Figure 1): Fp1, AF3, F3, 
F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, 
Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, 
CP6, CP2, P4, P8, PO4, and O2. The proposed 
music videos were demonstrated to induce emotions 
to different users (Koelstra et al., 2012) represented 
in the valence-arousal scale (Russell, 1980). The 
participants had to rate each video in terms of 
arousal, valence, like/dislike, dominance and 
familiarity (the degree of valence and arousal was 
ranged by using the self-assessment manikins 
questionnaire). The same videos had an on-line 
evaluation that could be used for comparison. The 
videos were the same for all the participants but the 
sequence of visualization for each subject was 
random. As a first step, in the present study just the 
dimensions valence and arousal were considered. 
Data were provided both as they were acquired (raw 
data) and in the preprocessed form. In this study, the 
raw data were used and, before their usage, they 
were filtered between 1 Hz and 46 Hz. 

2.1 The Experimental Protocol 

The main goal of this study was to use DEAP to map 
the emotions through the EEG signals from different 
subjects, by considering the results on the 
classification of a strong negative emotion, the 
disgust (Placidi et al., 2015b). To this aim, we 
started by selecting subjects that experienced the 
“strongest” and reciprocally “farthest” couple of 
emotions, one corresponding to minimum negative 
valence and maximum arousal (in the following 
indicated with NVHA) and the other corresponding 
to the maximum valence and maximum arousal (in 
the following indicated with HVHA). Between the 
selected subjects, we further selected those whose 
self-assessment of NVHA and HVHA corresponded 
to videos having the same on-line evaluation: this 
was done in order to eliminate careless subjects 
(possible cases of wrong evaluations). From the 
selected subjects, besides the EEG signals corres-
ponding to these two emotional states, we extracted 
the EEG signals corresponding to the relaxing phase. 
In fact, after the selection of the subjects and of the 
signals of the chosen emotions, we aimed at 
classifying these two emotional states both with the 
corresponding relaxing signals and reciprocally. The 
one-minute signals corresponding to the emotional 
state elicited by a music video was broken into non-
overlapping trials, 3.52 seconds long, and separately 
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used for classification. In the same way, also the 
relaxing signals was divided in contiguous trials of 
3.52 seconds. 

2.2 The Classification Method 

The method introduced in (Iacoviello et al., 2015a; 
Iacoviello et al., 2015c) aimed at the classification of 
EEG signals induced by remembering the disgust 
produced by unpleasant odor: it was a self-induction, 
without any external stimulation. One of the 
conclusions of that research was that the most 
involved channels were the T8 and P4 ones, both 
belonging to the right brain hemisphere.  In the 
present study, the same method was used to classify 
trials from two classes at once corresponding, 
respectively, to NVHA (E1) versus Relax (R), 
HVHA (E2) versus Relax (R) and E1 versus E2, 
thus implicitly allowing a multiclass classification 
(through the construction of a polling system). The 
signals herein considered were not self-induced and 
corresponded to the disgust elicited while watching 
music videos. Data from the DEAP dataset were 
produced by an external stimulation and, since the 
stimulation involved different aspects (videos, 
music, secondary emotions, and so on) they 
guaranteed low specificity, from the localization 
point of view.  
Each acquired signal g (trial) was first processed by 
diadic Wavelet decomposition to extract just the 
useful information content (Daubechies, 1992; 
Mamun et al., 2013). To this aim the Meyer wavelet   
was used to provide the wavelet ϕ  transform: 

Cd(k2− j , 2− j ) = 2 j /2 g(n)ϕ 2 j k−n( )
n


 
(1)

thus decomposing the signal in the approximation 
and in the detail coefficients. The level l=3 allowed 
to retain the gamma and alpha bands of the original 
signal yielding the CD3 details representation in the 
band (250/23, 250/22] Hz. After bands selection, the 
trial was divided into q sub-trials having an 
overlapping zone of p points (points in common 
between consecutive sub-trials) to maintain 
continuity between pieces. The overlapping region 
has been introduced to avoid the exclusion of useful 
information that could be present on the tails of 
consecutive sub-trials. The classification used the 
division in sub-trials in order to discard the noisy 
pieces of each signal while retaining and averaging 
the useful information (Petrantonakis and 
Hadjileontiadis, 2011). In this set of sub-trials, a 
group of fN  characteristics describing the signal, 

the features, was calculated; the most common 
features used in literature (Subasi, 2007; Cvetkovic, 
2008) and considered herein were: the mean and the 
median values, f1 and f2 respectively, the mode f3 
(i.e. the most frequent value in a sub trial), the 
largest and the smallest elements, f4 and f5 respecti-
vely, the range f6 of the values and their standard 
deviation f7, the mean value f8 and the median f9 of 
the absolute value of the difference between the 
vector and its mean value, the sum f10 of all the 
elements, the norm f11 and the maximum value f12. 
Since the set of the original features could be 
redundant, their number was reduced to s by 
applying the Principal Component Analysis (PCA) 
in the modified form proposed in (Song et al., 2010). 
In particular, the covariance matrix of the 
standardized data was computed and its largest 
eigenvalues, and its corresponding eigenvectors, 
were selected. The selected features were the ones 
with the higher weights in the covariance matrix. 
Hence the classification of the signal was performed 
through Support Vector Machine (SVM) by using 
the remaining features. 

 

Figure 2: Block diagram of the classification procedure. 

The SVM determined the optimal hyperplane to 
separate data in two classes, Class 1 and Class 2, and 
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it was obtained as a trade-off between the 
requirement of maximizing the Euclidean distance 
between the closest points and the requirement of 
minimizing the error on misclassified points. The 
classification method is summarized in the block 
scheme of Figure 2. 

The off-line step was the calibration: the most 
predominant features referring to the two different 
conditions, namely, to an activation stage (class #1) 
or to another (class #2), were selected by conside-
ring that the class of the given signal was known in 
advance; then  the SVM classifier was trained. The 
on-line step was the classification of a signal of 
which the placement to the class #1 or #2 was 
unknown in advance. More details can be found in 
(Iacoviello et al., 2015c). 

3 RESULT AND DISCUSSION 

As specified above, the proposed classification 
procedure was applied to a set of 32 trials for the E1 
(NVHA) emotion, 32 for the E2 (HVHA) emotion 
and 32 trials for the relaxing state R for each subject 
(in the DEAP database, they corresponded to the 
subjects #1, 2, 22, 24, 25, and 9 indicated by S1 – S6, 
respectively, in this study) in a single test. The 
extracted signals were analyzed in order to verify the 
absence of abnormal spikes. In particular, the subject 
#9 (S6) was discarded since his EEG signals 
contained very high spikes of difficult explanation 
and reduction; a more sophisticated method to 
discard a subject was proposed in (Petrantonakis and 
Hadjileontiadis, 2011). For each of the selected 
subjects, the same emotion was associated to at least 
two videos. The corresponding signals were inserted 
in the same set of trials (in the same class). Of the 
whole set of trials, 16 were leaved for calibration of 
the methods (in particular, 8 trials were used for 
training and 8 for validation) and 48 were used to 
simulate real-time classification. 

Parameters for the classification method: Each 
trial was divided into q=7 sub-trials, each 
corresponding to 300 elements, by considering p=50 
overlapping points. The number of retained sub-
trials was 5. 

The SVM was applied on a subset of features 
extracted by PCA on the basis of the averaged 
values of the features calculated on the selected 5 
sub-trials. The considered emotions were clearly 
recognizable (classification accuracy close to 100%) 
from the relaxing condition, for most of the 
considered subjects, both from the left and from the 
right hemisphere of the brain. This occurred also 

when considering the classification of the two 
emotions reciprocally. However, by considering just 
the channels whose accuracy was exactly 100%, it 
may be noted that the right hemisphere was 
prevalent. Moreover, the channel PO4 recurred in all 
the subjects and was useful both to classify the two 
emotions from “relax” and the two emotions 
reciprocally. This was particularly evident for the 
subject S3 that represented the worst case, among the 
considered subjects, in terms of accuracy 
distribution between channels (Figure 3).  

Also in this worst case, the two emotions 
activated mostly the right hemisphere, and the 
channel PO4 was the most important (100% of 
accuracy) both to recognize the considered emotions 
from “relax” and to recognize the emotions each 
other, though with different feature sets. In this case, 
also the channel AF4 (80% in accuracy) was useful 
to recognize both the emotions with respect to relax, 
though it was not specific to recognize one emotion 
with respect to the other. These results confirmed 
what was previously found in (Placidi et al., 2015a) 
and (Placidi et al., 2015b) with respect to the 
activation of the right hemisphere for a negative 
emotion but, differently from other works (Song et 
al., 2010; Davidson et al., 1979), the brain 
lateralization between the two types of emotions was 
not clearly evident. 

 

Figure 3: Accuracy values for each channel for the subject 
S3 (our worst case). The reported maps are referred to 
binary classifications between: negative emotion vs relax 
(a), positive emotion vs relax (b), negative vs positive (c), 
and negative vs flipped positive (left-right brain 
hemispheres) (d), respectively. 
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For better clarifying this aspect, we also tried to 
classify the signals of the first emotion with those of 
the second one having flipped the two brain 
hemispheres of the second emotion. In this case, we 
observed that most of the channels were 
recognizable to one another (accuracy close to 
100%), thus demonstrating that a correlation 
between channels of opposite hemispheres were 
absent. In particular, Figure 3d shows the good 
symmetry of the accuracy distribution for the subject 
S3, confirming the absence of a relationship between 
channels of opposite hemispheres. The activation of 
a considerable number of channels could be due to 
the elicitation protocol: being an external 
stimulation, it would activate multiple mental 
processes corresponding to the activation of 
different brain regions. Conversely, in the case of 
self-induced emotions (Placidi et al., 2015), the 
activation, being generated by a concentration task 
that reduces the possibility of distraction, was 
concentrated in a specific brain location.  

It is useful to evaluate the importance of the 
features after the PCA selection. Table I shows the 
channels in which the accuracy was above 80% and 
the corresponding 4 most important features used for 
classification, reported in order of descending 
importance. 

The most activated channels were those with 
higher accuracy, expressed as the ratio between the 
number of right answers with respect to the total 
number of trials in percentage. It is important to note 
that, due to the protocol used to collect the data of 
the DEAP database (audio-videos were used to elicit 
emotions), both temporal (influenced by listening 
audios) and occipital (influenced by viewing videos) 
channels were left out. Moreover, just accuracy 
above 80% was considered. 
From the analysis of Table I it can be further 
observed that, even between the 4 most influent 
features used for classification in different channels 
there was a sort of recurrence: features 5, 7, 9 and 10 
occurred very often, though with different order. 

The previous results demonstrated that the 
proposed method could be effectively used for 
finding the proper, optimized and minimal 
combination of channels/features for effective 
classification of the 3 considered emotional states. 
The choice of leaving separated the EEG channels in 
the classification process was finalized at the 
evaluation of the contribution of each channel to the 
whole classification process. The obtained results 
demonstrated also that the method could be applied 
for effective classification of the 3 considered 
emotional states by using a polling system after the 

application of 3 mutual binary classification 
methods. 

Table 1: Best channels (accuracy above 80%) and the 
corresponding 4 best features used for classification. 
Temporal and occipital channels were not considered. 

 
E1vsR E2vsR E1vsE2 

Ch Features Ch Features Ch Features 

S1

AF3 5 9 10 7 AF3 9 5 10 7 CP1 8 6 3 1 
F3 5 9 10 2 F3 5 9 10 2 F4 9 5 1 3 
C3 5 9 7 10 C3 9 5 7 10 C4 5 9 3 1 

CP1 9 5 10 7 CP1 8 9 2 10 PO4 9 5 10 8 
F4 5 9 10 7 F4 4 5 10 3      
C4 9 5 7 10 C4 9 5 7 10      

PO4 5 9 7 10 PO4 5 9 7 10      

S2

CP1 5 9 7 1 FC1 5 9 10 7 FC1 9 5 3 1 
FC1 9 5 3 1 CP2 5 9 10 7 C3 5 9 10 1 
C3 9 5 10 7 F4 9 5 10 7 PO4 9 5 7 10
F3 5 9 7 10 PO4 9 5 7 10      

CP6 9 5 7 10           
C4 5 9 7 3           

PO4 9 5 7 10           

S3

AF4 9 5 7 3 FC1 9 5 7 2 PO4 3 1 2 10
CP2 9 5 7 10 CP5 9 5 8 6      
PO4 9 5 2 7 AF4 9 5 7 2      

     CP2 9 5 7 1      
     PO4 3 1 2 10      

S4

FC5 5 9 7 10 AF3 5 9 10 7 FC1 9 5 10 7 
FC1 9 5 7 10 FC1 9 5 7 10 CP1 5 9 10 7 
FC2 5 9 7 10 CP5 4 5 10 7 PO3 9 5 10 7 
P4 5 9 7 10 CP6 5 9 2 10 CZ 9 5 3 1 

PO4 5 9 7 4 PO4 9 5 7 4 FC6 6 8 10 7 
          C4 5 9 1 3 
          PO4 5 9 10 7 

S5

AF3 9 5 10 7 AF3 9 5 10 7 F3 9 5 7 3 
F3 5 9 7 10 C3 9 5 7 10 FC5 9 5 7 10

AF4 5 9 3 1 CP1 5 9 10 7 CP1 5 9 10 7 
C4 5 9 10 7 AF4 5 9 7 10 FC6 9 5 10 7 

PO4 5 9 10 7 F4 9 5 10 7 C4 5 9 7 10
     CP2 5 9 10 7 PO4 5 9 10 7 
     PO4 5 9 10 7      

The choice of considering simple binary 
classifications instead of more articulated multi-class 
strategies (ternary in our case) was twofold: first, 
binary classification was really simple and its results 
could be more reliable than those of a multi-class 
strategy (in that phase, we were still trying to 
comprehend the neurophysiologic complex mecha-
nisms and the brain/features mapping of different 
emotions and we would avoid biases from the 
classification strategy); second, the extension of the 
proposed method to the classification of more than 3 
classes could be very simple (the addition of a class 
simply involves the addition of a series of binary 
classifiers). Finally, the results showed that the 
proposed method could be easily applied for 
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classification of emotions that have similar spatial 
activation pattern because they could be recognized 
through their specific features combination. 

Regarding the computational time, the algorithm 
was implemented in Matlab® on a personal 
computer (Intel(R) Core(TM) i7-4790 CPU @3.60 
GHz 3.60 GHz RAM: 16,0 GB): the classification 
method took 17.2 minutes for processing all the 
trials used for the calibration step, 36.4 minutes for 
the training, 35 sec for the validation and 2.2x10-3 
sec for processing a single trial. Time could be 
strongly reduced by using just a single channel for 
classification (PO4). 

4 CONCLUSION AND FUTURE 
DEVELOPMENTS 

A comparison of EEG emotional signals from differ-
rent subjects of the DEAP database was performed 
by using a competitive machine learning based 
classification method. The compared emotions were 
NVHA and HVHA both with the relaxing state and 
reciprocally. 

The obtained results showed that, though 
defining different feature sets for different channels, 
most of the measured channels allowed high 
classification accuracy. This was true both by 
comparing each emotion with “relax” and by 
comparing the two emotions. In order to highlight if 
there was a lateralization between the brain 
hemispheres when subjected to opposite emotions, 
we also compared the data of the first emotion with 
those of the second after the flipping of the right 
hemisphere data with those of the left hemisphere of 
the second emotion. The results showed that, being 
the classification accuracy very high for most of the 
channels, the activation was not differently 
distributed between hemispheres for different 
emotions. The obtained results demonstrated that the 
proposed classification method could be efficiently 
applied both to discover the neurophysiological 
mechanisms of different emotional states and to 
efficiently recognize the minimal channels/features 
set for recognizing each of the considered emotions 
from the others and from the relaxing state. 
Moreover, the method could be efficiently used for 
classification of an incremental number of emotions 
through the further introduction of a set of binary 
classifiers and a proper polling scheme. 

Future work will be spent in  
1) refining the strategy of subjects selection 

(Petrantonakis and Hadjileontiadis, 2011),  

2) mapping the channels/features pattern of 
new emotional states, 

3) inserting the previous emotional states in 
the classification process,  

4) classifying the considered emotional states 
in groups (more than two emotions at once) 

5) exploring a deeper wavelet prefiltering, 
assuming the decomposition that better 
enhance the significant part of the elicited 
signal,  

6) selecting the most informative subset of 
channels, 

7) selecting a strategy of self-induction of a 
set of emotions in order to allow also the 
usage of the neglected channels, 

applying the obtained channels-features maps to 
implement a classification strategy for multi-
emotions based BCIs to be used for communication 
purposes or for affective computing applications. 
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