
Model-Intersection Problems with Existentially Quantified Function
Variables: Formalization and a Solution Schema

Kiyoshi Akama1 and Ekawit Nantajeewarawat2

1Information Initiative Center, Hokkaido University, Sapporo, Hokkaido, Japan
2Computer Science, Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand

Keywords: Model-Intersection Problem, Extended Clause, Function Variable, Equivalent Transformation.

Abstract: Built-in constraint atoms play a very important role in knowledge representation and are indispensable for
practical applications. It is very natural to use built-in constraint atoms together with user-defined atoms when
formalizing logical problems using first-order formulas. In the presence of built-in constraint atoms, however,
the conventional Skolemization in general preserves neither the satisfiability nor the logical meaning of a
given first-order formula, motivating us to step outside the conventional Skolemization and the usual space of
first-order formulas. We propose general solutions for proof problems and query-answering (QA) problems
on first-order formulas possibly with built-in constraint atoms. We map, by using new meaning-preserving
Skolemization, all proof problems and all QA problems, preserving their answers, into a new class of model-
intersection (MI) problems on an extended clause space, where clauses are in a sense “higher-order” since they
may contain not only built-in constraint atoms but also function variables. We propose a general schema for
solving this class of MI problems by equivalent transformation (ET), where problems are solved by repeated
simplification using ET rules. The correctness of this solution schema is shown. Since MI problems in this
paper form a very large class of logical problems, this theory is also useful for inventing solutions for many
classes of logical problems.

1 INTRODUCTION

A proof problem is a “yes/no” problem; it is con-
cerned with checking whether or not one given logical
formula entails another given logical formula. For-
mally, a proof problem is a pair〈E1,E2〉, whereE1
andE2 are first-order formulas, and the answer to this
problem is defined to be “yes” ifE2 is a logical con-
sequence ofE1, and it is defined to be “no” otherwise.
A proof problem〈E1,E2〉 is solved (Chang and Lee,
1973; Robinson, 1965) by (i) constructing the formula
E = (E1∧¬E2), since the unsatisfiability ofE means
that the answer of this proof problem is “yes”, (ii)
conversion ofE into a setCsof clauses using the con-
ventional Skolemization (Chang and Lee, 1973; Fit-
ting, 1996), (iii) transformation of the clause setCs
by the resolution and factoring inference rules, and
(iv) determining the answer by checking whether an
empty clause can be obtained, i.e., if an empty clause
is obtained, thenCs is unsatisfiable and the answer to
the proof problem is “yes”. This solution relies on
the preservation of satisfiability. The conversion of
E into Cs using the conventional Skolemization pre-

serves the satisfiability ofE. Transformation ofCs
by using resolution and factoring also preserves the
satisfiability ofCs.

A query-answering problem(QA problem) on
clauses is a pair〈Cs,a〉, whereCs is a set of clauses
and a is a user-defined query atom. The answer to
a QA problem〈Cs,a〉 is defined as the set of all
ground instances ofa that are logical consequences
of Cs. Characteristically, a QA problem is an “all-
answers finding” problem, i.e., all ground instances of
a given query atom satisfying the requirement above
are to be found. In our previous work (Akama and
Nantajeewarawat, 2015a), for solving proof prob-
lems on first-order formulas and QA problems on
clauses, these problems are transformed intomodel-
intersection problems(MI problems) on the conven-
tional clause space. Such a MI problem is a pair
〈Cs,ϕ〉, whereCs is a set of clauses andϕ is a map-
ping, called anexit mapping, used for constructing
the output answer from the intersection of all models
of Cs. More formally, the answer to a MI problem
〈Cs,ϕ〉 is ϕ(

⋂
Models(Cs)), whereModels(Cs) is the

set of all models ofCsand
⋂

Models(Cs) is the inter-

52
Akama, K. and Nantajeewarawat, E.
Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema.
DOI: 10.5220/0006056800520063
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 2: KEOD, pages 52-63
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

section of all elements ofModels(Cs). Note that, in
this theory, an interpretation is a set of ground user-
defined atoms, which is similar to a Herbrand inter-
pretation (Chang and Lee, 1973; Fitting, 1996). Since
each element ofModels(Cs) is a set of ground user-
defined atoms, we can take the intersection of all ele-
ments of it.

In this paper, we consider first-order formulas that
possibly includes built-in constraint atoms. The set of
all such formulas is denoted by FOLc. Built-in con-
straint atoms play a crucial role in knowledge repre-
sentation and are essential for practical applications.
One of the objectives of this paper is to propose gen-
eral solutions for proof problems and QA problems
on FOLc, which are large problem classes that have
never been solved fully so far. The classical theorem-
proving theory motivates us to transform proof prob-
lems and QA problems on FOLc into MI problems
on clauses by the conventional Skolemization (Chang
and Lee, 1973; Fitting, 1996). However, satisfiabil-
ity preservation of a formula does not generally hold
for formulas in FOLc (Akama and Nantajeewarawat,
2015b). The conventional Skolemization, therefore,
does not provide a transformation process towards
correct solutions for proof problems and QA prob-
lems on FOLc.

Meaning-preserving Skolemization (MPS) was
invented (Akama and Nantajeewarawat, 2008; Akama
and Nantajeewarawat, 2011) to overcome the difficul-
ties caused by the conventional Skolemization. MPS
preserves the logical meanings of first-order formu-
las (and, thus, also preserves their satisfiability) even
when they include built-in constraint atoms. Con-
ventional clauses should be extended in order that
all first-order formulas in FOLc can be equivalently
converted by MPS. An extended clause may contain
function variables and atoms of a special kind called
func-atoms. The set of all extended clauses is called
ECLSF.

This paper introduces a model-intersection prob-
lem (MI problem) on this extended space, which is
a pair〈Cs,ϕ〉, whereCs is a set of extended clauses
andϕ is an exit mapping. The set of all MI problems
on the extended clauses constitutes a very large class
of problems and is of great importance. As outlined
by Fig. 1, all proof problems and all QA problems
on FOLc are mapped, preserving their answers, into
MI problems on ECLSF. By solving MI problems on
ECLSF, we solve proof problems and QA problems
on FOLc. We propose a general schema for solving
MI problems on ECLSF by equivalent transformation
(ET), where problems are solved by repeated problem
simplification using ET rules.

The class of MI problems established in this pa-

Figure 1: MI-problem-centered view of logical problems.

per is the largest and the first one that enables struc-
tural embedding of the full class of proof problems
on FOLc and the full class of QA problems on FOLc.
The class of MI problems considered in our previous
work (Akama and Nantajeewarawat, 2015a) involves
only usual clauses (with no function variable being
allowed) and is not sufficient for dealing with proof
problems and QA problems on FOLc entirely.

The rest of the paper is organized as follows: Sec-
tion 2 defines extended clauses and ECLSF, and intro-
duces meaning-preserving Skolemization. Section 3
formalizes MI problems on extended clauses and de-
scribes how QA problems and proof problems can be
converted into MI problems. Section 4 presents a gen-
eral schema for solving MI problems by ET. Section 5
demonstrates an application of the general schema.
Section 6 concludes the paper.

The notation that follows holds thereafter. Given
a setA, pow(A) denotes the power set ofA. Given
two setsA and B, Map(A,B) denotes the set of all
mappings fromA to B, and for any partial mapping
f from A to B, dom(f) denotes the domain off , i.e.,
dom(f) = {a | (a∈ A) & (f (a) is defined)}.

2 AN EXTENDED CLAUSE SPACE

2.1 User-defined Atoms, Built-in
Constraint Atoms, and func-Atoms

An extended formula space is introduced, which con-
tains three kinds of atoms, i.e., user-defined atoms,
built-in constraint atoms, andfunc-atoms. Auser-
defined atomtakes the formp(t1, . . . , tn), wherep is a
user-defined predicate and theti are usual terms. Sup-
posing thatteach, St, andFM are user-defined pred-
icates,teach(john,ai), St(paul), andFM(x) are user-
defined atoms (cf. Fig. 3 in Section 5). Abuilt-in con-
straint atom, also simply called aconstraint atomor
abuilt-in atom, takes the formc(t1, . . . , tn), wherec is
a predefined constraint predicate and theti are usual
terms. Typical examples of built-in constraint atoms
areeq(x,x) andneq(1,2), whereeqandneqare prede-
fined constraint predicates that stand for “equal” and
“not equal,” respectively. (No built-in constraint atom

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

53

appears in Fig. 3.) LetAu be the set of all user-defined
atoms,Gu the set of all ground user-defined atoms,Ac
the set of all constraint atoms, andGc the set of all
ground constraint atoms.

A func-atom(Akama and Nantajeewarawat, 2011)
is an expression of the formfunc(f , t1, . . . , tn, tn+1),
where f is either ann-ary function constant or ann-
ary function variable, and theti are usual terms. For
example, supposing thatf0 is a unary function vari-
able,func(f0,x,y) is a func-atom (cf. the clausesC24
andC25 in Fig. 3). A func-atomfunc(f , t1, . . . , tn, tn+1)
is ground if f is a function constant and theti are
ground usual terms.

There are two types of variables: usual variables
and function variables. (In Fig. 3,x, y, z, andw are
usual variables, whilef0 is a function variable.) A
function variable is instantiated into a function con-
stant or a function variable, but not into a usual term.
Let FVar be the set of all function variables and
FCon the set of all function constants. A substitu-
tion for function variables is a mapping fromFVar to
FVar∪FCon. Eachn-ary function constant is associ-
ated with a mapping fromGn

t to Gt, whereGt denotes
the set of all usual ground terms.

2.2 Extended Clauses

User-defined atoms and built-in constraint atoms are
used in usual clauses, which are extended by allow-
ing func-atoms to appear in their right-hand sides. An
extended clause Cis a formula of the form

a1, . . . ,am← b1, . . . ,bn, f1, . . . , fp,

where each ofa1, . . . ,am,b1, . . . ,bn is a user-defined
atom or a built-in constraint atom,f1, . . . , fp arefunc-
atoms, andm, n, and p are non-negative integers.
All usual variables occurring inC are implicitly uni-
versally quantified and their scope is restricted to
the extended clauseC itself. The sets{a1, . . . ,am}
and{b1, . . . ,bn, f1, . . . , fp} are called theleft-hand side
and theright-hand side, respectively, of the extended
clauseC, and are denoted bylhs(C) and rhs(C), re-
spectively. LetuserLhs(C) denote the number of
user-defined atoms in the left-hand side ofC. When
userLhs(C) = 0, C is called a negative extended
clause. WhenuserLhs(C) = 1,C is called anextended
definite clause. WhenuserLhs(C) > 1, C is called a
multi-head extended clause.

When no confusion is caused, an extended clause,
a negative extended clause, an extended definite
clause, and a multi-head extended clause are also
called aclause, a negative clause, a definite clause,
and amulti-head clause, respectively.

Let DCL denote the set of all extended definite
clauses with no constraint atom in their left-hand

sides. Given a definite clauseC ∈ DCL, the user-
defined atom inlhs(C) is called theheadof C, de-
noted byhead(C), and the setrhs(C) is called the
bodyof C, denoted bybody(C).

2.3 An Extended Clause Space

A conjunction of a finite or infinite number of ex-
tended clauses is used for knowledge representation
and also for computation. As usual, such a conjunc-
tion is usually dealt with by regarding it as a set of
(extended) clauses. The set of all extended clauses is
denoted by ECLSF. Theextended clause spacein this
paper is the powerset of ECLSF.

Let Cs be a set of extended clauses. Implicit ex-
istential quantifications of function variables and im-
plicit clause conjunction are assumed inCs. Func-
tion variables inCsare all existentially quantified and
their scope covers all clauses inCs. With occurrences
of function variables, clauses inCs are connected
through shared function variables. After instantiating
all function variables inCs into function constants,
clauses in the instantiated set are totally separated.

2.4 Conversion of First-order Formulas
into Sets of Extended Clauses

Semantically, an extended clause corresponds to a
disjunction of extended literals, and a set of ex-
tended clauses corresponds to an extended conjunc-
tive normal form. After explaining the limitations
of the conventional Skolemization, conversion of a
first-order formula in FOLc into a set of extended
clauses in ECLSF by meaning-preserving Skolemiza-
tion (Akama and Nantajeewarawat, 2008; Akama and
Nantajeewarawat, 2011) is introduced.

2.4.1 Conventional Skolemization

In the conventional proof theory, a first-order formula
is usually converted into a conjunctive normal form
in the usual first-order formula space. The conver-
sion involves removal of existential quantifications by
Skolemization (Chang and Lee, 1973; Fitting, 1996),
i.e., by replacement of an existentially quantified vari-
able with a Skolem term determined by its relevant
quantification structure. Let CSK(E) denote the set
of usual clauses obtained by applying this conversion
to a first-order formulaE.

The conventional Skolemization, however, does
not generally preserve the logical meaning of a first-
order formula in FOLc, nor the satisfiability thereof.
This is precisely shown by Theorem 1 below. Given a
first-order formulaE in FOLc and a setCsof extended

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

54

clauses in ECLSF, let Models(E) andModels(Cs) de-
note the set of all models ofE and that of all models
of Cs, respectively.

Theorem 1.

1. There are a first-order formula E in FOLc and a
clause set Cs⊆ ECLSF such thatCSK(E) = Cs
and Models(E) 6= Models(Cs).

2. There are a first-order formula E in FOLc and a
clause set Cs⊆ ECLSF such thatCSK(E) = Cs,
Models(E) 6=∅, and Models(Cs) =∅.

Proof: Assume that:

• noteqis a predicate for built-in constraint atoms
and for any ground termst1 andt2, noteq(t1, t2) is
true iff t1 6= t2.

• F1, F2, F3, andF4 are the first-order formulas in
FOLc given by:

F1: ∀x∀y∀z : [(hasChild(x,y)∧hasChild(x,z)
∧ noteq(y,z))→ TaxCut(x)]

F2: hasChild(Peter,Paul)

F3: ∃x : hasChild(Peter,x)

F4: ¬(∃x : TaxCut(x))

Consider a first-order formulaE = F1∧F2∧F3∧F4.
Obviously, Models(E) 6= ∅ and a model ofE is
{hasChild(Peter,Paul)}. Let CSK(E) = Cs. Then
Csconsists of the following clauses, wheref is a new
constant:

TaxCut(x)← hasChild(x,y),hasChild(x,z),
noteq(y,z)

hasChild(Peter,Paul)←
hasChild(Peter, f)←
← TaxCut(x)

Since f is a constant andnoteq(Paul, f) is true, the
clause setCs has no model, i.e.,Models(Cs) = ∅.
Hence Results 1 and 2 of this theorem hold.

2.4.2 Meaning-preserving Skolemization

In order to transform a first-order formula equiv-
alently into a set of extended clauses, meaning-
preserving Skolemization was invented in (Akama
and Nantajeewarawat, 2008; Akama and Nantajee-
warawat, 2011). Let MPS(E) denote the set of
extended clauses resulting from applying meaning-
preserving Skolemization to a given first-order for-
mulaE in FOLc. MPS(E) is obtained fromE by re-
peated subformula transformation and conversion into
a clausal form. Consider, for example, the first-order
formula E in the proof of Theorem 1. MPS(E) is
the clause setCs′ consisting of the following extended
clauses, whereh is a 0-ary function variable:

TaxCut(x)← hasChild(x,y),hasChild(x,z),
noteq(y,z)

hasChild(Peter,Paul)←
hasChild(Peter,x)← func(h,x)
← TaxCut(x)

An algorithm for computing MPS(E) was given
in (Akama and Nantajeewarawat, 2011). Each trans-
formation used by this algorithm preserves the logical
meaning of an input formula. As a result, the next the-
orem is obvious.

Theorem 2. Let E be a first-order formula in FOLc
and Cs⊆ ECLSF. If MPS(E) = Cs, then

1. Models(E) = Models(Cs), and

2. Models(E) =∅ iff Models(Cs) =∅.

2.5 Interpretations and Models

A state of the world is represented by a set of true
ground atoms inGu. A logical formula is used to
impose a constraint on possible states of the world.
Hence, aninterpretationis a subset ofGu. A ground
user-defined atomg is true under an interpretationI
iff g belongs toI . Unlike ground user-defined atoms,
the truth values of ground constraint atoms are prede-
termined independently of interpretations. Let TCON

denote the set of all true ground constraint atoms,
i.e., a ground constraint atomg is true iff g∈ TCON.
A groundfunc-atomfunc(f , t1, . . . , tn, tn+1) is true iff
f (t1, . . . , tn) = tn+1.

A ground clauseC = (a1, . . . ,am← b1, . . . ,bn, f1,
. . . , fp) ∈ ECLSF is true under an interpretationI (in
other words,I satisfies C) iff at least one of the fol-
lowing conditions is satisfied:

1. There existsi ∈ {1, . . . ,m} such thatai ∈ I ∪
TCON.

2. There existsi ∈ {1, . . . ,n} such thatbi /∈ I ∪
TCON.

3. There existsi ∈ {1, . . . , p} such thatf i is false.

An interpretationI is amodelof a clause setCs⊆
ECLSF iff there exists a substitutionσ for function
variables that satisfies the following conditions:

1. All function variables occurring inCsare instan-
tiated byσ into function constants.

2. For any clauseC ∈ Cs and any substitutionθ for
usual variables, ifCσθ is a ground clause, then
Cσθ is true underI .

Let Modelsbe a mapping that associates with each
clause set the set of all of its models, i.e.,Models(Cs)
is the set of all models ofCs for anyCs⊆ ECLSF.

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

55

The standard semantics is taken in this theory in
the sense that all models of a formula are considered
instead of specific ones, such as those considered in
the minimal model semantics (Clark, 1978; Lloyd,
1987), which underlies definite logic programming,
and in the stable model semantics (Gelfond and Lifs-
chitz, 1988; Gelfond and Lifschitz, 1991), which un-
derlies answer set programming.

3 MODEL-INTERSECTION
PROBLEMS

3.1 Model Intersection is Important

Assume that a personA and a personB are interested
in knowing which atoms inGu are true and which
atoms inGu are false. They want to know the un-
known setG of all true ground atoms. Due to short-
age of knowledge,A still cannot identify one unique
subset ofGu as the state of the world. The personA
can only limit possible subsets of true atoms by spec-
ifying a subsetGsof pow(Gu). The unknown setG of
all true atoms belongs toGs.

One way forA to inform this knowledge toB com-
pactly is to send toB a clause setCs such thatGs⊆
Models(Cs). ReceivingCs, B knows thatModels(Cs)
includes all possible intended sets of ground atoms,
i.e.,G∈Models(Cs). As such,B can know that each
ground atom outside

⋃
Models(Cs) is false, i.e., for

any g ∈ Gu, if g /∈ ⋃
Models(Cs), theng /∈ G. The

personB can also know that each ground atom in⋂
Models(Cs) is true, i.e., for anyg ∈ Gu, if g ∈⋂
Models(Cs), then g ∈ G. This shows the impor-

tance of calculating
⋂

Models(Cs).

3.2 Model-Intersection (MI) Problems
on the Extended Clause Space

It is natural for us to seek information about the model
intersection of given knowledge, which motivates us
to introduce a new class of logical problems.

A model-intersection problem(MI problem) on
ECLSF is a pair〈Cs,ϕ〉, whereCs⊆ ECLSF andϕ
is a mapping frompow(Gu) to some setW. The map-
ping ϕ is called anexit mapping. The answer to this
problem, denoted byansMI (Cs,ϕ), is defined by

ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs)),

where
⋂

Models(Cs) is the intersection of all models
of Cs. Note that whenModels(Cs) is the empty set,⋂

Models(Cs) = Gu.

Example 1. Consider the Oedipus puzzle described
in (Baader et al., 2007). Oedipus killed his father,
married his mother Iokaste, and had children with her,
among them Polyneikes. Polyneikes also had chil-
dren, among them Thersandros, who is not a patri-
cide. The problem is to find all persons who have a
patricide child who has a non-patricide child.

Assume that (i) “oe,” “ io,” “ po” and “th” stand, re-
spectively, for Oedipus, Iokaste, Polyneikes and Ther-
sandros, (ii) for any termst1 and t2, isCh(t1, t2) de-
notes “t1 is a child oft2,” and (iii) for any termt, pat(t)
denotes “t is a patricide” andprob(t) denotes “t is an
answer to this puzzle.” To formalize this puzzle, let
Cs1 consist of the following seven clauses:

isCh(oe, io)← isCh(po, io)←
isCh(po,oe)← isCh(th,po)←
pat(oe)← ← pat(th)
prob(x),pat(y)← isCh(z,x),pat(z), isCh(y,z)

Let ϕ1 be defined byϕ1(G) = {x | prob(x) ∈ G} for
anyG⊆ Gu. Then〈Cs1,ϕ1〉 is an MI problem repre-
senting this puzzle.

Example 2. Consider a problem of finding all lists
obtained by concatenating[1,2,3] with [4,5]. Let Cs2
consist of the following clauses:

app([],x,x)←
app([w|x],y, [w|z])← app(x,y,z)
ans(x)← app([1,2,3], [4,5],x)

Let ϕ2 be defined byϕ2(G) = {x | ans(x) ∈ G} for
anyG⊆ Gu. This problem is then formalized as the
MI problem〈Cs2,ϕ2〉.

Example 3. Consider the “tax-cut” problem dis-
cussed in (Motik et al., 2005). This problem is to
find all persons who can have discounted tax, with
the knowledge consisting of the following statements:
(i) Any person who has two children or more can
get discounted tax. (ii) Men and women are not the
same. (iii) It is false that a person is not the same
as himself/herself. (iv) A person’s mother is always
a woman. (v) Peter has a child, who is someone’s
mother. (vi) Peter has a child named Paul. (vii) Paul
is a man. These statements are represented by the fol-
lowing eight extended clauses:

TaxCut(x)←hasChild(x,y),hasChild(x,z),
notSame(y,z)

notSame(x,y)←Man(x),Woman(y)
← notSame(x,x)
Woman(x)←motherOf(x,y)
hasChild(Peter,x)← func(f1,x)
motherOf(x,y)← func(f1,x), f unc(f2,y)
hasChild(Peter,Paul)←

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

56

Man(Paul)←
The fifth and the sixth clauses together represent the
fifth statement (i.e., “Peter has a child, who is some-
one’s mother”), wheref1 and f2 are 0-ary function
variables. LetCs3 consist of the above eight clauses.
Let ϕ3 be defined byϕ3(G) = {x | TaxCut(x) ∈ G}
for any G⊆ Gu. The “tax-cut” problem is then for-
mulated as the MI problem〈Cs3,ϕ3〉.

Example 4. Consider the “Dreadsbury Mansion
Mystery” problem, which was given by Len Schubelt
and can be described as follows: Someone who lives
in Dreadsbury Mansion killed Aunt Agatha. Agatha,
the butler, and Charles live in Dreadsbury Mansion,
and are the only people who live therein. A killer
always hates his victim, and is never richer than his
victim. Charles hates no one that Aunt Agatha hates.
Agatha hates everyone except the butler. The butler
hates everyone not richer than Aunt Agatha. The but-
ler hates everyone Agatha hates. No one hates every-
one. The problem is to find who is the killer.

Assume thatneqis a predefined binary constraint
predicate and for any ground usual termst1 and t2,
neq(t1, t2) is true iff t1 6= t2. The background knowl-
edge of this mystery is formalized as a setCs4 consist-
ing of the following clauses, where the constantsA,
B, C, andD denote “Agatha,” “the butler,” “Charles,”
and “Dreadsbury Mansion,” respectively,f0 is a 0-ary
function variable, andf1 is a unary function variable:

live(x,D)← func(f0,x)
kill(x,A)← func(f0,x)
← live(x,D),neq(x,A),neq(x,B),neq(x,C)
live(A,D)←
live(B,D)←
live(C,D)←
hate(x,y)← kill(x,y)
← kill(x,y), richer(x,y)
← hate(A,x),hate(C,x), live(x,D)
hate(A,x)← neq(x,B), live(x,D)
richer(x,A),hate(B,x)←
hate(B,x)← hate(A,x)
← hate(x,y), func(f1,x,y), live(x,D)
live(y,D)← live(x,D), func(f1,x,y)
killer(x)← kill (x,A)

Let ϕ4 be defined byϕ4(G) = {x | killer(x) ∈ G} for
anyG⊆ Gu. This problem is then represented as the
MI problem〈Cs4,ϕ4〉.

Example 5. Let an exit mappingϕpr be given as fol-
lows: For anyG ⊆ Gu, ϕpr(G) = “yes” if G = Gu,
andϕpr(G) = “no” otherwise. Referring to the clause
setsCs1–Cs4 in Examples 1–4, we illustrate that proof

problems can be represented as MI problems as fol-
lows:

• LettingCs5 =Cs1∪{(← prob(io))}, the MI prob-
lem 〈Cs5,ϕpr〉 represents the problem of proving
whetherprob(io) is true.
• Letting Cs6 = Cs2∪{(← ans([1,2,3,4,5]))}, the

MI problem 〈Cs6,ϕpr〉 represents the problem of
proving whether the resulting list is[1,2,3,4,5].
• Letting Cs7 = Cs3 ∪ {(← TaxCut(x))}, the MI

problem 〈Cs7,ϕpr〉 represents the problem of
proving whether someone gets discounted tax.
• Letting Cs8 = Cs4 ∪ {(← killer(A))}, the MI

problem 〈Cs8,ϕpr〉 represents the problem of
proving whether Agatha killed herself.

3.3 Conversion of Query-Answering
(QA) Problems into MI Problems

A query-answering problem(QA problem) on FOLc is
a pair〈E,a〉, whereE is a closed first-order formula in
FOLc anda is a user-defined atom inAu. Let S be the
set of all substitutions for usual variables. The answer
to a QA problem〈E,a〉, denoted byansQA(E,a), is
defined by

ansQA(E,a) = {aθ | (θ∈ S)& (aθ∈Gu)& (E |= aθ)}.
In logic programming (Lloyd, 1987), a problem

represented by a pair of a set of definite clauses and a
query atom has been intensively discussed. In the de-
scription logic (DL) community (Baader et al., 2007),
a class of problems formulated as conjunctions of
DL-based axioms and assertions together with query
atoms has been discussed (Tessaris, 2001). These two
problem classes can be formalized as subclasses of
QA problems considered in this paper.

Theorem 3. For any closed first-order formula E∈
FOLc and any a∈ Au,

ansQA(E,a) = rep(a)∩ (
⋂

Models(E)),

where rep(a) denotes the set of all ground instances
of a.

Proof: Let E be a closed first-order formula in
FOLc and a ∈ Au. By the definition of|=, for any
ground atomg ∈ Gu, E |= g iff g ∈ ⋂

Models(E).
Then

ansQA(E,a)
= {aθ | (θ ∈ S) & (aθ ∈ Gu) & (E |= aθ)}
= {g | (θ ∈ S) & (g= aθ) & (g∈ Gu) & (E |= g)}
= {g | (g∈ rep(a)) & (E |= g)}
= {g | (g∈ rep(a)) & (g∈ (

⋂
Models(E)))}

= rep(a)∩ (⋂Models(E)).

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

57

Theorem 4 below shows that a QA problem on
FOLc can be converted into a MI problem on ECLSF.

Theorem 4. Let E be a first-order formula in FOLc
and a∈ Au. Let Cs⊆ ECLSF. If Models(E) =
Models(Cs), then

ansQA(E,a) = ansMI (Cs∪{(p(x1, . . . ,xn)← a)},ϕqa),

where p is a predicate that appears in neither Cs nor
a, the arguments x1, . . . ,xn are all the mutually differ-
ent variables occurring in a, and for any G⊆ Gu,

ϕqa(G) = {aθ | (θ ∈ S) & (p(x1, . . . ,xn)θ ∈G)}.

Proof: Assume thatModels(E) = Models(Cs).
Then

ansQA(E,a)
= (by Theorem 3)
= rep(a)∩ (⋂Models(E))
= rep(a)∩ (⋂Models(Cs))
= (by the definition ofϕqa)
= ϕqa(

⋂
Models(Cs∪{(p(x1, . . . ,xn)← a)}))

= ansMI (Cs∪{(p(x1, . . . ,xn)← a)},ϕqa).

3.4 Conversion of Proof Problems into
MI Problems

A proof problemis a pair〈E1,E2〉, whereE1 andE2
are first-order formulas in FOLc, and the answer to
this problem, denoted byansPr(E1,E2), is defined by

ansPr(E1,E2) =

{
“yes” if E1 |= E2,
“no” otherwise.

It is well known that thatE2 is a logical consequence
of E1 iff E1∧¬E2 is unsatisfiable (i.e.,E1∧¬E2 has
no model) (Chang and Lee, 1973; Fitting, 1996). As
a result,ansPr(E1,E2) can be equivalently defined by

ansPr(E1,E2) =

{
“yes” if Models(E1∧¬E2) =∅,
“no” otherwise.

Theorem 5 below shows that a proof problem can
be converted into a MI problem on ECLSF.

Theorem 5. Let 〈E1,E2〉 be a proof problem, where
E1 and E2 are first-order formulas in FOLc. Let
Cs⊆ ECLSF. Letϕpr : pow(Gu)→ {“yes” , “no” } be
defined by: for any G⊆ Gu,

ϕpr(G) =

{
“yes” if G = Gu,
“no” otherwise.

If the conditions Models(E1 ∧ ¬E2) = ∅ and
Models(Cs) =∅ are equivalent, then ansPr(E1,E2) =
ansMI (Cs,ϕpr).

Proof: Assume thatModels(E1∧¬E2) = ∅ iff
Models(Cs)=∅. Letb be a ground user-defined atom
that is not an instance of any user-defined atom occur-
ring in Cs. If m is a model ofCs, thenm−{b} is also a
model ofCs. Obviously,m−{b} 6=Gu. Therefore, (i)
if Models(Cs) 6=∅, then

⋂
Models(Cs) 6= Gu, and (ii)

if Models(Cs) =∅, then
⋂

Models(Cs) =
⋂{}= Gu.

Two cases are considered:

1. Suppose thatModels(E1 ∧ ¬E2) = ∅. Conse-
quently, Models(Cs) = ∅. So

⋂
Models(Cs) =

Gu, and, therefore,ansMI (Cs,ϕpr) = “yes”.

2. Suppose thatModels(E1∧¬E2) 6=∅. In this case,
Models(Cs) 6= ∅, and, thus,

⋂
Models(Cs) 6= Gu.

SoansMI (Cs,ϕpr) = “no”.

HenceansPr(E1,E2) = ansMI (Cs,ϕpr).

4 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION

A general schema for solving MI problems based on
equivalent transformation (ET) is formulated and its
correctness is shown (Theorem 10).

4.1 Preservation of Partial Mappings
and Equivalent Transformation

Terminologies such as preservation of partial map-
pings and equivalent transformation are defined in
general below. They will be used with a specific class
of partial mappings called target mappings, which
will be introduced in Section 4.2.

Assume thatX and Y are sets andf is a par-
tial mapping fromX to Y. For anyx,x′ ∈ dom(f),
transformation ofx into x′ is said topreserve f iff
f (x) = f (x′). For anyx,x′ ∈ dom(f), transformation
of x into x′ is calledequivalent transformation(ET)
with respect tof iff the transformation preservesf ,
i.e., f (x) = f (x′).

Let F be a set of partial mappings from a setX
to a setY. Givenx,x′ ∈ X, transformation ofx into
x′ is calledequivalent transformation(ET) with re-
spect toF iff there exists f ∈ F such that the trans-
formation preservesf . A sequence[x0,x1, . . . ,xn] of
elements inX is called anequivalent transformation
sequence(ET sequence) with respect toF iff for any
i ∈ {0,1, . . . ,n− 1}, transformation ofxi into xi+1 is
ET with respect toF. When emphasis is placed on
the initial elementx0 and the final elementxn, this se-
quence is also referred to as an ET sequencefrom x0
to xn.

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

58

4.2 Target Mappings

We introduce the concept of target mapping, which is
useful to devise equivalent transformation (ET) rules
in the ECLSF space (Theorem 9) or to construct an
answer mapping (Theorem 8) for determining an an-
swer from the final state of computation.

The answer to a MI problem〈Cs,ϕ〉 is determined
uniquely byModels(Cs) andϕ. MI problems can thus
be transformed into simpler forms by ET preserving
the mappingModels.

Simplification of MI problems using ET preserv-
ing the mappingModelscan be extended by consider-
ing additional partial mappings. A new class of partial
mappings, called GSETMAP, will be defined below.

Definition 1. GSETMAP is the set of all partial map-
pings frompow(ECLSF) to pow(pow(Gu)).

As defined in Section 2.5,Models(Cs) is the set
of all models ofCs for any Cs⊆ ECLSF. Since a
model is a subset ofGu, Modelsis regarded as a total
mapping frompow(ECLSF) to pow(pow(Gu)). Since
a total mapping is also a partial mapping, the map-
ping Modelsis a partial mapping frompow(ECLSF)
to pow(pow(Gu)), i.e., it is an element of GSETMAP.

A partial mappingM in GSETMAP is of par-
ticular interest if

⋂
M(Cs) =

⋂
Models(Cs) for any

Cs∈ dom(M). Such a partial mapping is called atar-
get mapping.

Definition 2. A partial mappingM ∈ GSETMAP is a
target mappingiff for any Cs∈ dom(M),

⋂
M(Cs) =⋂

Models(Cs).

It is obvious that:

Theorem 6. The mapping Models is a target map-
ping.

The next theorem provides a sufficient condition
for a mapping in GSETMAP to be a target mapping.

Theorem 7. Let M∈ GSETMAP. M is a target map-
ping if the following conditions are satisfied:

1. M(Cs)⊆Models(Cs) for any Cs∈ dom(M).
2. For any Cs∈ dom(M) and any m2 ∈Models(Cs),

there exists m1 ∈M(Cs) such that m1⊆m2.

Proof: Assume that Conditions 1 and 2 above
are satisfied. LetCs∈ dom(M). By Condition 1,⋂

M(Cs)⊇⋂
Models(Cs). We show that

⋂
M(Cs)⊆⋂

Models(Cs) as follows: Assume thatg∈ ⋂
M(Cs).

Let m2 ∈ Models(Cs). By Condition 2, there exists
m1 ∈M(Cs) such thatm1 ⊆m2. Sinceg∈ ⋂

M(Cs),
g belongs tom1. Sog∈m2. Sincem2 is any arbitrary

element ofModels(Cs), g belongs to
⋂

Models(Cs).
It follows that

⋂
M(Cs) =

⋂
Models(Cs). HenceM is

a target mapping.

4.3 Answer Mappings

A set of problems that can be solved at low cost is
useful to provide a desirable final destination for ET
computation. It can also be specified as a partial map-
ping that is preserved by ET transformation. Such a
specification is useful to invent and to justify new ET
transformation. This motivates the concept of answer
mapping, which is formalized below.

Definition 3. Let W be a set. A partial mappingA
from

pow(ECLSF)×Map(pow(Gu),W)

to W is an answer mappingiff for any 〈Cs,ϕ〉 ∈
dom(A), ansMI (Cs,ϕ) = A(Cs,ϕ).

If M is a target mapping, thenM can be used for
constructing answer mappings.

Theorem 8. Let M be a target mapping. Suppose that
A is a partial mapping such that

• dom(M) = {x | 〈x,y〉 ∈ dom(A)}, and
• for any〈Cs,ϕ〉 ∈ dom(A),

A(Cs,ϕ) = ϕ(
⋂

M(Cs)).

Then A is an answer mapping.

Proof: Let 〈Cs,ϕ〉 ∈ dom(A). Sincedom(M) =
{x | 〈x,y〉 ∈ dom(A)}, Cs belongs todom(M). Since
M is a target mapping,

⋂
M(Cs) =

⋂
Models(Cs). So

ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs))
= ϕ(

⋂
M(Cs))

= A(Cs,ϕ).
ThusA is an answer mapping.

4.4 ET Steps and ET Rules

A schema for solving MI problems based on equiva-
lent transformation (ET) preserving answers is formu-
lated. The notions of preservation of answers/target
mappings, ET with respect to answers/target map-
pings, and an ET sequence are obtained by special-
izing the general definitions in Section 4.1.

Let STATE be the set of all MI problems. Elements
of STATE are calledstates.

Definition 4. Let 〈S,S′〉 ∈ STATE×STATE. 〈S,S′〉 is
an ET stepiff if S= 〈Cs,ϕ〉 andS′ = 〈Cs′,ϕ′〉, then
ansMI (Cs,ϕ) = ansMI (Cs′,ϕ′).

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

59

Definition 5. A sequence[S0,S1, . . . ,Sn] of ele-
ments of STATE is an ET sequenceiff for any i ∈
{0,1, . . . ,n−1}, 〈Si ,Si+1〉 is an ET step.

The role of ET computation constructing[S0,S1,
. . . ,Sn] is to start withS0 and to reachSn from which
the answer to the given problem can be easily com-
puted.

The concept of ET rule on STATE is defined by:

Definition 6. An ET rule r on STATE is a partial
mapping from STATE to STATE such that for any
S∈ dom(r), 〈S, r(S)〉 is an ET step.

We also define ET rules onpow(ECLSF) as fol-
lows:

Definition 7. An ET rule r with respect to a target
mappingM is a partial mapping frompow(ECLSF) to
pow(ECLSF) such that for anyCs∈dom(r), M(Cs)=
M(r(Cs)).

We can construct an ET rule on STATE from an
ET rule with respect to a target mapping.

Theorem 9. Assume that M is a target mapping and
r is an ET rule with respect to M. Suppose thatr̄ is a
partial mapping fromSTATE to STATE such that

• dom(r) = {x | 〈x,y〉 ∈ dom(r̄)}, and

• r̄(S) = 〈r(Cs),ϕ〉 if S= 〈Cs,ϕ〉 ∈ dom(r̄).

Thenr̄ is an ET rule onSTATE.

Proof: Assume thatS∈ dom(r̄). Then there exist
a clause setCs and an exit mappingϕ such thatS=
〈Cs,ϕ〉 andCs∈ dom(r). For suchCsandϕ,

ansMI (Cs,ϕ) = ϕ(
⋂

Models(Cs))
= (sinceM is a target mapping)
= ϕ(

⋂
M(Cs))

= (sinceM(Cs) = M(r(Cs)))
= ϕ(

⋂
M(r(Cs)))

= (sinceM is a target mapping)
= ϕ(

⋂
Models(r(Cs)))

= ansMI (r(Cs),ϕ).
SinceS= 〈Cs,ϕ〉 and ¯r(S) = 〈r(Cs),ϕ〉, 〈S, r̄(S)〉 is
an ET step. Hence ¯r is an ET rule on STATE.

4.5 Correct Solutions based on ET
Rules

Given a setCs of extended clauses and an exit map-
ping ϕ, the MI problem〈Cs,ϕ〉 can be solved as fol-
lows:

1. LetA be an answer mapping.

Figure 2: Target mappings and answer mappings yield
many correct computation paths.

2. Prepare a setR of ET rules on STATE.

3. TakeS0 such thatS0 = 〈Cs,ϕ〉 to start computa-
tion fromS0.

4. Construct an ET sequence[S0, . . . ,Sn] by applying
ET rules inR, i.e., for eachi ∈ {0,1, . . . ,n− 1},
Si+1 is obtained fromSi by selecting and applying
r i ∈ R such thatSi ∈ dom(r i) andr i(Si) = Si+1.

5. Assume thatSn = 〈Csn,ϕn〉. If the computation
reaches the domain ofA, i.e.,〈Csn,ϕn〉 ∈ dom(A),
then compute the answer by using the answer
mappingA, i.e., outputA(Csn,ϕn).

The answer to the MI problem〈Cs,ϕ〉, i.e.,
ansMI (Cs,ϕ) = ϕ(

⋂
Models(Cs)), can be directly ob-

tained by the computation shown in the leftmost path
in Fig. 2. Instead of taking this computation path, the
above solution takes a different one, i.e., the lowest
path (fromCs to Cs′) followed by the rightmost path
(throughA) in Fig. 2.

The selection ofr i in Rat Step 4 is nondeterminis-
tic and there may be many possible computation paths
for each MI problem. Every output computed by us-
ing any arbitrary computation path is correct.

Theorem 10. When an ET sequence starting from
S0 = 〈Cs,ϕ〉 reaches Sn in dom(A), the above proce-
dure gives the correct answer to〈Cs,ϕ〉.

Proof: Since [S0, . . . ,Sn] is an ET sequence,
ansMI (Cs,ϕ) = ansMI (Csn,ϕn). Since A is an an-
swer mapping,ansMI (Csn,ϕn) = A(Csn,ϕn). Hence
ansMI (Cs,ϕ) = A(Csn,ϕn).

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

60

C1: FM(x)← FP(x) C2: FP(john)←
C3: FP(mary)← C4: teach(john,ai)←
C5: St(paul)← C6: AC(ai)←
C7: Tp(kr)← C8: Tp(lp)←
C9: curr(x,z)← exam(x,y),subject(y,z),St(x),

Co(y),Tp(z)

C10: mdt(x,y)← curr(x,z),expert(y,z),St(x),Tp(z),
FP(y),AC(w), teach(y,w)

C11: mdt(x,y)← St(x),NFP(y)

C12: exam(paul,ai)← C13: subject(ai,kr)←
C14: subject(ai, lp)← C15: expert(john,kr)←
C16: expert(mary, lp)←
C17: AC(x)← teach(mary,x)
C18: ← AC(x),BC(x)
C19: AC(x),BC(x)←Co(x)
C20: Co(x)← AC(x)
C21: Co(x)← BC(x)
C22: FP(x)←NFP(x)
C23: ←NFP(x), teach(x,y),Co(y)
C24: teach(x,y),NFP(x)← FP(x), func(f0,x,y)
C25: Co(y),NFP(x)← FP(x), func(f0,x,y)

Figure 3: Background knowledge for themdt problem on
ECLSF.

5 EXAMPLE

5.1 Problem Description

The clauses in Fig. 3 are obtained from the “may-
do-thesis” problem (for short, themdtproblem) given
in (Donini et al., 1998) with some modification. All
atoms appearing in Fig. 3 belong toAu. The unary
predicatesNFP, FP, FM, Co, AC, BC, St, and Tp
denote “non-teaching full professor,” “full profes-
sor,” “faculty member,” “course,” “advanced course,”
“basic course,” “student,” and “topic,” respectively.
The clausesC9–C11 together provide the conditions
for a student to do his/her thesis with a professor,
where mdt(s, p), curr(s, t), expert(p, t), exam(s,c),
and subject(c, t) are intended to mean “s may do
his/her thesis withp,” “ s studiedt in his/her curricu-
lum,” “ p is an expert int,” “ s passed the exam ofc,”
and “c coverst,” respectively, for any students, any
professorp, any topict, and any coursec.

Suppose that we want to find all professors with
whompaulmay do his thesis. This problem is formu-
lated as a MI problem〈Cs,ϕ〉, whereCs consists of
the clausesC1–C25 in Fig. 3 andϕ is defined by: for
anyG⊆ Gu,

ϕ(G) = {x |mdt(paul,x) ∈G}.

C26: teach(john,ai)←
C27: AC(ai)←
C28: AC(x)← teach(mary,x)
C29: ← AC(x),BC(x)
C30: AC(x),BC(x)←Co(x)
C31: Co(x)← AC(x)
C32: Co(x)← BC(x)
C33: ← NFP(x), teach(x,y),Co(y)
C34: mdt(paul,mary)← AC(x), teach(mary,x),

Co(ai)
C35: mdt(paul, john)← AC(x), teach(john,x),

Co(ai)
C36: mdt(paul,x)←NFP(x)
C37: teach(mary,x),NFP(mary)← func(f0,mary,x)
C38: teach(john,x),NFP(john)← func(f0, john,x)
C39: Co(x),NFP(mary)← func(f0,mary,x)
C40: Co(x),NFP(john)← func(f0, john,x)

Figure 4: Clauses obtained by application of ET rules.

How to compute the answer to this MI problem using
many kinds of clause transformation rules is demon-
strated in Section 5.2.

5.2 ET Computation

The clause setCsconsisting ofC1–C25 given in Sec-
tion 5.1 (Fig. 3) is transformed as follows:

• By (i) unfolding using the definitions of the pred-
icatesFP, Tp, curr, subject, expert, St, andexam,
(ii) removing these definitions along with the def-
inition of FM using definite-clause removal, (iii)
removal of valid clauses, and (iv) removal of
subsumed clauses, the clausesC1–C25 are trans-
formed into the clausesC26–C40 in Fig. 4.

• Side-change transformation forNFP enables (i)
unfolding using the definition ofCo, (ii) elimi-
nation of this definition using definite-clause re-
moval, and (iii) removal of valid clauses. By such
side-change transformation followed by transfor-
mation of these three types,C26–C40 are trans-
formed into the clausesC41–C61 in Fig. 5.

• Side-change transformation forBC enables un-
folding using the definition ofAC. By (i) un-
folding, (ii) definite-clause removal, (iii) removal
of duplicate atoms, (iv) removal of valid clauses,
and (v) removal of subsumed clauses,C41–C61 are
transformed intoC62–C77 in Fig. 6.

• By (i) unfolding using the definition ofteach, (ii)
definite-clause removal, (iii) removal of duplicate
atoms, (iv) removal of valid clauses, and (v) re-
moval of subsumed clauses,C62–C77 are trans-
formed intoC78–C83 in Fig. 7.

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

61

C41: teach(john,ai)←
C42: AC(ai)←
C43: AC(x)← teach(mary,x)
C44: ← AC(x),BC(x)
C45: mdt(paul,mary)← AC(x), teach(mary,x),

func(f0,mary,ai),
notNFP(mary)

C46: mdt(paul,mary)← AC(x), teach(mary,x),
func(f0, john,ai),
notNFP(john)

C47: mdt(paul,mary)← AC(x), teach(mary,x),BC(ai)
C48: mdt(paul,mary)← AC(x), teach(mary,x),AC(ai)
C49: mdt(paul, john)← AC(x), teach(john,x),

func(f0,mary,ai),
notNFP(mary)

C50: mdt(paul, john)← AC(x), teach(john,x),
func(f0, john,ai),
notNFP(john)

C51: mdt(paul, john)← AC(x), teach(john,x),BC(ai)
C52: mdt(paul, john)← AC(x), teach(john,x),AC(ai)
C53: mdt(paul,x),notNFP(x)←
C54: teach(mary,x)← func(f0,mary,x),

notNFP(mary)
C55: teach(john,x)← func(f0, john,x),

notNFP(john)
C56: notNFP(x)← teach(x,y), func(f0,mary,y),

notNFP(mary)
C57: notNFP(x)← teach(x,y), func(f0, john,y),

notNFP(john)
C58: notNFP(x)← teach(x,y),BC(y)
C59: notNFP(x)← teach(x,y),AC(y)
C60: AC(x),BC(x)← func(f0,mary,x),

notNFP(mary)
C61: AC(x),BC(x)← func(f0, john,x),

notNFP(john)

Figure 5: Clauses obtained by application of ET rules.

• By definite-clause removal fornotBC, C78–C83
are transformed intoC84–C87 in Fig. 8.

• Application of the resolution rule toC84 andC86,
followed by removal of independentfunc-atoms
and removal of duplicated atoms, yields the clause
C88 in Fig. 9. By removal of subsumed clauses,
C84 andC86 are removed. By definite clause re-
moval,C87 is removed. ThenC84–C87 are trans-
formed intoC88–C89 in Fig. 9.

As a result, the MI problem〈Cs,ϕ〉 in Sec-
tion 5.1 is transformed equivalently into the MI prob-
lem 〈{C88,C89},ϕ〉. Hence

ansMI (Cs,ϕ)
= ansMI ({C88,C89},ϕ)
= ϕ(

⋂
Models({C88,C89}))

= ϕ({mdt(paul,mary),mdt(paul, john)})
= {mary, john}.

C62: teach(john,ai)←
C63: notBC(ai)←
C64: notBC(x)← teach(mary,x)
C65: notNFP(x),notBC(y)← teach(x,y)
C66: notNFP(x)← teach(x,y), func(f0, john,y),

notNFP(john)
C67: notNFP(x)← teach(x,y), func(f0,mary,y),

notNFP(mary)
C68: mdt(paul,mary)← teach(mary,x)
C69: mdt(paul, john)← teach(john,x),

teach(mary,x)
C70: mdt(paul, john)← teach(john,ai)
C71: mdt(paul, john)← teach(john,x),

func(f0,mary,x),
notNFP(mary),notBC(x)

C72: mdt(paul, john)← teach(john,x),
func(f0, john,x),
notNFP(john),notBC(x)

C73: mdt(paul,x),notNFP(x)←
C74: teach(mary,x)← func(f0,mary,x),

notNFP(mary)
C75: teach(john,x)← func(f0, john,x),

notNFP(john)
C76: notNFP(x)← teach(x,ai)
C77: notNFP(x)← teach(x,y), teach(mary,y)

Figure 6: Clauses obtained by application of ET rules.

C78: notBC(x)← func(f0,mary,x),notNFP(mary)
C79: mdt(paul,x),notNFP(x)←
C80: notBC(ai)←
C81: mdt(paul, john)←
C82: mdt(paul,mary)← func(f0,mary,x),

notNFP(mary)
C83: notNFP(john)←
Figure 7: Clauses obtained by application of ET rules.

C84: mdt(paul,x),notNFP(x)←
C85: mdt(paul, john)←
C86: mdt(paul,mary)← func(f0,mary,x),

notNFP(mary)
C87: notNFP(john)←

Figure 8: Clauses obtained by application of ET rules.

C88: mdt(paul,mary)←
C89: mdt(paul, john)←

Figure 9: Clauses obtained by application of ET rules.

6 CONCLUSIONS

We have defined a class of model-intersection (MI)
problems on extended clauses possibly with con-
straint atoms andfunc-atoms, each of which is a pair
of a setCs of extended clauses and an exit mapping

KEOD 2016 - 8th International Conference on Knowledge Engineering and Ontology Development

62

used for constructing the output answer from the in-
tersection of all models ofCs. Many logical prob-
lems, including proof problems and query-answering
(QA) problems, can be transformed into MI problems
preserving their answers. The theory in this paper
therefore provides a foundation for many kinds of log-
ical problem solving.

We introduced the concepts of target mapping and
answer mapping, which are useful for inventing many
kinds of ET rules for solving MI problems on ex-
tended clauses. The proposed solution schema for MI
problems comprises the following steps: (i) formal-
ize a given problem as a MI problem or map it into a
MI problem, (ii) prepare ET rules from answers/target
mappings, (iii) construct an ET sequence preserving
answers/target mappings, and (iv) compute the an-
swer by using some answer mapping (possibly con-
structed on some target mapping).

Many logical problems, among others, all proof
problems and all QA problems on FOLc, are mapped,
by using new meaning-preserving Skolemization
(Akama and Nantajeewarawat, 2011), into MI prob-
lems with function variables, and solved by ET com-
putation proposed in this paper. When only con-
ventional clauses without function variables are used,
meaning-preserving Skolemization is impossible. In
the presence of built-in constraint atoms, the classical
theory, which uses the conventional Skolemization,
cannot guarantee the correctness of the conversion of
logical formulas into clauses.

The ET-based solution method together with
meaning-preserving Skolemization is very general
and fundamental, since any combination of ET steps
forms correct computation and the correctness of the
method for a very large class of problems has been
shown in this paper. By its generality, the theory de-
veloped in this paper makes clear a fundamental and
central structure of representation and computation
for logical problem solving.

ACKNOWLEDGEMENTS

This research was partially supported by JSPS KAK-
ENHI Grant Numbers 25280078 and 26540110.

REFERENCES

Akama, K. and Nantajeewarawat, E. (2008). Meaning-
Preserving Skolemization on Logical Structures. In
Proceedings of the 9th International Conference
on Intelligent Technologies, pages 123–132, Samui,
Thailand.

Akama, K. and Nantajeewarawat, E. (2011). Meaning-
Preserving Skolemization. InProceedings of the 3rd
International Conference on Knowledge Engineering
and Ontology Development, pages 322–327, Paris,
France.

Akama, K. and Nantajeewarawat, E. (2015a). A General
Schema for Solving Model-Intersection Problems on a
Specialization System by Equivalent Transformation.
In Proceedings of the 7th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management (IC3K 2015), Vol-
ume 2: KEOD, pages 38–49, Lisbon, Portugal.

Akama, K. and Nantajeewarawat, E. (2015b). Function-
variable Elimination and Its Limitations. InPro-
ceedings of the 7th International Joint Conference
on Knowledge Discovery, Knowledge Engineering
and Knowledge Management (IC3K 2015), Volume 2:
KEOD, pages 212–222, Lisbon, Portugal.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2007).The De-
scription Logic Handbook. Cambridge University
Press, second edition.

Chang, C.-L. and Lee, R. C.-T. (1973).Symbolic Logic and
Mechanical Theorem Proving. Academic Press.

Clark, K. L. (1978). Negation as Failure. In Gallaire, H.
and Minker, J., editors,Logic and Data Bases, pages
293–322. Plenum Press, New York.

Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A.
(1998). AL-log: Integrating Datalog and Description
Logics. Journal of Intelligent Information Systems,
16:227–252.

Fitting, M. (1996). First-Order Logic and Automated The-
orem Proving. Springer-Verlag, second edition.

Gelfond, M. and Lifschitz, V. (1988). The Stable Model
Semantics for Logic Programming. InProceedings
of International Logic Programming Conference and
Symposium, pages 1070–1080. MIT Press.

Gelfond, M. and Lifschitz, V. (1991). Classical Negation
in Logic Programs and Disjunctive Databases.New
Generation Computing, 9:365–386.

Lloyd, J. W. (1987). Foundations of Logic Programming.
Springer-Verlag, second, extended edition.

Motik, B., Sattler, U., and Studer, R. (2005). Query An-
swering for OWL-DL with Rules.Journal of Web Se-
mantics, 3(1):41–60.

Robinson, J. A. (1965). A Machine-Oriented Logic Based
on the Resolution Principle.Journal of the ACM,
12:23–41.

Tessaris, S. (2001).Questions and Answers: Reasoning and
Querying in Description Logic. PhD thesis, Depart-
ment of Computer Science, The University of Manch-
ester, UK.

Model-Intersection Problems with Existentially Quantified Function Variables: Formalization and a Solution Schema

63

