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Abstract: Built-in constraint atoms play a very important role in knowledge representation and are indispensable for
practical applications. Itis very natural to use built-in constraint atoms together with user-defined atoms when
formalizing logical problems using first-order formulas. In the presence of built-in constraint atoms, however,
the conventional Skolemization in general preserves neither the satisfiability nor the logical meaning of a
given first-order formula, motivating us to step outside the conventional Skolemization and the usual space of
first-order formulas. We propose general solutions for proof problems and query-answering (QA) problems
on first-order formulas possibly with built-in constraint atoms. We map, by using new meaning-preserving
Skolemization, all proof problems and all QA problems, preserving their answers, into a new class of model-
intersection (MI) problems on an extended clause space, where clauses are in a sense “higher-order” since they
may contain not only built-in constraint atoms but also function variables. We propose a general schema for
solving this class of MI problems by equivalent transformation (ET), where problems are solved by repeated
simplification using ET rules. The correctness of this solution schema is shown. Since MI problems in this
paper form a very large class of logical problems, this theory is also useful for inventing solutions for many
classes of logical problems.

1 INTRODUCTION serves the satisfiability df. Transformation ofCs

by using resolution and factoring also preserves the
A proof problem is a “yes/no” problem; it is con- satisfiability ofCs
cerned with checking whether or not one given logical A query-answering problenfQA problem on
formula entails another given logical formula. For- clauses is a paifCs a), whereCsis a set of clauses
mally, a proof problem is a paifE:, E;), whereE; anda is a user-defined query atom. The answer to
andE; are first-order formulas, and the answer to this a QA problem(Cs a) is defined as the set of all
problem is defined to be “yes” E; is a logical con- ground instances o that are logical consequences
sequence dE;, and it is defined to be “no” otherwise. of Cs. Characteristically, a QA problem is an “all-
A proof problem(E;, Ey) is solved (Chang and Lee, answers finding” problem, i.e., all ground instances of
1973; Robinson, 1965) by (i) constructing the formula a given query atom satisfying the requirement above
E = (E1 A —Ep), since the unsatisfiability & means are to be found. In our previous work (Akama and
that the answer of this proof problem is “yes”, (i) Nantajeewarawat, 2015a), for solving proof prob-
conversion oE into a setCsof clauses using the con- lems on first-order formulas and QA problems on
ventional Skolemization (Chang and Lee, 1973; Fit- clauses, these problems are transformed intalel-
ting, 1996), (iii) transformation of the clause <& intersection problemgMI problems on the conven-
by the resolution and factoring inference rules, and tional clause space. Such a MI problem is a pair
(iv) determining the answer by checking whether an (Cs ¢), whereCsis a set of clauses arfdis a map-
empty clause can be obtained, i.e., if an empty clauseping, called anexit mapping used for constructing
is obtained, the€sis unsatisfiable and the answer to the output answer from the intersection of all models
the proof problem is “yes”. This solution relies on of Cs More formally, the answer to a Ml problem
the preservation of satisfiability. The conversion of (Cs ) is ¢((\ModelgCs)), whereModelgCs) is the
E into Csusing the conventional Skolemization pre- set of all models o€sand(\ModelgCs) is the inter-
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section of all elements d¥lodel§Cs). Note that, in

this theory, an interpretation is a set of ground user- et |, Proof |
defined atoms, which is similar to a Herbrand inter- on FOLc L problems By
pretation (Chang and Lee, 1973; Fitting, 1996). Since P T
each element oflodelgCs) is a set of ground user- ) I e
defined atoms, we can take the intersection of all ele- on FOL. S /
ments of it.

. . . Figure 1: MI-problem-centered view of logical problems.
In this paper, we consider first-order formulas that g P gieatp

possibly includes built-in constraint atoms. The set of per is the largest and the first one that enables struc-

all such formulas is denoted by F@LBUIilt-in con- 45| embedding of the full class of proof problems
straint atoms play a cru0|_al role in kr_1owledg(=T répre- on FOLe and the full class of QA problems on FQL
sentation and.are_ essentlgl for prapncal applications. The class of Ml problems considered in our previous
One of the objectives of this paper is to propose gen-yqri (Akama and Nantajeewarawat, 2015a) involves
eral solutions for proof problems and QA problems 4, ysyal clauses (with no function variable being
on FOL, which are large problem classes that have 4)16wed) and is not sufficient for dealing with proof
never been solved fully so far. The classical theorem- problems and QA problems on FQEntirely.

proving theory motivates us to transform proof prob- The rest of the paper is organized as follows: Sec-

lems and QA problems on FQLnto MI problems i, 5 jefines extended clauses and EELad intro-
on clauses by the conventional Skolemization (Chang 4,,ces meaning-preserving Skolemization. Section 3
and Lee, 1973; Fitting, 1996). However, satisfiabil- {5 majizes MI problems on extended clauses and de-

ity preservati_on of a formula does not g_enerally hold ¢.ribes how QA problems and proof problems can be
for formulas in FOl; (Akama and Nantajeewarawal,  .onyerted into MI problems. Section 4 presents a gen-

2015b). The conventional Skolemization, therefore, o4 schema for solving MI problems by ET. Section 5

does not provide a transformation process towards jemonstrates an application of the general schema.
correct solutions for proof problems and QA prob- gaction 6 concludes the paper.
lems on FOL. The notation that follows holds thereafter. Given

Meaning-preserving Skolemization (MPS) was a setA, pow(A) denotes the power set 8 Given
invented (Akama and Nantajeewarawat, 2008; Akama two setsA and B, Map(A,B) denotes the set of all

and Nantajeewarawat, 2011) to overcome the difficul- mappings fromA to B, and for any partial mapping
ties caused by the conventional Skolemization. MPS f from A to B, don f) denotes the domain df, i.e.,
preserves the logical meanings of first-order formu- dom(f) = {a| (ac A) & (f(a) is defined}.

las (and, thus, also preserves their satisfiability) even

when they include built-in constraint atoms. Con-

ventional clauses should be extended in order that

all first-order formulas in FOL can be equivalently 2 AN EXTENDED CLAUSE SPACE
converted by MPS. An extended clause may contain

function variables and atoms of a special kind called 2.1 User-defined Atoms, Built-in
funcatoms. The set of all extended clauses is called Constraint Atoms, and func-Atoms
ECLS-.

This paper introduces a model-intersection prob- an extended formula space is introduced, which con-
lem (MI problem) on this extended space, which is tains three kinds of atoms, i.e., user-defined atoms,
a pair(Cs ¢), whereCsis a set of extended clauses pyijlt-in constraint atoms, anfuncatoms. Auser-
and¢ is an exit mapping. The set of all Ml problems  defined atontakes the fornp(ty, ..., tn), wherepis a
on the extended clauses constitutes a very large clasg;ser-defined predicate and thare usual terms. Sup-
of problems and is of great importance. As outlined posing thateach St andFM are user-defined pred-
by Fig. 1, all proof problems and all QA problems jcates teachjohn,ai), Stpaul), andFM(x) are user-
on FOLe are mapped, preserving their answers, into defined atoms (cf. Fig. 3 in Section 5).bAilt-in con-

MI problems on ECL$§. By solving MI problems on  straint atom also simply called @onstraint atonor
ECLS:, we solve proof problems and QA problems g pyilt-in atom takes the forne(ty, . .., tn), wherec is

on FOLe. We propose a general schema for solving 3 predefined constraint predicate and thare usual

MI problems on ECL§ by equivalent transformation  terms. Typical examples of built-in constraint atoms
(ET), where problems are solved by repeated problem areec{x, X) andneql, 2), Whereeqandneqare prede-
simplification using ET rules. fined constraint predicates that stand for “equal” and

The class of Ml problems established in this pa- “not equal,” respectively. (No built-in constraint atom
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appearsin Fig. 3.) Lefl, be the set of all user-defined
atoms,Gy the set of all ground user-defined atorAs,
the set of all constraint atoms, arf the set of all
ground constraint atoms.

A func-atom(Akama and Nantajeewarawat, 2011)
is an expression of the forfundf,ts,... th,th+1),
wheref is either am-ary function constant or an-
ary function variable, and thig are usual terms. For
example, supposing thdg is a unary function vari-
able,fund fo,x,y) is afuncatom (cf. the clauseSy4
andCys in Fig. 3). Afuncatomfund f,ts, ... th,the1)
is ground if f is a function constant and theare
ground usual terms.

There are two types of variables: usual variables
and function variables. (In Fig. &, y, z, andw are
usual variables, whildg is a function variable.) A
function variable is instantiated into a function con-
stant or a function variable, but not into a usual term.
Let FVar be the set of all function variables and
FConthe set of all function constants. A substitu-
tion for function variables is a mapping froRVar to
FVaru FCon Eachn-ary function constant is associ-
ated with a mapping frong" to G, whereg; denotes
the set of all usual ground terms.

2.2 Extended Clauses

User-defined atoms and built-in constraint atoms are

sides. Given a definite clause € DcL, the user-
defined atom inhs(C) is called theheadof C, de-
noted byheadC), and the seths(C) is called the
bodyof C, denoted byodyC).

2.3 An Extended Clause Space

A conjunction of a finite or infinite number of ex-
tended clauses is used for knowledge representation
and also for computation. As usual, such a conjunc-
tion is usually dealt with by regarding it as a set of
(extended) clauses. The set of all extended clauses is
denoted by ECLS Theextended clause spatethis
paper is the powerset of ECES

Let Cshe a set of extended clauses. Implicit ex-
istential quantifications of function variables and im-
plicit clause conjunction are assumed@s. Func-
tion variables irCsare all existentially quantified and
their scope covers all clauses@s. With occurrences
of function variables, clauses i@s are connected
through shared function variables. After instantiating
all function variables inCs into function constants,
clauses in the instantiated set are totally separated.

2.4 Conversion of First-order Formulas
into Sets of Extended Clauses

used in usual clauses, which are extended by allow- Semantically, an extended clause corresponds to a

ing funcatoms to appear in their right-hand sides. An
extended clause 8 a formula of the form

al,...,am<—bl,...,bn,fl,...,fp,

where each ofy,...,am,b1,...,b, is a user-defined
atom or a built-in constraint atonfy, ... ,fp arefunc
atoms, andm, n, and p are non-negative integers.
All usual variables occurring i€ are implicitly uni-
versally quantified and their scope is restricted to
the extended clausg itself. The sets{ay,...,am}
and{by,...,bn,f1,...,fp} are called théeft-hand side
and theright-hand siderespectively, of the extended
clauseC, and are denoted bijps(C) andrhs(C), re-
spectively. LetuserLh$C) denote the number of
user-defined atoms in the left-hand sideCofWhen
userLh¢C) = 0, C is called anegative extended
clause WhenuserLh$C) = 1,Cis called arextended
definite clause WhenuserLh$C) > 1, C is called a
multi-head extended clause

disjunction of extended literals, and a set of ex-
tended clauses corresponds to an extended conjunc-
tive normal form. After explaining the limitations

of the conventional Skolemization, conversion of a
first-order formula in FOL into a set of extended
clauses in ECLSby meaning-preserving Skolemiza-
tion (Akama and Nantajeewarawat, 2008; Akama and
Nantajeewarawat, 2011) is introduced.

2.4.1 Conventional Skolemization

In the conventional proof theory, a first-order formula
is usually converted into a conjunctive normal form
in the usual first-order formula space. The conver-
sion involves removal of existential quantifications by
Skolemization (Chang and Lee, 1973; Fitting, 1996),
i.e., by replacement of an existentially quantified vari-
able with a Skolem term determined by its relevant
quantification structure. Let CSE) denote the set

When no confusion is caused, an extended clause,of usual clauses obtained by applying this conversion
a negative extended clause, an extended definiteto a first-order formulé.

clause, and a multi-head extended clause are also

called aclause a negative clausea definite clausg
and amulti-head clausgerespectively.

Let DcL denote the set of all extended definite
clauses with no constraint atom in their left-hand
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The conventional Skolemization, however, does
not generally preserve the logical meaning of a first-
order formula in FOL, nor the satisfiability thereof.
This is precisely shown by Theorem 1 below. Given a
first-order formul&E in FOL; and a se€sof extended
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clauses in ECLS let Model§E) andModelgCs) de-
note the set of all models & and that of all models
of Cs respectively.

Theorem 1.

1. There are a first-order formula E in FQland a
clause set Cs. ECLS such thatCSK(E) = Cs
and Model$E) # ModelgCs).

. There are a first-order formula E in FQland a
clause set Cs. ECLS such thatCSK(E) = Cs,
ModelsE) # &, and ModeléCs) = &.

Proof: Assume that:

noteqis a predicate for built-in constraint atoms
and for any ground ternts andty, notedts, ty) is
true iff t; # to.

F1, F, Fs, andF, are the first-order formulas in
FOL. given by:

Fi: vxvyvz: [(hasChildx,y) A hasChildx, z)
A notedy, z)) — TaxCutx)]

F,: hasChild Peter, Paul)
Fs: 3Ix:hasChildPeterx)
Fa: —(3x: TaxCutx))

Consider a first-order formuld = F1 A, AF3 A Fy.
Obviously, Model§E) # @ and a model ofE is
{hasChildPeterPaul)}. Let CSK(E) = Cs. Then
Csconsists of the following clauses, whefrés a new
constant:

TaxCutx) « hasChildx,y), hasChildx, z),

noteqy, z)

hasChildPeter, Paul) <

hasChildPeter, )

+ TaxCutx)

Since f is a constant andotedPaul, f) is true, the
clause seCs has no model, i.e.Model{Cs) = &.
Hence Results 1 and 2 of this theorem hold. [

2.4.2 Meaning-preserving Skolemization

In order to transform a first-order formula equiv-
alently into a set of extended clauses, meaning-
preserving Skolemization was invented in (Akama
and Nantajeewarawat, 2008; Akama and Nantajee-
warawat, 2011). Let MP&) denote the set of
extended clauses resulting from applying meaning-
preserving Skolemization to a given first-order for-
mulaE in FOL.. MPS(E) is obtained fronE by re-
peated subformulatransformation and conversion into
a clausal form. Consider, for example, the first-order
formulaE in the proof of Theorem 1. MPE) is

the clause se€< consisting of the following extended
clauses, wherbkis a 0-ary function variable:

TaxCutx) < hasChildx,y), hasChildx, z),
notedy, z)

hasChild Peter, Paul) «

hasChild Peter,x) < fundh, x)

+ TaxCutx)

An algorithm for computing MP&) was given
in (Akama and Nantajeewarawat, 2011). Each trans-
formation used by this algorithm preserves the logical
meaning of an input formula. As a result, the next the-
orem is obvious.

Theorem 2. Let E be a first-order formula in FQL
and CsC ECL&. If MPS(E) = Cs, then

1. Model¢E) = Model$Cs), and
2. Model¢E) = & iff ModelgCs) = .

2.5 Interpretations and Models

A state of the world is represented by a set of true
ground atoms inG,. A logical formula is used to
impose a constraint on possible states of the world.
Hence, arinterpretationis a subset ofj,. A ground
user-defined atorg is true under an interpretatidn

iff g belongs td. Unlike ground user-defined atoms,
the truth values of ground constraint atoms are prede-
termined independently of interpretations. LetGiC
denote the set of all true ground constraint atoms,
i.e., a ground constraint atognis true iff g € TCON.

A groundfuncatomfundf,ti,. .. th,th1) is true iff
f(tlv s 7tn) = tn+1-

A ground claus€ = (ay,...,am < ba,...,bn,f1,
...,fp) € ECLS is true under an interpretatidn(in
other words| satisfies @ iff at least one of the fol-
lowing conditions is satisfied:

1. There exists € {1,...,m} such thata € | U
TCoON.

2. There exists € {1,...,n} such thatb; ¢ | U
TCoON.

3. There exists € {1,..., p} such thaf; is false.

An interpretatiorl is amodelof a clause se€sC
ECLS: iff there exists a substitutioo for function
variables that satisfies the following conditions:

1. All function variables occurring i€s are instan-
tiated byo into function constants.

2. For any claus€ € Csand any substitutio@ for
usual variables, ifCo6 is a ground clause, then
Caf is true undet.

Let Modelsbe a mapping that associates with each
clause set the set of all of its models, iMgdel{Cs)
is the set of all models d@sfor anyCsC ECLS:.
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The standard semantics is taken in this theory in Example 1. Consider the Oedipus puzzle described
the sense that all models of a formula are consideredin (Baader et al., 2007). Oedipus killed his father,
instead of specific ones, such as those considered ifmarried his mother lokaste, and had children with her,
the minimal model semantics (Clark, 1978; Lloyd, among them Polyneikes. Polyneikes also had chil-
1987), which underlies definite logic programming, dren, among them Thersandros, who is not a patri-
and in the stable model semantics (Gelfond and Lifs- cide. The problem is to find all persons who have a
chitz, 1988; Gelfond and Lifschitz, 1991), which un- patricide child who has a non-patricide child.
derlies answer set programming. Assume that (i) be” “io,” “ po” and “th” stand, re-

spectively, for Oedipus, lokaste, Polyneikes and Ther-
sandros, (ii) for any termf andty, isCh(ty,ty) de-

3 MODEL-INTERSECTION notes t; is a child ofty,” and (iii) for any termt, pat(t)

denotest is a patricide” angrob(t) denotest is an

PROBLEMS answer to this puzzle.” To formalize this puzzle, let
o Cs consist of the following seven clauses:
3.1 Model Intersection is Important isCh(oeio) « isCh(po,i0) «
) isCh(po, 0e) « isCh(th, po) «
Assume that a persohand a persoB are interested pat(oe) + pat(th)
in knowing which atoms ing, are true and which prob(X), pat(y) « isCh(z x), pat(z),isCh(y, 2)

atoms inG, are false. They want to know the un-
known setG of all true ground atoms. Due to short-
age of knowledgeA still cannot identify one unique
subset ofG, as the state of the world. The persan
can only limit possible subsets of true atoms by spec-

Let ¢1 be defined byp1(G) = {x| prob(x) € G} for
anyG C Gy. Then(Cs,¢1) is an MI problem repre-
senting this puzzle. O

ifying a subseGsof pow(Gy). The unknown se® of Example 2. Consider a problem of finding all lists

all true atoms belongs 6s. obtained by concatenatin, 2, 3] with [4,5]. LetCs
One way forA to inform this knowledge t&8 com- consist of the following clauses:

pactly is to send t® a clause se€ssuch thatGsC app([],,x)

ModelgCs). ReceivingCs, B knows thatModelgCs) )

includes all possible intended sets of ground atoms, app([wix],y, [Wiz]) <~ app(x,¥,2)

i.e.,G € ModelgCs). As suchB can know that each angx) « a.pp([l, 2,3),4,81,%)

ground atom outside) ModelgCs) is false, i.e., for ~ Let ¢z be defined byp,(G) = {x| angx) € G} for
anyg € Gu, if g ¢ UModelgCs), theng ¢ G. The anyG C Gy. This problem is then formalized as the
personB can also know that each ground atom in MI problem(Cs;,¢2). O
ModelgCs) is true, i.e., for anyg € Gy, if g €
(N ModelgCs), theng € G. This shows the impor-

) Example 3. Consider the “tax-cut” problem dis-
tance of calculating) ModelgCs). xamp I et P !

cussed in (Motik et al., 2005). This problem is to
. find all persons who can have discounted tax, with
3.2 Model-Intersection (MI) Problems the knovsledge consisting of the following statements:
on the Extended Clause Space (i) Any person who has two children or more can
get discounted tax. (ii) Men and women are not the
Itis natural for us to seek information about the model same. (iii) It is false that a person is not the same
intersection of given knowledge, which motivates us as himself/herself. (iv) A person’s mother is always
to introduce a new class of logical problems. a woman. (v) Peter has a child, who is someone’s
A model-intersection problentMI problem) on mother. (vi) Peter has a child named Paul. (vii) Paul
ECLS: is a pair(Cs,¢), whereCsC ECLS: and ¢ is a man. These statements are represented by the fol-

is a mapping fronpow(G,) to some se¥V. The map- lowing eight extended clauses:
ping ¢ is called anexit mapping The answer to this TaxCutx) «hasChildx,y), hasChildx, z),
problem, denoted bginsy (Cs, ¢), is defined by notSaméy, 2)
_ notSaméx,y) «+ Man(x), Womary)

ansu(Cs ¢) = ¢([|Model{Cs)), ¢ notSaméx x)
where\ModelgCs) is the intersection of all models Womartx) <— motherOfx,y)
of Cs Note that wherModelgCs) is the empty set, hasChildPeter x) « funq(fy,X)
MModel§Cs) = Gy. motherOfx,y) « fund f1,x), fundfa,y)

hasChild Peter, Paul) +
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Man(Paul) « problems can be represented as Ml problems as fol-

The fifth and the sixth clauses together represent theIOWS:

fifth statement (i.e., “Peter has a child, who is some- e LettingCs; = Cs; U{(+ prob(io))}, the Ml prob-

one’s mother”), wherdf; and f, are 0-ary function lem (Css, ¢pr) represents the problem of proving
variables. LeCCs; consist of the above eight clauses. whethermprob(io) is true.

Let ¢3 be defined byps(G) = {x | TaxCutx) € G} e LettingCss = CoU{(+ ang[1,2,3,4,5]))}, the
for anyG C Gy. The “tax-cut” problem is then for- MI problem (Css, dpr) represents the problem of
mulated as the MI problerCss, ¢3). O proving whether the resulting list [&,2,3,4,5].

e Letting Cs; = Css U {(+ TaxCutx))}, the M
problem (Cs;,¢pr) represents the problem of
proving whether someone gets discounted tax.

e Letting Csg = Cxt U {(+ killer(A))}, the M
problem (Css, ¢pr) represents the problem of
proving whether Agatha killed herself. O

Example 4. Consider the “Dreadsbury Mansion
Mystery” problem, which was given by Len Schubelt
and can be described as follows: Someone who lives
in Dreadsbury Mansion killed Aunt Agatha. Agatha,
the butler, and Charles live in Dreadsbury Mansion,
and are the only people who live therein. A killer
always hates his victim, and is never richer than his . :
victin)"/n. Charles hates no one that Aunt Agatha hates. 3.3 Conversion of Query'Answe“ng
Agatha hates everyone except the butler. The butler (QA) Problems into MI Problems
hates everyone not richer than Aunt Agatha. The but-

ler hates everyone Agatha hates. No one hates everyA query-answering problef@QA problemon FOL; is

one. The problem is to find who is the killer. apair(E,a), whereE is a closed first-order formulain
Assume thaneqis a predefined binary constraint FOLc andais a user-defined atom ifl,. Let.s be the
predicate and for any ground usual tertpsandty, set of all substitutions for usual variables. The answer

neqty,ty) is true iff t; # t,. The background knowl- 0 @ QA problem(E,a), denoted byansya(E,a), is

edge of this mystery is formalized as a€aj consist-  defined by

ing of the following clauses, where the constafis |

B, C, andD denote “Agatha,” “the butler,” “Charles,” ansbA(E’é) {a8](® e $)& (@€ Gu) & (E[=20)).

and “Dreadsbury Mansion,” respectivefy,is a 0-ary In"logic programming (Lloyd, 1987), a problem

function variable, and is a unary function variable: ~ represented by a pair of a set of definite clauses and a
qguery atom has been intensively discussed. In the de-

live(x, D) «— funq(fo,x) scription logic (DL) community (Baader et al., 2007),
kill (x, A) + funq(fo,X) a class of problems formulated as conjunctions of
« live(x, D),neqx, A),neqx, B),neqx,C) DL-based axioms and assertions together with query
live(A,D) « atoms has been discussed (Tessaris, 2001). These two
live(B,D) « problem classes can be formalized as subclasses of
live(C,D) - QA problems considered in this paper.

hate(x,y) < kill (X,y)

« kill (x,y), richer(x,y) Theorem 3. For any closed first-order formula E

+ hatgA,x), hatgC, x), live(x,D) FOL. and any a 4,,,

hatg A, X) < neqx, B), live(x,

riche(er(x,L\),haté((B,x))% (D) anga(E,a) =rep(a) N ([ |ModelsE)),

hatg(B, x) < hatg(A,x) where regga) denotes the set of all ground instances
« hatgx,y),fund f1,x,y), live(x,D) of a.

live(y,D) «+ live(x,D),fundf1,Xx,y)

killer (x) « kill (x, A) Proof: Let E be a closed first-order formula in

FOL; anda € 4,. By the definition ofl=, for any

Let ¢4 be defined byp4(G) = {x| killer(x) € G} for ground atomg € Gu, E = g iff g € (\Model<E).

anyG C Gy. This problem is then represented as the

MI problem(Cs, ¢4). O Then

ansa(E,a)

= {a8](8cS) & (a8 Gu) & (E=a9)}
Example 5. Let an exit mappin@p: be given as fol- ={g|®eS)&(g=a0) & (ge Gu) & (EEQ)}
lows: For anyG C Gu, 0pr(G) = “yes" if G=Gu, = {g|(gerep(a)) & (E Fg)}
and¢p(G) = “no” otherwise. Referring to the clause = {g| (g €rep(a)) & (g € (NModel4E)))}
setsCs—Cx in Examples 1-4, we illustrate that proof = rep(a) N (N ModelgE)). O
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Theorem 4 below shows that a QA problem on
FOL. can be converted into a MI problem on EGLS

Theorem 4. Let E be a first-order formula in FQL
and a€ 4,. Let CsC ECLS. If ModelqE) =
ModelgCs), then

anga(E,a) = ansgy (CsU{(p(X1,...,%n) < a)},dqa),

where p is a predicate that appears in neither Cs nor
a, the argumentsx. .., xn are all the mutually differ-
ent variables occurring in a, and for any G G,

$qa(G) = {a0| (8 € S) & (p(X1,...,%)0 € G)}.

Proof:
Then

anga(E,a)

(by Theorem 3)

rep(a) N (NModelsE))

rep(a) N (NModelgCs))

(by the definition ofpqa)
dqa(MModelgCsU{(p(xy, ... %) ¢ @)}))
ansu (CsU{(p(Xe,...,%n) < a)},0qa). O

Assume thaModelSE) = ModelgCs).

3.4 Conversion of Proof Problems into
MI Problems

A proof problemis a pair(Ej, Ey), whereE; andE;
are first-order formulas in FQJ. and the answer to
this problem, denoted tans(E1, Ez), is defined by

if E1 = Ep,
otherwise.

uyesn

ansy(E1,Ep) = { “no”

It is well known that thak; is a logical consequence
of E; iff E1 A —E> is unsatisfiable (i.e k1 A —E> has

no model) (Chang and Lee, 1973; Fitting, 1996). As
a resultans(E1, E2) can be equivalently defined by

uyesﬂ
unon

if ModelgE; A —Ep) = o,

ans(Eq, Ez) = { otherwise.

Theorem 5 below shows that a proof problem can
be converted into a Ml problem on ECES

Theorem 5. Let (Ej, Ep) be a proof problem, where
E:1 and B are first-order formulas in FOL Let
CsC ECLS. Let¢pr: pow Gu) — {“yes”,“no” } be
defined by: for any G G,

Ppr(G) = {

If the conditions Model&; A —Ez) = @ and
ModelgCs) = @ are equivalent, then apgE;, Ey) =
ansu (Cs dpr).

uyesn
unon

if G = Gy,
otherwise.
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Proof: Assume thaModelsE; A —Ep) = & iff
ModelgCs) = @. Letb be a ground user-defined atom
that is not an instance of any user-defined atom occur-
ring in Cs If mis a model ofCs thenm—{b} is also a
model ofCs. Obviouslym— {b} # G,. Therefore, (i)
if ModelgCs) # @, then(\ModelgCs) # Gy, and (ii)
if ModelgCs) = @, thenModelgCs) = N{} = Gu.

Two cases are considered:

1. Suppose thaModelgE; A —E») = @. Conse-
quently, ModelgCs) = @. So (\ModelgCs) =
Gu, and, thereforeansu (Cs ¢pr) = “yes”.

2. Suppose thdtlodel§E; A —E) # @. In this case,
ModelgCs) # @, and, thus(\ModelgCs) # G,.
Soansy (Cs ¢pr) = “no”.

Henceans(E1, E2) = ansu (Cs §pr). .

4 SOLVING MI PROBLEMS BY
EQUIVALENT
TRANSFORMATION

A general schema for solving MI problems based on
equivalent transformation (ET) is formulated and its
correctness is shown (Theorem 10).

4.1 Preservation of Partial Mappings
and Equivalent Transformation

Terminologies such as preservation of partial map-
pings and equivalent transformation are defined in
general below. They will be used with a specific class
of partial mappings called target mappings, which
will be introduced in Section 4.2.

Assume thatX andY are sets and is a par-
tial mapping fromX to Y. For anyx,x € don(f),
transformation ofx into X' is said topreserve fiff
f(x) = f(X). For anyx,x € don{f), transformation
of x into X' is calledequivalent transformatiofET)
with respect tof iff the transformation preservefy
i.e., f(x) = f(X).

Let F be a set of partial mappings from a sét
to a setY. Givenx, X € X, transformation ok into
X' is calledequivalent transformatioET) with re-
spect tolF iff there existsf € F such that the trans-
formation preserve$. A sequencéXg,Xi,...,Xn] of
elements inX is called anequivalent transformation
sequencé€ET sequendgewith respect tdr iff for any
i €{0,1,...,n— 1}, transformation of; into X1 is
ET with respect tdf. When emphasis is placed on
the initial elemenkg and the final elemeng,, this se-
guence is also referred to as an ET sequdrma X
to Xn.
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4.2 Target Mappings

We introduce the concept of target mapping, which is
useful to devise equivalent transformation (ET) rules
in the ECLS space (Theorem 9) or to construct an
answer mapping (Theorem 8) for determining an an-
swer from the final state of computation.

The answer to a Ml problerCs, ¢) is determined
uniquely byModelgCs) and¢. MI problems can thus
be transformed into simpler forms by ET preserving
the mappingViodels

Simplification of MI problems using ET preserv-
ing the mappingodelscan be extended by consider-
ing additional partial mappings. A new class of partial
mappings, called GSrM ap, will be defined below.

Definition 1. GSETMAP is the set of all partial map-
pings frompow(ECLS:) to pow(pow(Gy)). O

As defined in Section 2.9YlodelgCs) is the set
of all models ofCs for any CsC ECLS:-. Since a
model is a subset af,, Modelsis regarded as a total
mapping frompowECLS:) to pow(pow(Gy)). Since
a total mapping is also a partial mapping, the map-
ping Modelsis a partial mapping fronpow(ECLS:)
to pow(pow(Gy)). i.e., itis an element of GSTMAP.

A partial mappingM in GSETMAP is of par-
ticular interest ifM(Cs) = ModelgCs) for any
Cse domM). Such a partial mapping is calledar-
get mapping

Definition 2. A partial mappingM € GSETMAPIis a
target mappingff for any Cse domM), NM(Cs) =
(M ModelgCs). O

It is obvious that:

Theorem 6. The mapping Models is a target map-
ping. O

The next theorem provides a sufficient condition
for a mapping in GETMAP to be a target mapping.

Theorem 7. Let M € GSETMAP. M is a target map-
ping if the following conditions are satisfied:

1. M(Cs) C ModelgCs) for any Cse domM).

2. For any Cs= domM) and any m € ModelgCs),
there exists me M(Cs) such that m C m.

Proof: Assume that Conditions 1 and 2 above
are satisfied. LeCse domM). By Condition 1,
MNM(Cs) 2 NModelgCs). We show thaf\M(Cs) C
(N ModelgCs) as follows: Assume tha € (NM(Cs).
Let mp, € ModelgCs). By Condition 2, there exists
my. € M(Cs) such thatm; C mp. Sinceg € NM(Cs),

g belongs tam. Sog € m,. Sincem, is any arbitrary

element ofModelCs), g belongs to ModelgCs).
It follows that\M(Cs) = N ModelgCs). HenceM is
a target mapping. O

4.3 Answer Mappings

A set of problems that can be solved at low cost is
useful to provide a desirable final destination for ET
computation. It can also be specified as a partial map-
ping that is preserved by ET transformation. Such a
specification is useful to invent and to justify new ET
transformation. This motivates the concept of answer
mapping, which is formalized below.

Definition 3. Let W be a set. A partial mapping
from

powW(ECLS:) x Map(pow Gy), W)
to W is an answer mappingff for any (Cs¢) €
dom(A), ansui (Cs ¢) = A(Cs ¢). O

If M is a target mapping, theM can be used for
constructing answer mappings.

Theorem 8. Let M be a target mapping. Suppose that
Ais a partial mapping such that

o domM) = {x| (x,y) € dom(A)}, and

e forany(Cs ¢) € domA),

A(Cs 9) = ¢([\M(Cs)).
Then Ais an answer mapping.
Proof: Let (Cs ¢) € dom(A). SincedomM) =

{x| (x,y) € domA)}, Csbelongs todomM). Since
M is a target mapping,)M(Cs) = (NModel$Cs). So

ansvi (Cs¢) = ¢(NModelgCs))
®(NM(Cs))
A(Cs d).

ThusA is an answer mapping.

4.4 ET Steps and ET Rules

A schema for solving Ml problems based on equiva-
lent transformation (ET) preserving answers is formu-
lated. The notions of preservation of answers/target
mappings, ET with respect to answers/target map-
pings, and an ET sequence are obtained by special-
izing the general definitions in Section 4.1.

Let STATE be the set of all Ml problems. Elements
of STATE are calledstates

Definition 4. Let (S S) € STATE x STATE. (S,S) is
anET stepiff if S=(Cs¢) andS = (Cs,¢’), then
ansy (Cs¢) = ansu (Cs, ¢'). O
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Definition 5. A sequence[S,S,..., S| of ele-
ments of SATE is an ET sequencéf for any i €
{0,1,...,n—1},(S,S+1) isan ET step. O

The role of ET computation constructir, Sy,
..., Sy] is to start withSy and to reacts, from which

the answer to the given problem can be easily com-

puted.
The concept of ET rule on18TE is defined by:

Definition 6. An ET rule r on STATE is a partial
mapping from SATE to STATE such that for any
Sedom(r), (Sr(9)) is an ET step. O

We also define ET rules opow(ECLS:) as fol-
lows:

Definition 7. An ET rule r with respect to a target
mappingM is a partial mapping fromow(ECLS:) to
pow(ECLS:) such that for angse donr), M(Cs) =
M(r(Cs)). O

We can construct an ET rule orm&E from an
ET rule with respect to a target mapping.

Theorem 9. Assume that M is a target mapping and
ris an ET rule with respect to M. Suppose thas a
partial mapping fromSTATE to STATE such that

e dom(r) = {x| (x,y) € dom(r)}, and
e F1S) = (r(Cs),0) if S= (Cs §) € dom(7).

Thenris an ET rule onSTATE.

Proof: Assume thaBe dontr). Then there exist
a clause se€sand an exit mapping such thatS=
(Cs ¢) andCse dontr). For suchCsandd,
ansy (Cs ¢) = ¢(NModel{Cs))
= (sinceM is a target mapping)
= 6(NM(Cs))
(sinceM(Cs) = M(r(Cs)))
¢(NM(r(Cs)))
= (sinceM is a target mapping)
¢(NModelgr (Cs)))
ansy (r(Cs),¢).
SinceS= (Cs ¢) andr(S) = (r(Cs),d), (Sr(9)) is
an ET step. Henceis an ET rule on $ATE. O

45 Correct Solutions based on ET
Rules

Given a seCs of extended clauses and an exit map-
ping ¢, the MI problem(Cs,¢) can be solved as fol-
lows:

1. LetAbe an answer mapping.
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Answer

Answer
apping

Models

Target mappings

Csp = Csy = - = (s,

Cs= Cso)
Y=o

Equivalent
transformation

Figure 2: Target mappings and answer mappings yield
many correct computation paths.

2. Prepare a s& of ET rules on SATE.

3. TakeS such thatsy = (Cs ¢) to start computa-
tion from &.

4. Constructan ET sequen&, ..., S| by applying
ET rules inR, i.e., for each € {0,1,...,n— 1},
S.1 is obtained frong by selecting and applying
ri € Rsuch tha§ € dontri) andr;(S) = Sy1.

5. Assume tha&, = (Cs,,¢n). If the computation
reaches the domain & i.e.,(Cs,,¢n) € domA),
then compute the answer by using the answer
mappingA, i.e., outputA(Cs,, dn).

The answer to the MI problemCs ¢), i.e.,
ansy (Cs ¢) = ¢(NModelgCs)), can be directly ob-
tained by the computation shown in the leftmost path
in Fig. 2. Instead of taking this computation path, the
above solution takes a different one, i.e., the lowest
path (fromCsto C<) followed by the rightmost path
(throughA) in Fig. 2.

The selection of; in Rat Step 4 is nondeterminis-
tic and there may be many possible computation paths
for each MI problem. Every output computed by us-
ing any arbitrary computation path is correct.

Theorem 10. When an ET sequence starting from
S = (Cs ¢) reaches §in dom(A), the above proce-
dure gives the correct answer {€s,¢).

Proof:  Since [S,...,S) is an ET sequence,
ansy (Cs¢) = angu (Cs,¢n). SinceA is an an-
swer mappingansa (Cs, ¢n) = A(Cs,, ¢n). Hence
ansvi (Cs ¢) = A(Csn, on).
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Ci: FM(x) «+ FP(x) Co: FP(john) «
Cs: FP(mary) «+ Ca: teacHjohnai) +
Cs: Stpaul) + Cs: AC(ai) «

Cr: Tp(kr) < Cs: Tp(lp) «

Co: curr(x,z) « exanix,y),subjecty, z), St(x),

Co(y), Tp(2)

mdix,y) < curr(x,z),experty,z), Stx), Tp(z),
FP(y), AC(w),teachy,w)

mdix,y) < Stx),NFP(y)
exangpaul ai) <

Cloi

Clli

Cio: Ci3: subjectai, kr) <

Ci4: subjectai,lp) < Cis: expertjohn kr) «
Cis: expertmary,lp) «

Ci7: AC(x) < teach{mary,x)

Cig: < AC(x),BC(x)

Cio:
Coo:
Cor:
Coo:
Cos:
Coa:
Cos:

AC(x),BC(x) + Co(x)

Co(x) < AC(x)

Co(x) < BC(x)

FP(x) < NFP(x)

+ NFP(x),teachx,y), Co(y)
teach(x,y),NFP(x) «+- FP(x),fund fo,Xx,y)
Co(y),NFP(x) «+ FP(x),fund fo,x,y)

Figure 3: Background knowledge for timedt problem on
ECLS.

5 EXAMPLE

5.1 Problem Description

The clauses in Fig. 3 are obtained from the “may-
do-thesis” problem (for short, thradtproblem) given

in (Donini et al., 1998) with some modification. All
atoms appearing in Fig. 3 belong #&. The unary
predicatesNFP, FP, FM, Co, AC, BC, St andTp
denote “non-teaching full professor,” “full profes-
sor,” “faculty member,” “course,” “advanced course,”
“basic course,” “student,” and “topic,” respectively.
The clause$y—Cy1 together provide the conditions
for a student to do his/her thesis with a professor,
where md{(s, p), curr(st), exper{p,t), exants,c),
and subjectc,t) are intended to means“may do
his/her thesis witkp,” “ s studiedt in his/her curricu-
lum,” “pis an expert irt,” “ s passed the exam aof’
and ‘c coverst,” respectively, for any studers any
professom, any topict, and any course.

Suppose that we want to find all professors with
whompaulmay do his thesis. This problem is formu-
lated as a MI probleniCs ¢), whereCs consists of
the clause€£:1-Cys in Fig. 3 andd is defined by: for
anyG C Gy,

$(G) = {x| mdt(paul,x) € G}.

C262
C27Z
C282
C292
Cgoi
C312
C322
C332
C34Z

teachjohn,ai) «

AC(ai) «+

AC(X) < teachimary, x)

+ AC(x),BC(x)

AC(x),BC(x) + Co(X)

Co(x) + AC(x)

Co(x) < BC(x)

+ NFP(x),teachx,y),Co(y)

mdt(paul, mary) < AC(x),teacimary,x),
Co(ai)

mdtpaul john) «+— AC(x),teach(john,x),
Co(ai)

mdtpaul,x) < NFP(x)

teach{mary,x), NFP(mary) « fund fo, mary, x)

teach(john,x), NFP(john) « fund fo,john, x)

Co(x), NFP(mary) + funq fo, mary,x)

Co(x),NFP(john) « fund fo,john,x)

Css:

C362
C37Z
C332
C3gZ
C40:

Figure 4: Clauses obtained by application of ET rules.

How to compute the answer to this Ml problem using
many kinds of clause transformation rules is demon-
strated in Section 5.2.

5.2 ET Computation

The clause se€s consisting ofC;—Cy5 given in Sec-
tion 5.1 (Fig. 3) is transformed as follows:

¢ By (i) unfolding using the definitions of the pred-
icatesFP, Tp, curr, subject expert St andexam
(i) removing these definitions along with the def-
inition of FM using definite-clause removal, (iii)
removal of valid clauses, and (iv) removal of
subsumed clauses, the clau§iasCys are trans-
formed into the clauses,~Cyg in Fig. 4.

e Side-change transformation foiFP enables (i)
unfolding using the definition o€o, (ii) elimi-
nation of this definition using definite-clause re-
moval, and (iii) removal of valid clauses. By such
side-change transformation followed by transfor-
mation of these three type€pys—Cyo are trans-
formed into the clause341-Csg; in Fig. 5.

e Side-change transformation f&C enables un-
folding using the definition ofAC. By (i) un-
folding, (ii) definite-clause removal, (iii) removal
of duplicate atoms, (iv) removal of valid clauses,
and (v) removal of subsumed clausés—Cg1 are
transformed int@Cs>—C77 in Fig. 6.

e By (i) unfolding using the definition ofeach (ii)
definite-clause removal, (iii) removal of duplicate
atoms, (iv) removal of valid clauses, and (v) re-
moval of subsumed clause§g,—C77 are trans-
formed intoC7s—Cgs in Fig. 7.
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C41: teachjohn,ai) « Cs2: teach(john,ai) <

Cs2: AC(ai) Cs3: notBQai) «

Ca3: AC(x) + teachimary, x) Cs4: NOtBQX) + teachmary, x)

Cas: + AC(x),BC(X) Css: NOtNFP(x), notBQly) «+ teachx,y)

Cys: mdt(paul, mary) < AC(x), teach{mary,x), Css: NOtNFR(X) « teachx,y), func( fo,john,y),
fund fo, mary, ai), notNFRjohn)
notNFR(mary) Cs7: NOtNFR(x) « teachx,y), func( fo, mary,y),

Cse: mdt(paul, mary) < AC(x), teach{mary,x), notNFR(mary)
fund fo,john, ai), Css: mdt(paul, mary) < teachmary, x)
notNFR(john) Cso: mdt(paul,john) < teach(john,x),

C47: mdt(paul, mary) « AC(x),teachmary,x), BC(ai) teac{mary, x)

Csg: mdt(paul, mary) + AC(x),teach mary,x), AC(ai) Cro: mdt(paul,john) «+ teack{john,ai)

Cao: mdt(paul john) + AC(x),teachjohn,x), Cr1: mdt(paul, john) < teach(john,x),
fund( fo, mary, ai), fund fo, mary, x),
notNFR(mary) notNFRmary), notBQ(x)

Cso: mdt(paul, john) + AC(x),teachjohn,x), C72: mdt(paul, john) < teach(john,x),
fund( fo,john, ai), fund( fo,john, x),
notNFR(john) notNFR(john), notBC(x)

Cs;: mdt(paul,john) + AC(x), teacHjohn,x), BC(ai) Crz: mdt(paul,x), notNFP(x) +

Cs2: mdt(paul,john) «+ AC(x), teacHjohn, x), AC(ai) Cr4: teachmary,x) < fund fo, mary,x),

Cs3: mdt(paul,x), notNFR(x) «+ notNFR(mary)

Cs4: teachmary,x) < fund fo, mary,x), Crs: teach(john,x) « fund fo,john,x),

notNFR(mary) notNFR(john)

Css: teach(john,x) < fund fo,john, x), Cre: NOtNFR(x) « teach(x,ai)

notNFP(john) Cz7: notNFP(x) + teach(x,y),teach(mary,y)

: notNFR(x) + teach(x,y), func( fo, mary,y),

notNFRmary) Figure 6: Clauses obtained by application of ET rules.
: NotNFR(X) < teachx,y), func( fo,john,y),
% ¥ nOth'(:P()J%hn) pslo) L) Crg: notBQx) < fundfo, mary,x), notNFP(mary)
Css: NOtNFP(X) « teach(x,y),BC(y) Crg: mdt(paul,x), notNFR(X) <
Cso: NOtNFR(x) «+ teach{x,y),AC(y) Ceo: notBQai) <
Cso: AC(X),BC(x) + fund fo, mary,x), Cg1: mdt{paul,john)
notNFPR(mary) Cs2: mdt(paul, mary) < fund(fo, mary,x),
Cs1: AC(x),BC(x) < fundfo,john,x), i notNFR(mary)
notNFRjohn) Cgs: notNFR(john) «+

Figure 5: Clauses obtained by application of ET rules.

e By definite-clause removal fonotBG C7;s—Cs3

are transformed intGg4—Cg7 in Fig. 8.

e Application of the resolution rule tGg4 andCgg,

Figure 7: Clauses obtained by application of ET rules.

Caa:

mdtpaul,x), notNFP(x) +

Cgs: mdt(paul,john) «

Cse:

mdtpaul, mary) + fund fo, mary,x),
notNFRmary)

followed by removal of independefitncatoms Cg7: notNFR(john) «—

and removal of duplicated atoms, yields the clause
Cgsg in Fig. 9. By removal of subsumed clauses,
Cgq andCgg are removed. By definite clause re-
moval, Cg7 is removed. TheiCgs,—Cg7 are trans-
formed intoCgg—Cgg in Fig. 9.

Figure 8: Clauses obtained by application of ET rules.

Cgg: mdt(paul, mary) +
Cgo: mdt(paul,john) «+

) Figure 9: Clauses obtained by application of ET rules.
As a result, the MI problem{Cs¢) in Sec-

tion 5.1 is transformed equivalently into the Ml prob-

lem ({Ces, Cao}, ¢). Hence 6 CONCLUSIONS

ansu (Cs ¢)

= ansu ({Cgs,Cso},9) We have defined a class of model-intersection (MI)
= ¢(NModelg{Cgs,Cso})) problems on extended clauses possibly with con-
= ¢({mdtpaul, mary), mdt paul,john)}) straint atoms anéuncatoms, each of which is a pair
= {mary,john}. of a setCs of extended clauses and an exit mapping
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used for constructing the output answer from the in- Akama, K. and Nantajeewarawat, E. (2011). Meaning-
tersection of all models o€s Many logical prob- Preserving Skolemization. IRroceedings of the 3rd
(QA) problems, can be transformed into Ml problems and Ontology Developmenpages 322-327, Paris,

; X . . France.
preserving their answers. The theory in this paper

. . - Akama, K. and Nantajeewarawat, E. (2015a). A General
j[herefore prowde.s afoundationfor many kinds of log- Schema for Solving Model-Intersection Problems on a
ical problem solving.

Specialization System by Equivalent Transformation.

We introduced the concepts of target mapping and In Proceedings of the 7th International Joint Confer-
answer mapping, which are useful for inventing many ence on Knowledge Discovery, Knowledge Engineer-
kinds of ET rules for solving MI problems on ex- ing and Knowledge Management (IC3K 2015), Vol-
tended clauses. The proposed solution schema for M| ume 2: KEOD pages 38-49, Lisbon, Portugal.

problems comprises the following steps: (i) formal- Akama, K. and Nantajeewarawat, E. (2015b). Function-
ize a given problem as a Ml problem or map it into a variable Elimination and Its Limitations. IPro-

M bl " ET rules f n t ceedings of the 7th International Joint Conference
problem, (ii) prepare rules from answers/targe on Knowledge Discovery, Knowledge Engineering

mappings, (iii) construct an ET sequence preserving and Knowledge Management (IC3K 2015), Volume 2:

answers/target mappings, and (iv) compute the an- KEOD, pages 212-222, Lisbon, Portugal.

swer by using some answer mapping (possibly con- Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,

structed on some target mapping). and Patel-Schneider, P. F., editors (2007he De-
Many logical problems, among others, all proof scription Logic Handbook Cambridge University

problems and all QA problems on F@lare mapped, Press, second edition.

by using new meaning-preserving Skolemization Chang. C.-L.and Lee, R. C.-T. (197&ymbolic Logic and
(Akama and Nantajeewarawat, 2011), into M| prob- Mechanical Theorem Provingicademic Press.
lems with function variables, and solved by ET com- Clark K. L. (1978). Negation as Failure. In Gallaire, H.
putation proposed in this paper. When only con- ggg_l\guznzkeFr;l é]h’uﬁj'g;r:s’gg,'\fesvngo?f ta Basepages
ventional clauses without function variables are used ' ' '

. . RN S . " Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A.
meaning-preserving Skolemization is impossible. In (1998). 47-log: Integrating Datalog and Description

the presence of built-in constraint atoms, the classical Logics. Journal of Intelligent Information Systems
theory, which uses the conventional Skolemization, 16:227-252.
cannot guarantee the correctness of the conversion ofritting, M. (1996). First-Order Logic and Automated The-
logical formulas into clauses. orem Proving Springer-Verlag, second edition.

The ET-based solution method together with Gelfond, M. and Lifschitz, V. (1988). The Stable Model
meaning-preserving Skolemization is very general Semantics for Logic Programming. Froceedings
and fundamental, since any combination of ET steps of International Logic Programming Conference and

Symposiumpages 1070-1080. MIT Press.

Gelfond, M. and Lifschitz, V. (1991). Classical Negation
in Logic Programs and Disjunctive Databasddew
Generation Computing:365-386.

forms correct computation and the correctness of the
method for a very large class of problems has been
shown in this paper. By its generality, the theory de-

velaped in this paper makes C'e?r a fundamental "fmdLloyd, J. W. (1987). Foundations of Logic Programming
central structure of representation and computation Springer-Verlag, second, extended edition.

for logical problem solving. Motik, B., Sattler, U., and Studer, R. (2005). Query An-
swering for OWL-DL with Rules.Journal of Web Se-
mantics 3(1):41-60.
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