
Modeling Semantics sans Mathematical Formalism

Reuven Gallant
Deparment of Computer Science and Engineering, JCT Lev Academic Center, 21 HaVaad HaLeumi St., Jerusalem, Israel

Keywords: Executable Modeling, Formal Methods, Graphical Modeling Languages, Production Quality Code, Syntax,

Semantics, Semantic Mapping, Simulation, UML.

Abstract: Much ink has been spilled regarding the trials and tribulations of adapting formal methods to the needs of

software engineering practitioners With the exception of computer scientists with a passion for algorithm

design and optimization, a plethora of Greek letters and symbols can be an anathema to those whose first

love is writing code. The advent of graphical modeling languages such as UML, and supporting tools that

generate production quality code, executable modeling behavioral simulations for bridging the gap between

formalism and coding. This paper proposes, with illustrative examples, an exploratory learning modality, by

which the practicing engineer can investigate and empirically learn the semantic mapping of UML syntax to

the semantic domains of system instantiation and reactive behavior.

1 INTRODUCTION

The efficacy of formal methods has always been a

hard sell to in-the-trenches software engineering

practitioners whose core responsibility (and first

love) has been to produce working code. Seminal

papers on the subject prefixed with the phrase “Ten

Commandments…” (Bowen and Hinchey, 1995)

(Bowen and Hinchey, 2005) reinforce the perception

the suspicion that such methods are to be imposed in

the same way that a child dutifully attends Sunday

school, glancing furtively at the clock to see how

much longer she must endure the ordeal before

running out to play ball with her friends.

Champions of formal methods are not oblivious

to this reluctance, and thus apologize for and/or

purge Greek symbols and the like from formal

notations (Harel and Rumpe, 2004), (Bowen and

Hinchey, 2005). Greek hieroglyphics aside, the

selected modeling notation and its semantics must be

appropriate for the intended audience, e. g, users,

language developers, methodologists, and tool

vendors (Harel and Rumpe, 2004). Of these

audiences, (Evermann, 2008) follows the traditional

dichotomy between conceptualization and

implementation. UML was “originally developed to

describe software artifacts… More recently, UML

has been used for conceptual modeling of

application domains.”

This sharp dichotomy between software and

conceptual approaches deprives software

practitioners of the excitement generated by Ada

83’s promise of robust, software mimicking real-

world domain objects (Booch, 1983). All one had to

do, (as was done in numerous courses based on

Booch’s seminal work, was to mark the various parts

of speech of the words of a terse problem statement,

and robust easily understood software would almost

jump out of the paper on which this marked up

problem statement was inscribed. Of course, the

application of object concepts to systems far more

complex than those presented in textbooks has been

a sobering experience. Intuitive solutions, yielded to

counter-intuitively constructed systems. Dependency

inversion, canonized in (Gamma et. al, 1995) was

marshalled to mitigate the repercussions of change.

Intuitive comprehension was sacrificed to software

maintainability.

The author of this paper argues that software

concretization, and the joy of conceptualization,

need not remain in the exclusive purview of

requirements engineers, and other non-software

stakeholders. For these stakeholders, the concrete

semantic domain is comprised of application domain

concepts, taxonomically formalized via stereotypes

and tagged values. The software practitioner need

not be deprived of a similar experience. However,

the software practitioners semantic domain is

comprised of generic software concepts such as call

44
Gallant, R.
Modeling Semantics sans Mathematical Formalism.
DOI: 10.5220/0006098900440054
In Proceedings of the 7th International Workshop on Software Knowledge (SKY 2016), pages 44-54
ISBN: 978-989-758-202-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

stacks, event queues, inter-object connections and

messages, etc.

Visual modeling languages such as UML,

accompanied by tools that support production

quality code and model-level visual simulation offer

new opportunities for understanding the languages’

formal semantics. Given the visual nature of the

language and the tool’s visual simulations, the “as-

built” semantics of the language can be explored

visually and concretely. This exploration, when

performed by the software practitioner, is part of the

natural process of self-learning that occurs in the

course of software development.

2 RELATED WORK

Bowen and Hinchey (Bowen and Hinchey, 1995),

(Bowen and Hinchey, 2006) put formal methods on

the map, by their brilliant use of religious metaphor:

Ten Commandments, Formal Methodists, guru.

They acknowledge that the evidence for ROI is

sketchy and anecdotal at best. They make

recommendations to bridge the gap between the

academic believers and the reluctant engineers,

including restraining esoterica on the part of

academics, selective application of formal methods,

and ready access to a guru. In the 2006 paper, they

acknowledge that these recommendations

notwithstanding, "religious… Formal Methodists…

and the rest of the world (and the software

engineering community, in particular) that has not

been convinced."

These papers were not about semantics per se,

but more generally about formal methods.

Nonetheless, the viability of formal languages is a

central issue of both papers. Hence the first

commandment is "Thou shalt choose an appropriate

notation." Tradeoff between richness of notation and

abstraction is noted, suitability of language to types

of systems being specified, and a clear distinction

between specification and implementation. For these

authors, formal languages should address

specification, rather than implementation. The

authors bemoan the difficulty

 (Genova, 2001) demonstrates the need to define

vaguely descriptive terms used in the early UML

documentation, in particular, navigability, visibility

and invertibility, as applied to the UML relation

association.

(Harel and Rumpe, 2004) address a very basic

question, what exactly is (and is not) modeling

semantics, in particular dispelling confusion

between syntax, metamodel, semantic domain,

mathematical, behavior and semantics per se.

Particular attention is given to mapping to the

semantic domain. It has become de rigueur to cite

this paper in all subsequent work, although, whether

authors say they agree or not, the recommendations

are more honoured in the breach than the

observance.

UML 2 provides a more formal façade, with a

well-developed epistemology in the UML Meta-

model, but as (Diskin and Jungel, 2006) show,

refinement of terminology is not a panacea, and a

laborious multi-component graphical and

mathematical specification is required to pin down

the semantics of the UML association as it applies

multi-class relations.

The aforementioned Harel and Rumpe paper

asserts the language and its semantics must

“accommodate the intended audience.” (Evermann,

2008) caters to the needs of requirements engineers,

proposing a cognitive semantics related to the

application domain.

In a retrospective paper (Broy and Cengarle,

2011) offer what seems, prima facie, a pessimistic

vision of endeavors to “unify” Unified Modeling

Language semantics, given the preponderance of

sublanguages and the sliding scale of formality

needed at various stages of software development.

Nevertheless, they argue, the endeavour to develop

these semantics has led and will lead to many

significant insights, and thus is justified, even if the

holy grail of a unified semantics is unattainable.

3 PROPOSED UNDERLYING

ABSTRACTIONS AND

REPRESENTATIONS

This paper paradoxically proposes a set of

abstractions and multiple concrete representations

that relevant to the practicing engineers. (The

representations are those supported by the various

simulations of the IBM Rational Tool, but could be

extended and modified according to the resources

provided by any tool supporting UML-based model-

level execution. Below is an outline of the

underlying abstractions, and the supporting views. Is

will immediately become apparent, the views

themselves are at various levels of abstraction:

source code, model level concept features windows,

instance feature windows, call stack visualization,

animated UML charts (statecharts, sequence

diagrams).

Modeling Semantics sans Mathematical Formalism

45

A. Object Initialization. The views include a

class tree, (in the initialization tab of a Rhapsody

configuration, e.g., figure 2, left bottom), object

initialization code (in lower half of initialization tab,

figure 2) and call stack and instance features

windows (also in figure 2). In addition, a model

level textual output simulation (the Rhapsody Tracer

tool, e.g., as in section 4.2. "OMTracer New

instance A[0]:A created by main").

All of these "Abstractions" may strike the reader

as very close to the implementation code level.

However they are indeed abstractions, albeit just

above the code level. "Initialization" necessarily

begins with object creation via the class' constructor.

However, for a reactive class (whose behavior is

defined by a statechart) it will also include

initialization of the statechart. Objects may be

instantiated one after the other via sequential calls to

constructors in main (as a result of the classes being

checked off in the configuration initialization tab, or

by nested calls to constructors of the different

classes. The "abstraction" in this case would be the

simulated call stack. For sequential calls, the

constructors are popped off the stack sequentially.

For nested calls, the constructors are pushed down,

and then popped off in reverse order.

Due to space limitations, the paper does not

discuss the composition/composite relationships, in

which the life and death cycles of the contained

objects are tied to those of the containing object. For

these relationships, the “abstractions” are less

perfunctory, both in the tracer (textual) and

animation (graphical) representations give

expression to the creational scenario, in which the

contained objects are created as free-standing

instances, (e.g., A[0]) and at the point at which the

containing object is created, the contained are

“renamed” (the term used in the tracer) relative to

the containing object (e.g., C[0]->itsA). This

transformation is experienced in various views:

tracer output, animated sequence diagram, instance

features.

B. Constructional Scenarios. Various scenarios

of construction are driven by main code, as per the

aforementioned configuration specification. Model

level views of scenario execution are expressed in

the tracer, and in animated sequence diagrams as

captured in the various figures starting with figure 2.

C. Inter-object Relations. These have textual

and graphical representations. The tracer output

expresses the formation of relations, e.g., “A[0]

Relation itsB set to B[0]”. Whether a

given object is connected to another object, and if so

to which object is expressed in the relation section of

the instance features window (e.g., Features of A[0]

in figure 4). Where the interaction between objects

during relation connection is complex, a

combination of graphical views (e.g., the animated

sequence diagram of figure 10) and framework code

(figure 9) provides a higher and lower level of

abstraction. Mandatory initializations, such as the

assignment of NULL to an association end whose

relation has yet to be connected, are best expressed

by examining the automatic code generated for

constructors, as in section 4.1.

D. Object State. The state of an object at any

given moment is comprised of the value of its

instance variables shown in the upper half of the

instance features window (, and for reactive objects,

by the its present state as expressed in a color-coded

instance statechart. The examples herein show the

instance variable area of instance features windows,

although none of the examples actually have

instance variables. Instance statecharts are not

addressed at all herein.

As can be seen from the above, the abstractions

and their various representations are somewhat

eclectic. Nonetheless, their overall utility can be

captured heuristically as follows:

(1) Create a UML Class Diagram depicting the

relationship. (2) Define one or more constructional

scenarios via a configuration initialization tab. (3)

Execute the scenario at the model level via the tracer

and animation simulations. (4) Contemplate the

underlying abstractions via the various textual and

graphical views. In the two examples that follow

(directional and bi-directional associations) we

denote the aforementioned abstractions in bold.

4 UML STRUCTURAL

SEMANTICS

As Harel and Rumpe observe, it is commonly, and

incorrectly, believed that precise semantics is

required for behavioral aspects of UML, such as for

statecharts, but not for structural aspects, such as

class diagrams (Harel and Rumpe, 2004) . Whereas

the semantics of class diagrams may seem like

laborious formalism to the in-the-trenches

practitioner, system construction is very much

“alive” and relevant to the practitioner. It is this

aspect of structural model semantics that is

exemplified in the following sub-sections, which

addresses directional associations, and bi-directional

associations, respectively, using multiple model-

level views of software artifacts.

SKY 2016 - 7th International Workshop on Software Knowledge

46

4.1 Directionality Associations

The UML association relationship allows instances

of one class to access public operations of instances

of another class (or for that matter, other instances of

the same class). Associations may be directed or bi-

directional. A directed association from class A to

Class B allows instances of A to access B, but not

vice versa. A bi-directional association allows access

in both directions. Consider the directed association

in figure 1.

Figure 1: Directional Association.

At the most detailed level, the inter-object

relation abstraction semantics are articulated by

framework code as follows: The association end is

implemented, in C++, by a pointer A *itsB, declared

in the header file of A. To provide controlled

interaction with itsB from objects other than the

instance of A, public accessor and mutator functions

(getItsB, setItsB) are automatically generated in

class A “Responsible” UML requires that this

pointer be assigned the value NULL, until explicitly

assigned the address of an instance of B. Thus it is

mandatory that a NULL assignment appear at the

beginning of all constructors of A :

A::A() {

 itsB = NULL;

}

B* A::getItsB() const {

 return itsB;

}

void A::setItsB(B* p_B) {

 itsB = p_B;

}

The above code succinctly captures the

initialization requirements and semantics of a

directional association. We next simulate, at the

model level, a behavioral scenario in which an

instance of A connects to an instance of B: The

instance of B is then deleted.

The input to the constructional scenaro

abstraction is articulated in the configuration

initialization features, and at a lower leve in the code

in main:

A * p_A;

B * p_B;

p_A = new A;

p_B = new B;

p_A->setItsB(p_B);

delete p_B;

Below is a model-level textual simulation of this

scenario, output from the Rhapsody tracer tool,

articulating object initialization and inter-object

relational abstractions as follows:

Please enter OMTracer Command>>

go idle

OMTracer New instance A[0]:A

created by main()

OMTracer New instance B[0]:B

created by main()

OMTracer A[0] Relation itsB set

to B[0]

OMTracer main()Invoked B[0]->~B()

OMTracer B[0]->~B() Returned

OMTracer Instance B[0] of class B

deleted by main()

Executable is Idle

Please enter OMTracer Command>>

In the above, we see the creation of the

connection (relation) from instance of A to instance

of B, and the subsequent deletion of the instance of

B, but where does that leave the instance of A,

which because, of the directionality of the

association, is “unaware” of the deletion.

This dangling pointer problem may be visualized

using Rhapsody’s graphical simulator, the animation

tool.

Figure 2 shows the animation output, up until

including the creation of the instance of A. On the

left is the Rhapsody Browser, which organizes and

enables navigation among the various model

elements. In animation mode, the browser displays

instance folders for each of the classes. As expected,

the instance folder of class A is populated by an

instance of A, denoted as A[0]. On the right is an

animated sequence diagram, whose output, up to this

point shows the creation of the instance of A. The

features of this instance, shows that its relation itsB

is NULL, as indicated by the lack of content in the

right column of the relations area of the features

window.

Next the animation is advanced to the point

where B[0] is created and the relation itsB in A[0] is

assigned to B[0]. Although setItsB has already

output to the animated sequence diagram, it has not

yet returned, as indicated in the simulated call stack,

below the brower. Hence the relation itsB of A[0]

A B1

itsB

Modeling Semantics sans Mathematical Formalism

47

Figure 2: Creation of A[0] with various views: configuration initialization, animated sequence diagram, call stack, instance

features window.

Figure 3: B[0] created, A[0] not yet connected to it. Note connection command in call stack.

remains NULL. Due to the directionality of the

association, the features window of B[0] has no

relations (figure 3).

After an additional step in the animation, setItsB

returns, is popped off the call stack, and the relation

itsB is assigned to B[0] (figure 4).

Figure 5, captures the state of the system after

destruction of B[0]. As expected, the Instances

folder of B is now empty. However, due to the

directionality of the association, the relation itsB of

A[0] remains as before, where non-existent denotes

a dangling pointer, due to destruction of B[0]

4.2 UML Bi-directional Relationships

Consider the two alternatives for achieving bi-

directional relations shown in figure 6. A and B may

be connected by two directional associations (left) or

SKY 2016 - 7th International Workshop on Software Knowledge

48

Figure 4: A[0] relation its B connected to B[0].

Figure 5: A[0] dangling pointer.

Figure 6: A and B related by separate directional associations. (left), related by a single bi-directional association (right).

by a single bi-directional association (right). As

before the semantics of each can be explored at the

code and simulation levels.

For the first case, the implementation of the

directional associations is as above in section 4.1.

This implies that if an instance of A is related to an

instance of B, that instance of B can be related to

any instance of A, that is the relation is not

reciprocal. On the other hand , the semantics of the

bi-directional association supports a reciprocal

relationship. If an instance of A is related to an

instance of B, that instance of B is related to that

very instance of A. If the relation of itsB of an

instance of A is then set to a new instance of B, this

new relationship is reciprocal, and therefore the

relationship its A of the first instance of B must be

set to NULL.
As before we explore the semantics of the two

cases via a scenario defined in main. For the first
case, code in main creates two instances of A, and

A B1 1

itsBitsA

A B1

itsB
1

itsA

Modeling Semantics sans Mathematical Formalism

49

an instance of B, relates A[0] to B[0] and B[0] to
A[1], rather than A[0].

The input to constructional scenario is the
following code in main:

A * p_A;

B * p_B;

p_A = new A;

p_B = new B;

p_A->setItsB(p_B);

A* p_A1= new A;

p_B->setItsA(p_A1);

The tracer output demonstrates the independence of

the two directional relations:

Please enter OMTracer Command>> go

idle

OMTracer New instance A[0]:A

created by main()

OMTracer New instance B[0]:B

created by main()

OMTracer A[0] Relation itsB set to

B[0]

OMTracer New instance A[1]:A

created by main()

OMTracer B[0] Relation itsA set to

A[1]

Executable is Idle

The corresponding graphical demonstration via

animation is shown in figure 7.

For the bi-directional association case, the input

to the scenario, is the following main code, which

provides the most precise specification of the

constructional scenario:

A * p_A;

B * p_B;

p_A = new A;

p_B = new B;

p_A->setItsB(p_B);

delete p_B;

B* p_B1= new B;

B * p_B2 = new B;

p_A->setItsB(p_B1);

p_A->setItsB(p_B2);

In this scenario an instance of A and B are

created and their reciprocal relationship set to each

other. The instance of B is then deleted, and,

because of the reciprocity requirement, the instance

of A is not left with a dangling pointer, but rather

itsB is set to NULL. Next, two new instances of B

are created. The instance of A is connected to one of

the instances of B.

The intricate semantics of reciprocity, inter-

object relation, requires the detail that only

framework code can provide. (figure 8). A

connection is initiated by calling the function setIts

(B or A).

This function calls the helper function _setIts

(single underscore prefix) which calls the

corresponding helper function on the other side (i.e.,

if the connection is initiated from class A via a call

to setItsB; _setItsB in class A calls _setItsA in class

B, resulting in a recipricol process in which there is

a check as to whether either of the objects to be

connected is currently connected to another object.

If so, the currently connected object is disconnected

by setting its association end pointer to NULL.

The animated sequence simulation of the

aforementioned scenario is shown in figure 9.

Figures 10-11 show the objects and their

connections in the various stages of this scenario.
The animated sequence simulation of the
aforementioned scenario is shown in figure 9.
Figures 10-11 show the objects and their
connections in the various stages of this scenario.

5 DISCUSSION

5.1 Present Status of Research

The examples presented were selected from a
repository including all of the UML structural
relationships and object-oriented statecharts of
varying complexity. The model-level simulations
motivate the practitioner to interactively explore the
software at a model-level of abstraction and gain
insight into the model semantics in a very concrete
manner that speaks to the in-the-trenches
practitioner and encourages buy-in to the enterprise
of model-level semantics.

What is proposed herein is an unconventional

semantic domain to which UML syntax can be

mapped. The mapping is to multiple model-level

views. Ultimately, the as-built semantics is

determined by the implementation code, not of the

application, but rather of the framework

implementing UML. Hence, the inclusion of

framework code in the examples. We emphasize

“as-built” because exploration of the framework

code will reveal widely accepted good practices,

that, although not canonized in OMG UML

documentation, are interpretations that enhance the

state of the art. Two examples presented above: (1)

for well-formed associations of multiplicity 1, object

instantiation should initialize the association end to

SKY 2016 - 7th International Workshop on Software Knowledge

50

Figure 7: Non-reciprocity: A[0] related to B[0], B[0] related to A[1]. (sequence and instance views).

Figure 8: Automatic code supporting association reciprocity.

Modeling Semantics sans Mathematical Formalism

51

Figure 9: Multiple Object Connections and Reconnections.

Figure 10: (From Left to Right) 1. Connection of A[0] and B[0]; 2. A[0] after destruction of B[0]; 3. A[0] reconnected to

new object B[1].

Figure 11: A[0] connects to B[2] thereby disconnecting B[1].

NULL in a mandatory assignment in the constructor.
(2) A bi-directional association should support a

reciprocal managomous protocol, such that at any
given instant, two objects are linked to each other

SKY 2016 - 7th International Workshop on Software Knowledge

52

(or to no object), replacing previously linked objects,
whose association ends should be assigned NULL.
Visual insight into the as-built semantics is
supported by the various model-level simulation
artifacts, and the practitioner acquires insight by
interrogating the simulated model and examining
these artifacts.

5.2 Underlying Abstractions and
Semantics

The semantic issues herein are illustrated with the

mediation of a specific tool, and with reference with

a specific implemtation language. Nonetheless,

modelling artifacts such as call stacks, instance

feature windows, animated sequence diagrams and

statecharts provide a level of abstraction that the in-

the-trenches engineer can relate to. Furthermore, the

generated code should not be distained as mere

implementation, but rather gives expression to

constructural semantics, and some cases is

interpretive of UML.

The holy grail of a standard and thorough UML

semantics may not be achievable and perhaps should

not be achieved, as different interpretations are

inevitable and viable, provided that within a given

development environment, such as Rhapsody, there

is consistency and closure.

The articulation of these abstractions are

necessarily tool-dependent, and, indeed, other tools

may lend themselves to different abstractions than

those presented herein. In particular, tools that have

been disseminated in industry and have a substantial

user base, tend to absorb by “osmosis” abstractions

that have been effective in practice.

Aside from the issue of standardization, the

author acknowledges that to say that executable

modelling artifacts comprise rigorous model-level

semantics is pushing the envelope of semantics. A

simulation, including model simulation, is an

approximation. Nevertheless, it gives the practicing

engineer a lexicon of visual and textual abstractions

that is close enough to the code (in some cases the

best abstraction is the code itself) but develops a

mind set of abstraction, imparting understanding of

overall system behavior.

5.3 Desideratum

Herein a small subset of UML has been addressed.

To address all the UML “sublanguages” would be

overly ambitious. Nonetheless, extension of the

present work to cover the remaining UML structural

relationships, as well as reactive systems with

statecharts of various topologies may result in

extension and/or modification of the proposed

abstractions/

In a similar vein, comparable work with other

executable modeling tools would be an important

test of the viability of the proposed abstractions: to

what extent are they “universal” abstractions and to

what extent tool-specific.

Executable modeling tools may not be widely

deployed, but nonetheless occupy a significant

market niche. Interviews with practitioner,

unfettered by the pre-conceived notions of this

author, would be an important source of “practical”

abstractions

Another product of such interviews, would be to

explore to what extent model level abstractions

impart understanding of system behavior and instill

enough confidence to rely on production-quality

code generated by a given tool. In this vein, I close

with an anecdote:
I colleague of mine, responsible for development

of an air-borne mission computer, used a modeling
tool for conceptual modeling only, although it
produced reliable production-quality code. I asked
him whether he had ever considered letting the tool
produce his code. At that time, his response was that
he personally wanted to make sure that the code that
had to work at 20000 feet in the air would do what it
is supposed to do. Several years later, he was in fact
letting the tool produce his code, and the difference
was the degree to which he and his staff understood
the model semantics.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Iaakov Exman, (The

Jerusalem College of Engineering – JCE - Azrieli)

for his helpful and incisive comments.

REFERENCES

Booch, G. (1983) Software Engineering with ADA. 1st

edn. Benjamin/Cummings.

Bowen, J.P. and Hinchey, M.G. (1995) ‘Ten

Commandments of Formal Methods’, Computer,

28(4), pp. 56–63. doi: 10.1109/2.375178.

Bowen, J.P. and Hinchey, M.G. (2006) ‘Ten

Commandments of Formal Methods ...Ten Years

Later’, Computer, 39(1), pp. 40–48. doi:

10.1109/mc.2006.35.

Broy, M. and Cengarle, M.V. (2011) ‘UML formal

semantics: Lessons learned’, Software & Systems

Modeling Semantics sans Mathematical Formalism

53

Modeling, 10(4), pp. 441–446. doi: 10.1007/s10270-

011-0207-y.

Diskin, Z. and Dingel, J. (2006) ‘Mappings, Maps and

Tables: Towards Formal Semantics for Associations in

UML2’, 9th International Conference, MoDELS 2006,

Genova, Italy, October 1-6, 2006. Proceedings, , pp.

230–244.

Evermann, J. (2008) ‘A cognitive semantics for the

association construct’, Requirements Engineering,

13(3), pp. 167–186. doi: 10.1007/s00766-008-0065-5.

Gamma, E., Booch, G., Johnson, R., Vlissides, J.M. and

Helm, R. (1995) Design Patterns: Elements of

Reusable Object-oriented Software. 14th edn.

Reading, MA: Addison-Wesley Professional.

Génova, G. (2001) “Semantics of Navigability in UML

Associations”. Technical Report UC3M-TR-CS-2001-

06, Computer Science Department, Carlos III

University of Madrid, November 2001, pp. 233-251.

Harel, D. and Rumpe, B. (2004) ‘Meaningful Modeling:

What’s the semantics of “semantics”?’,Computer,

37(10), pp. 64–72. doi: 10.1109/mc.2004.172.

Rational rhapsody developer (2016) Available at:

http://www-03.ibm.com/software/products/en/ratirhap

(Accessed: 19 September 2016).

SKY 2016 - 7th International Workshop on Software Knowledge

54

