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Abstract: As Software as a Service (SaaS) cloud computing gains momentum, the efficient scheduling of different 
types of applications in such platforms is of great importance, in order to achieve good performance. In 
SaaS clouds the workload is usually complex and comprises applications with various degrees of 
parallelism and priority. Therefore, one of the major challenges is to cope with the case where high-priority 
real-time single-task applications arrive and have to interrupt other non-real-time parallel applications in 
order to meet their deadlines. In this case, it is required to effectively deal with the real-time applications, at 
the smallest resulting degradation of parallel performance. In this paper, we investigate by simulation the 
performance of strategies for the scheduling of complex workloads in a SaaS cloud. The examined 
workload consists of non-real-time applications featuring fine-grained parallelism (gangs) and periodic 
high-priority soft real-time single-task applications that can tolerate deadline misses by bounded amounts. 
We examine the impact of gang service time variability on the performance of the scheduling algorithms, by 
considering service demands that follow a hyper-exponential distribution. The simulation results reveal that 
the relative performance of the employed scheduling strategies depends on the type of the workload. 

1 INTRODUCTION 

Software as a Service (SaaS) cloud computing has 
become prevalent in recent years, replacing the 
traditional software delivery model, which required 
the installation of the software on the client’s 
servers. According to this emerging software 
distribution approach, which may be considered as 
the evolution of the Service-Oriented Architecture 
(SOA) model, the software is hosted by the vendor 
and made available to the end-users over the 
Internet, as a cloud service (Cusumano, 2010) and 
(Beloglazov et al., 2012).  

Some of the main benefits of the SaaS cloud 
computing model are:  
 The software is always up to date. 
 The software can be accessed via various devices 

and from different locations. 
 It provides overall easier administration and 

maintenance, as the SaaS clients do not have to 
acquire, maintain and monitor expensive 
hardware and software infrastructure. 

The clients use the software services, without any 
control on the host environment, either on a pay-as-
you-go basis or a subscription based pricing model 
(Bittencourt et al., 2012) and (Dillon et al., 2010).  

1.1 Motivation 

SaaS cloud computing usually relies on a multi-
tenant model, where applications of different users 
run on the same virtual machines (VMs). Due to the 
tremendous increase of users and the number of 
different applications sharing the underlying 
virtualized resources, the performance of SaaS clouds 
has become a crucial area of research. Therefore, the 
efficient scheduling of different types of applications 
in such platforms is of great importance, in order to 
effectively utilize the underlying multi-tenant 
infrastructure and achieve good performance, while 
maintaining a certain level of Quality of Service 
(QoS) (Hofer and Karagiannis, 2011), (Rimal et al., 
2009) and (Stavrinides and Karatza, 2015). 

In SaaS clouds the workload is usually complex 
and comprises applications with various degrees of 
parallelism and priority. Consequently, one of the 
major challenges is to cope with the case where 
high-priority real-time single-task applications arrive 
and have to interrupt other non-real-time parallel 
applications in order to meet their deadlines. In this 
case, it is required to effectively deal with the real-
time applications, at the smallest resulting 
degradation of parallel performance. Moreover, part 
of the workload may consist of fine-grained parallel 
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applications that present high variability in their 
service times. In this case, the scheduling algorithm 
should cope with bursts of very small service times 
and a few but very large ones, compared to the 
average service time of applications. 

1.2 Contribution 

In this paper, we focus on the performance of 
strategies for the scheduling of complex workloads 
in a SaaS cloud with multi-tenant VMs. The 
examined workload consists of non-real-time 
applications featuring fine-grained parallelism and 
periodic high-priority soft real-time single-task 
applications that can tolerate deadline misses by 
bounded amounts.  

We examine the impact of service time 
variability of parallel applications on the 
performance of the scheduling algorithms, by 
considering service demands that follow a hyper-
exponential distribution. To our knowledge, 
scheduling complex workloads, including fine-
grained parallel applications and periodic soft real-
time single-task jobs, in such a framework, does not 
appear elsewhere in the research literature. 

1.3 Background and Related Work 

One type of workload submitted to SaaS clouds is 
bag-of-tasks (BoT) applications. Each BoT is a 
collection of independent tasks that do not 
communicate with each other and can run in any 
order (Karatza, 2004), (Kim et al., 2007), (Moschakis 
and Karatza, 2015), (Papazachos and Karatza, 2015) 
and (Terzopoulos and Karatza, 2016). Another type 
of workload is applications that consist of 
interdependent tasks, which often have precedence 
constraints among them and thus form a directed 
acyclic graph (DAG) (Stavrinides and Karatza, 
2010), (Stavrinides and Karatza, 2011), (Stavrinides 
and Karatza, 2012) and (Stavrinides and Karatza, 
2014). 

However, most often the workload in SaaS clouds 
consists of fine-grained parallel applications. They 
consist of frequently communicating tasks, which are 
scheduled to run simultaneously on different VMs, as 
gangs. Gang scheduling is an efficient resource 
management technique in the case where parallel 
applications feature fine-grained parallelism.  

Since with gang scheduling a gang’s task can 
start execution only if all of the other sibling tasks 
can also start processing, some VMs may remain 
idle even when there are tasks waiting in their 
queues. This problem becomes more complex when 

the workload also includes real-time applications 
which have higher priority than gangs.  

Gang scheduling algorithms have been proposed 
and studied by many authors, each differing in the 
way resources are shared among the jobs 
(Stavrinides and Karatza, 2008), (Stavrinides and 
Karatza, 2009), (Streit, 2005) and (Zhang et al., 
2003).  

In (Karatza, 2006), the performance of two well-
known gang scheduling methods is studied, the 
Adapted-First-Come-First-Served (AFCFS) and the 
Largest-Job-First-Served (LJFS). It has been shown 
that in many cases LJFS performs better than 
AFCFS. However, in this case no real-time jobs are 
considered and the overall performance is expressed 
by the average response time of gangs. 

In this paper, we study gang scheduling in a 
queueing network model of a SaaS cloud. The 
performance of two policies that are variations of 
AFCFS and LJFS, is studied under various work-
loads, which include gangs, as well as periodic real-
time single-task jobs that have higher priority than 
gangs. The periodic single-task jobs are considered 
as soft-real time applications, in the sense that they 
can tolerate deadline misses by bounded amounts. 

Related research includes (Karatza, 2007) and 
(Karatza, 2008). These papers examine critical 
sporadic jobs that need to start execution upon 
arrival and therefore they interrupt gangs. In this 
paper, we examine periodic soft real-time jobs that 
can tolerate some delay called slack time. This 
happens in the case when gangs in service require 
only a small amount of time to finish their execution 
that is less than or equal to the slack time.  

Scheduling workloads consisting of soft-real 
time jobs and gangs in distributed systems has also 
been studied in (Karatza, 2014). However, the 
workload considered in this case does not include 
parallel applications with highly variable service 
demands.  

Tardiness bounds for sporadic real-time task 
systems have been studied in (Devi and Anderson, 
2006) and (Leontyev and Anderson, 2010). 
However, these papers do not consider gangs in their 
workloads. 

In this paper, we examine the impact of gang 
service time variability on the performance of the 
scheduling algorithms, by considering service 
demands that follow a hyper-exponential 
distribution. A high variability in task service 
demand implies that there is a proportionately large 
number of service demands that are very small 
compared to the mean service time and a 
comparatively small number of service demands that 
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are very large.  
When a gang with a long service demand starts 

execution, it occupies its assigned VMs for a long 
time interval, and depending on the scheduling 
policy that is employed, it may introduce inordinate 
queueing delays for other tasks waiting for service. 

The performance evaluation of complex 
distributed systems such as clouds is often possible 
only by simulation rather than by analytical 
techniques, due to the complexity of the systems. 
Simulation can provide important insights into the 
efficiency and tradeoffs of scheduling in such 
environments. Therefore, due to the complexity of 
the system under study, we use discrete event 
simulation to evaluate the performance of the 
scheduling algorithms.  

The remainder of this paper is organized as 
follows: Section 2 introduces the model and the 
methodology employed, describing the system and 
workload models. Sections 3 and 4 describe the 
routing and gang scheduling policies respectively, 
whereas Section 5 presents the performance metrics. 
The model implementation and its input parameters, 
as well as the simulation results, are presented and 
analysed in Section 6. Finally, Section 7 summarizes 
the paper and provides future research directions. 

2 MODEL AND METHODOLOGY 

2.1 System and Workload Models  

This paper uses a simulation model to address 
performance issues. The target SaaS cloud is 
considered to consist of a set V of p virtual machines 
V = {VM1, VM2, …, VMp}, that are fully connected 
by a virtual network (Figure 1).  

It is assumed that the communication between the 
virtual machines is contention-free. Each virtual 
machine VMi serves its own queue of tasks and has 
mean execution rate μ. The VMs in the cloud are 
multi-tenant, that is each VM processes tasks of 
applications submitted by different users.  

Each parallel job is submitted for execution in the 
cloud by a user. Users share the virtual machines to 
run concurrently their applications. Since the parallel 
applications are submitted dynamically by multiple 
users, it is assumed that they arrive in the cloud in a 
Poisson stream with mean arrival rate λ. 

The number of tasks in a parallel job x is the 
job’s degree of parallelism and it is represented as 
t(x). In Figure 1 virtual machines are allocated to a 
parallel job x, which has j parallel tasks. VMp is 
assigned to a periodic single-task job.  

λ1

VM1

....
....

λ2

Periodic real-time 
single-task jobs

Gang jobs
λ1

VM1

....
....

λ2

Periodic real-time 
single-task jobs

Gang jobs

task-1of Gang x

task-2 of Gang x

task-j of Gang x

Periodic job y

....
....

VM2

VMk

VMp

 

Figure 1: The queueing network model. 

If vm(x) represents the number of VMs required 
by job x, then the following relationship holds: 1  
t(x) = vm(x)  p. We call size of job x the number of 
its parallel tasks. A job is small (large) if it consists 
of a small (large) number of tasks. Soft real-time 
jobs are periodic single-task jobs. 

Each task of a gang x is routed to a different VM. 
Gang x starts to execute only if all of the vm(x) VMs 
assigned to its tasks are available. Otherwise, all of 
the x gang tasks wait in their assigned queues. When 
a gang terminates execution, all VMs assigned to it 
are released. 

An important issue that arises is the need to serve 
a real-time single-task job on a virtual machine 
executing a gang task. Therefore, a mechanism is 
needed to deal with the fact that resources allocated 
to a gang are changing. The scheduler must give 
priority to real-time applications, but at the same 
time provide good performance for parallel 
applications that compete for resources.  

For each soft real-time application there is a 
slack time during which it can wait for a gang that 
needs a small amount of time to finish execution. 
The slack time is a constant tardiness that is 
independent of elapsed time. If the time until the 
completion of a gang is larger than the slack time, 
then the job scheduler interrupts the gang upon the 
arrival of a soft real-time application, so that it can 
occupy a VM. The remaining virtual machines that 
are assigned to the interrupted gang can serve tasks 
of other gangs that are waiting at their queues. All of 
the work that was performed on all tasks associated 
with the interrupted gang must be redone. The tasks 
of an interrupted parallel application are rescheduled 
for execution at the head of their assigned queues. 

A technique used to evaluate the performance of 
the scheduling disciplines, is experimentation using 
a synthetic workload. The workload considered here 
is characterized by the following parameters:  
 The distribution of the number of tasks of gangs. 
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 The distribution of gang tasks service demand.  
 The distribution of soft real-time jobs service 

demand.  
 The mean inter-arrival time of gangs.  
 The period of soft real- time jobs. 

2.2 The Distribution of Gang Sizes 

We assume that the number of gang tasks is 
uniformly distributed in the range [1, p]. Therefore, 
the mean number of tasks per parallel application is 
equal to m = (1+p)/2. 

2.3 Service Time Distribution 

For the service demands of parallel applications and 
real-time jobs we assume that: 
 Service demands of gang tasks follow a hyper-

exponential distribution with a coefficient of 
variation CV and a mean 1/μ. CV determines the 
degree of variability. This is the ratio of the 
standard deviation of task execution time to its 
mean. CV >1 implies a large variability, 
compared to the variability of the exponential 
distribution. 

 Real-time jobs service demands are 
exponentially distributed with a mean of 1/μ.  

2.4 Distribution of Job Inter-arrival 
Times 

We consider two arrival streams, one for gangs and 
one for real-time jobs:  
 The inter-arrival times of gangs are exponential 

random variables with a mean of 1/λ1.  
 The inter-arrival times of soft real-time jobs are 

constant time intervals equal to 1/λ2 (i.e. the real-
time jobs are periodic).  

3 ROUTING POLICIES  

Job routing in SaaS clouds is an important aspect for 
good performance. In this paper, our workload 
model consists of two different types of jobs. 
Therefore, we examine two different routing 
policies, one for each job type. 

The first job type concerns the parallel 
applications, which are gangs. Hence, in this case 
routing occurs at the task level. The second job type 
concerns the single task real-time applications. 
Consequently, in this case routing occurs at the job 
level. 

3.1 Parallel Applications Routing 

A variation of the join the shortest queue policy is 
used. That is, the t(x) tasks of a gang x are assigned 
to the shortest t(x) of the p queues, every task to a 
different VM queue.  

3.2 Real-time Applications Routing 

The routing policy of real-time jobs is join the 
shortest queue. In the experiments that we have 
conducted for this research, appropriate values of the 
period have been chosen, so that there are no further 
real-time job arrivals in the case where all of the 
VMs serve real-time jobs. 

4 PARALLEL APPLICATIONS 
SCHEDULING POLICIES 

It is assumed that the scheduler knows the exact 
number of VMs required by each gang. The 
following two scheduling strategies are employed in 
our simulations. 

4.1 Adapted-First-Come-First-Served 
with Execution Interruption based 
on Slack Time (AFCFS-ST) 

This strategy schedules a gang job whenever VMs 
assigned to its tasks are available. When there are 
not enough VMs available for a large job whose 
tasks are waiting in the front of the queues, then the 
AFCFS-ST policy schedules tasks of smaller jobs in 
the queues. A problem with this scheduling policy is 
that it tends to favor small gangs at the expense of 
larger gangs and thus it may increase system 
fragmentation. A gang job may be interrupted upon 
arrival of a real-time single-task job.  

4.2 Largest-Job-First-Served with 
Execution Interruption based on 
Slack Time (LJFS-ST)  

With this strategy tasks that belong to larger gangs 
are placed at the head of queues. All gang tasks in 
queues are searched in order, and the first jobs 
whose assigned VMs are available begin execution. 
This scheduling method favors large, highly parallel 
gangs at the expense of smaller gangs, but in many 
cases this treatment of large gangs is acceptable. For 
example, supercomputers are often used to 
particularly run highly parallel jobs for fast 
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execution. However, LJFS-ST involves an overhead 
because the VM queues need to be re-arranged each 
time a new gang is added. Similarly to the AFCFS-
ST case, a gang job may be interrupted upon arrival 
of a real-time job.  

In both cases of AFCFS-ST and LJFS-ST, when 
a real-time job terminates, the interrupted gang may 
not resume execution immediately, as some of the 
VMs assigned to its tasks may be running other jobs. 
Those jobs will not terminate at the same time so the 
interrupted gang will not use the assigned VMs 
efficiently. It is worth noting that when a real-time 
job is assigned to a virtual machine, it is not only the 
gang tasks of the particular VM queue that are 
delayed, but also gang tasks in other queues that 
have a sibling task waiting in the particular queue.  

5 PERFORMANCE METRICS 

The response time rti of a gang i is the time interval 
from the dispatching of its tasks to different VM 
queues, to the service completion of the gang − this 
is the time spent in VM queues plus the time spent in 
service. 

The average response time RT of n gangs is 
defined as: 
 

n

rt
RT

n

i
i

 1  (1)

 

Additionally, we weight each gang’s response time 
with its size (Streit, 2005). Consequently, it is 
avoided that gangs with the same execution time, but 
with different number of tasks, have the same impact 
on performance. The average weighted response 
time WRT of n gangs is defined as: 
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The parameters used in the simulation experiments 
are shown in Table 1. 

Table 1: System parameters and performance metrics. 

ST Slack time of real-time jobs 

p Number of VMs 

m Average number of tasks per parallel job 

μ Mean execution rate of a VM 

1/μ Mean execution time of a VM 

CV Coefficient of variation of service demands 

λ1 Mean arrival rate of gangs 

1/λ2 Period of real-time jobs 

U Average VM utilization 

RT Average response time of gangs 

DRT 
Relative (%) decrease in RT when LJFS-ST method 
is employed instead of the AFCFS-ST policy 

WRT Average weighted response time of gangs  

DWRT 

Relative (%) decrease in WRT when LJFS-ST 
method is employed instead of the AFCFS-ST 
policy 

6 SIMULATION RESULTS AND 
DISCUSSION 

6.1 Model Implementation and Input 
Parameters 

The queueing network model described in Section 2 
is implemented via discrete event simulation. Due to 
the complexity of the system and the workload 
model under study, we implemented our own 
discrete event simulation program in C, tailored to 
the requirements of the specific case study.  

In order to derive the mean values of the 
performance parameters we used the independent 
replications method. For each set of workload 
parameters we run 30 replications of the simulation 
with different seeds of random numbers and for 
32,000 served jobs in each replication. We 
considered this simulation length long enough to 
derive results, as we found by experimentation that 
longer runs did not affect simulation output 
significantly. The use of sufficiently long simulation 
runs, is one of the ways to reduce the effect of initial 
bias on simulation results. 

For every mean value of the performance 
parameters, a 95% confidence interval was 
evaluated. The half-widths of all confidence 
intervals are less than 5% of their respective mean 
values evaluated. For our experiments, we used the 
simulation input parameters shown in Table 2.  

In our workload model there are on average m = 
(p+1)/2 = 8.5 tasks per parallel job. Therefore, if we 
do not consider any real-time jobs and all VMs are 
busy serving gangs, then an average of p / m = 
1.88235 parallel jobs can be served per each unit of 
time. This implies that we should choose a λ1 such 
that the condition λ1 < 1.88235 holds, so that the VM 
queues will not be saturated. However, due to the 
real-time job arrivals, the number of VMs that are 
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available for gang service is [p – (λ2/μ)]. Therefore, 
we have to choose a value of λ1 for which the 
following relationship holds:  

 

λ1  < [p – (λ2/μ)] / m (3) 
 

However, due to gang scheduling, there are often 
idle VMs, despite the fact that there are gang tasks 
waiting in the respective queues. Therefore, the VM 
queues get very easily saturated when the mean 
inter-arrival time of gangs is close to [p – (λ2/μ)] / m. 
After experimental runs with various values of 1/λ1, 
we chose 0.78 as the smallest mean inter-arrival time 
of gangs for the experiments, for all cases of 1/λ2. 
The input parameter values which were used for the 
experiments are presented in Table 2.  

Table 2: Input parameters. 

ST 0.1 

1/μ 1 

1/λ1 0.84, 0.78 

1/λ2 20, 30, 40 

CV 2 

6.2 Performance Analysis 

The simulation results that are presented next 
describe the relative performance of the two gang 
scheduling policies.  

6.2.1 Performance with Regard to Parallel 
Applications Service 

Figure 2 presents DRT versus 1/λ1 in the cases of 
period 1/λ2 = 20, 30 and 40. Figure 3 presents DWRT 
versus 1/λ1 in the cases of period 1/λ2 = 20, 30 and 
40. 

Figures 2 and 3 show that for both arrival rates 
of gangs and for all cases of real-time jobs period, 
the LJFS-ST method yields lower mean response 
time than AFCFS-ST. 

In each real-time job period case, the superiority 
of LJFS-ST over AFCFS-ST is more significant in 
the case of high load (1/λ1 = 0.78). This is due to the 
fact that the advantages of the LJFS-ST case are 
better exploited when there is a sufficient number of 
gangs in the queues, so that they can be selected 
according to the LJFS-ST criteria.  

The simulation results also reveal that the DRT 
increase with increasing load is more significant in 
the larger periods. This may be explained by the fact 
that the smaller the period of real-time jobs, the 
larger is the possibility that fewer virtual machines 
are available for gang service. Therefore, the 
potential of the LJFS-ST policy is not completely 

exploited, as large applications cannot find enough 
VMs available to serve them. 
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Figure 2: DRT ratio versus 1/λ1, soft real-time jobs with 
period 20, 30 and 40. 
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Figure 3: DWRT ratio versus 1/λ1, soft real-time jobs with 
period 20, 30 and 40. 

In each case of the arrival rate of gangs, DRT 
decreases with increasing period size. This is 
because when real-time jobs arrive less frequently, 
then a smaller number of gangs are interrupted.  The 
DRT decrease with increasing period size is smaller 
in the case of heavier load (1/λ1 = 0.78). This is due 
to the fact that when a real-time job blocks a gang, 
then it does not only affect the performance of the 
blocked gang, but it also affects the performance of 
a number of subsequent gangs.  

Figure 3 shows that the observations that hold for 
the relative performance of the scheduling policies 
in terms of the average response time of parallel 
applications, also generally hold in terms of the 
average weighted response time. In all cases DWRT is 
larger than DRT. Therefore, the superiority of LJFS-
ST over AFCFS-ST appears more significant when 
the job response time is weighted by the degree of 
parallelism of the jobs.  
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6.2.2 Performance with Regard to VM 
Utilization 

Tables 3 and 4 depict the mean virtual machine 
utilization U versus 1/λ1, for period size 1/λ2 = 20, 30 
and 40 respectively. In most cases, the mean VM 
utilization is either equal for both of the scheduling 
policies or it is very slightly larger in the LJFS-ST 
case. This is because the LJFS-ST policy schedules 
large gangs first and consequently, it schedules jobs 
on the available VMs more efficiently than the 
AFCFS-ST policy. 

Table 3: U for AFCFS-ST. 

1/λ1 0.84 0.78 
PER-20 0.711 0.740 

PER-30 0.672 0.716 

PER-40 0.636 0.690 

Table 4: U for LJFS-ST. 

1/λ1 0.84 0.78 
PER-20 0.712 0.768 

PER-30 0.672 0.718 

PER-40 0.637 0.695 

 

However, with both scheduling strategies, part of 
the virtual machines utilization is comprised of 
repeated gang work due to the real-time job service. 
The amount of the repeated work depends on the 
number of gang tasks, the service demand of each 
task and the work that has already be done by the 
gang at the moment of interruption. It is possible for 
a gang to be interrupted several times during its 
execution. This would be caused by multiple real-
time job arrivals at different virtual machines 
serving tasks of the same gang. 

For each λ1, the utilization slightly decreases 
with increasing period size. This is due to the fact 
that it is more possible to have to restart the parallel 
applications execution when the period of real-time 
applications is small, than when it is large. However, 
due to the variability in gang service demand in our 
workload model, only the gangs that have very large 
service demands may experience multiple service 
interruptions. 

7 CONCLUSIONS AND FURTHER 
RESEARCH 

This paper examines the performance of two gang 
scheduling policies, the LJFS-ST and the AFCFS-
ST, in a SaaS cloud in the presence of periodic soft 

real-time single-task jobs. The objective is to 
enhance the performance of parallel applications, 
assuming that soft real-time jobs can tolerate a 
delay. 

Simulation results show that the relative 
performance of the two scheduling methods depends 
on the workload. With regard to the performance 
metrics considered in this paper, the LJFS-ST 
method performs better than the AFCFS-ST, in all 
cases of workloads, providing promising results. 

Furthermore, the superiority of LJFS-ST over 
AFCFS-ST appears more significant when the 
response time of parallel applications is weighted by 
their degree of parallelism. 

Our future research plans include the 
examination of cases where along with gangs there 
are also workflow applications. Moreover, we plan 
to consider additional distributions for service 
demands and investigate their impact on the 
monetary cost charged to the end-users of the SaaS 
cloud. 

REFERENCES 

Cusumano, M., 2010. Cloud computing and SaaS as new 
computing platforms. Communications of the ACM. 
ACM, 53(4), 27-29. 

Beloglazov, A., Abawajy, J. and Buyya, R., 2012. Energy-
aware resource allocation heuristics for efficient 
management of data centers for cloud computing. 
Future Generation Computer Systems. Elsevier, 28(5), 
755-768. 

Bittencourt, L. F., Madeira, E. R. M. and Da Fonseca, N. 
L. S., 2012. Scheduling in hybrid clouds. 
Communications Magazine. IEEE, 50(9), 42-47. 

Devi, U. C. and Anderson, J. H., 2006. Flexible tardiness 
bounds for sporadic real-time task systems on 
multiprocessors. In IPDPS’06, 20th IEEE 
International Parallel and Distributed Processing 
Symposium. IEEE, Rhodes Island, Greece. 

Dillon, T., Wu, C. and Chang, E., 2010. Cloud computing: 
issues and challenges. In AINA’10, 24th IEEE 
International Conference on Advanced Information 
Networking and Applications. IEEE, Perth, Australia, 
pp. 27-33. 

Hofer, C. N. and Karagiannis, G., 2011. Cloud computing 
services: taxonomy and comparison. Journal of 
Internet Services and Applications. Springer, 2(2), 81-
94. 

Karatza, H. D., 2004. Simulation study of multitasking in 
distributed server systems with variable workload. 
Simulation Modelling Practice and Theory. Elsevier, 
12(7), 591-608. 

Karatza, H. D., 2006. Scheduling gangs in a distributed 
system. International Journal of Simulation: Systems, 
Science Technology. UK Simulation Society, 7(1), 15-

Sixth International Symposium on Business Modeling and Software Design

150



 

22. 
Karatza, H. D., 2007. Performance of gang scheduling 

policies in the presence of critical sporadic jobs in 
distributed systems. In SPECTS’07, 2007 
International Symposium on Performance Evaluation 
of Computer and Telecommunication Systems. SCS, 
San Diego, CA, pp. 547-554. 

Karatza, H. D., 2008. The impact of critical sporadic jobs 
on gang scheduling performance in distributed 
systems.  Simulation: Transactions of the Society for 
Modeling and Simulation International. Sage 
Publications, 84(2-3), 89-102. 

Karatza, H. D., 2014. Scheduling Jobs with different 
characteristics in distributed systems. In CITS’14, 
2014 International Conference on Computer, 
Information and Telecommunication Systems. IEEE, 
Jeju Island, South Korea, pp. 1-5. 

Kim, K. H., Buyya, R. and Kim, J., 2007. Power aware 
scheduling of bag-of-tasks applications with deadline 
constraints on DVS-enabled clusters. In CCGRID’07, 
7th IEEE International Symposium on Cluster 
Computing and the Grid. IEEE, Rio de Janeiro, Brazil, 
pp. 541-548. 

Leontyev, H. and Anderson, J. H., 2010. Generalized 
tardiness bounds for global multiprocessor scheduling. 
Real-Time Systems. Springer, 44(1-3), 26-71. 

Moschakis, I. A. and Karatza, H. D., 2015. A meta-
heuristic optimization approach to the scheduling of 
Bag-of-Tasks applications on heterogeneous Clouds 
with multi-level arrivals and critical jobs. Simulation 
Modelling Practice and Theory. Elsevier, 57, 1-25. 

Papazachos, Z. C. and Karatza, H. D., 2015. Scheduling 
bags of tasks and gangs in a distributed system. In 
CITS’15, 2015 International Conference on Computer, 
Information and Telecommunication Systems. IEEE, 
Gijón, Spain, pp. 1-5. 

Rimal, B. P., Choi, E. and Lumb, I., 2009. A taxonomy 
and survey of cloud computing systems. In NCM’09, 
5th International Joint Conference on INC, IMS and 
IDC. IEEE, Seoul, Korea, pp. 44-51. 

Stavrinides, G. L. and Karatza, H. D., 2008. In 
SPECTS’08, 2008 International Symposium on 
Performance Evaluation of Computer and 
Telecommunication Systems. IEEE, Edinburgh, UK, 
pp. 1-7. 

Stavrinides, G. L. and Karatza, H. D., 2009. Fault-tolerant 
gang scheduling in distributed real-time systems 
utilizing imprecise computations. Simulation: 
Transactions of the Society for Modeling and 
Simulation International. Sage Publications, 85(8), 
525-536. 

Stavrinides, G. L. and Karatza, H. D., 2010. Scheduling 
multiple task graphs with end-to-end deadlines in 
distributed real-time systems utilizing imprecise 
computations. Journal of Systems and Software. 
Elsevier, 83(6), 1004-1014. 

Stavrinides, G. L. and Karatza, H. D., 2011. Scheduling 
multiple task graphs in heterogeneous distributed real-
time systems by exploiting schedule holes with bin 
packing techniques. Simulation Modelling Practice 

and Theory. Elsevier, 19(1), 540-552. 
Stavrinides, G. L. and Karatza, H. D., 2012. Scheduling 

real-time DAGs in heterogeneous clusters by 
combining imprecise computations and bin packing 
techniques for the exploitation of schedule holes. 
Future Generation Computer Systems. Elsevier, 28(7), 
977-988. 

Stavrinides, G. L. and Karatza, H. D, 2014. The impact of 
resource heterogeneity on the timeliness of hard real-
time complex jobs. In PETRA’14, 7th International 
Conference on Pervasive Technologies Related to 
Assistive Environments. ACM, Rhodes Island, Greece, 
pp. 65:1-65:8. 

Stavrinides, G. L. and Karatza, H. D., 2015. A cost-
effective and QoS-aware approach to scheduling real-
time workflow applications in PaaS and SaaS clouds. 
In FiCloud'15, 3rd International Conference on 
Future Internet of Things and Cloud. IEEE, Rome, 
Italy, pp. 231-239. 

Streit, A., 2005. Enhancements to the decision process of 
the self-tuning dynP scheduler. In JSSPP’05, 11th 
Workshop on Job Scheduling Strategies for Parallel 
Processing. Springer, Cambridge, MA, pp. 63-80. 

Terzopoulos, G. and Karatza, H. D., 2016. Bag-of-Tasks 
load balancing on power-aware clusters. In PDP’16, 
24th Euromicro International Conference on Parallel, 
Distributed and Network-Based Processing. IEEE, 
Heraklion, Crete. 

Zhang, Y., Franke, H., Moreira, J. and Sivasubramaniam, 
A., 2003. An integrated approach to parallel 
scheduling using gang-scheduling, backfilling and 
migration. IEEE Transactions on Parallel and 
Distributed Systems. IEEE, 14(3), 236-247. 

Scheduling Different Types of Applications in a SaaS Cloud

151


