
DP-CORE: A Design Pattern Detection Tool for Code Reuse

Themistoklis Diamantopoulos, Antonis Noutsos and Andreas Symeonidis
Electrical and Computer Engineering Dept., Aristotle University of Thessaloniki, Thessaloniki, Greece

thdiaman@issel.ee.auth.gr, anoutsos@auth.gr, asymeon@eng.auth.gr

Keywords: Design Pattern Detection, Static Code Analysis, Reverse Engineering, Code Reuse.

Abstract: In order to maintain, extend or reuse software projects one has to primarily understand what a system does
and how well it does it. And, while in some cases information on system functionality exists, information
covering the non-functional aspects is usually unavailable. Thus, one has to infer such knowledge by extracting
design patterns directly from the source code. Several tools have been developed to identify design patterns,
however most of them are limited to compilable and in most cases executable code, they rely on complex
representations, and do not offer the developer any control over the detected patterns. In this paper we present
DP-CORE, a design pattern detection tool that defines a highly descriptive representation to detect known
and define custom patterns. DP-CORE is flexible, identifying exact and approximate pattern versions even in
non-compilable code. Our analysis indicates that DP-CORE provides an efficient alternative to existing design
pattern detection tools.

1 INTRODUCTION

Developers need to understand existing projects in or-
der to maintain, extend, or reuse them. However, un-
derstanding usually comes down to understanding the
source code of a project, which is inherently difficult,
especially when the original software architecture and
design information is unavailable. And, although sev-
eral tools extract information from source code, in
cases where software projects lack proper documen-
tation, the process of understanding the intent and de-
sign of the source code requires a lot of effort.

The design decisions taken during software devel-
opment concern the non-functional aspects of the sys-
tem, and are usually documented in the form of de-
sign patterns. Design patterns provide reusable solu-
tions in the form of templates that developers can use
to confront commonly occurring problems (Gamma
et al., 1998). Inferring such non-functional knowl-
edge from source code typically requires extracting
these patterns. Lately, the problem of recovering de-
sign patterns from source code has attracted the atten-
tion of several researchers and has led to the devel-
opment of several tools to detect patterns, known as
Design Pattern Detection (DPD) tools.

Most of the tools are effective for detecting cer-
tain types of design patterns. However, they fall short
in several important aspects. At first, they require the
source code to be compilable, or in most cases ex-

ecutable. As a result, developers cannot exploit the
source code of other systems without first resolving
their dependencies and executing them correctly. Sec-
ondly, pattern representations in most tools are not in-
tuitive, thus resulting in black box systems that do not
allow the developer any control over the detected pat-
terns. These tools also do not offer the ability to de-
fine custom patterns. Finally, several DPD tools are
not up-to-date, supporting only obsolete versions of
programming languages.

In this paper, we present DP-CORE, a Design Pat-
tern detection tool for COde REuse, which is designed
in order to overcome the aforementioned issues. DP-
CORE uses a highly descriptive and complete repre-
sentation for source code elements based on UML.
Hence, the tool supports both the detection of sev-
eral well known patterns and the definition of custom
patterns by the developer. DP-CORE is also quite
flexible, matching not only strictly defined versions
of patterns but also similar versions of patterns using
wildcards. Furthermore, the detection of patterns in
non-executable and even non-compilable source code
is fully supported, while DP-CORE also uses the lat-
est compiler technology to support detecting patterns
in current Java projects.

The rest of this paper is organized as follows. Sec-
tion 2 provides background knowledge and reviews
current approaches for the detection of design patterns
from source code. In Section 3, we present our DPD

160
Diamantopoulos T., Noutsos A. and Symeonidis A.
DP-CORE: A Design Pattern Detection Tool for Code Reuse.
DOI: 10.5220/0006223301600167
In Proceedings of the Sixth International Symposium on Business Modeling and Software Design (BMSD 2016), pages 160-167
ISBN: 978-989-758-190-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tool, focusing on the defined representation and the
methodology used to detect patterns, while its user in-
terface is presented in Section 4. Section 5 illustrates
the usage of our tool using a case study and presents
our evaluation against the DPD tool PINOT (Shi and
Olsson, 2006). Finally, Section 6 summarizes work
done and provides useful insight for future research.

2 BACKGROUND AND RELATED
WORK

Software design patterns were first proposed in 1987
(Beck and Cunningham, 1987), shortly after the Ob-
ject Oriented Programming (OOP) paradigm began
gaining momentum. One of the first attempts to for-
malize the use of design patterns was a book pub-
lished in 1998 by Gamma, Vlissides, Johnson, and
Helm (1998), who became known as the Gang of Four
(GoF). The GoF defined 23 patterns, which are cate-
gorized in creational, structural, and behavioral pat-
terns. Creational patterns abstract the process of cre-
ating objects, while structural patterns combine ob-
jects to form larger structures and behavioral patterns
describe the communication between objects.

Current literature in DPD methods is quite broad.
According to Dong et al. (2009), the defining proper-
ties of a DPD tool are (a) the type of input, which can
be source code, UML diagrams or any other repre-
sentation, (b) the intermediate representation, which
includes all structural formats used by the DPD tool,
e.g. Abstract Syntax Tree (AST), Call Dependency
Graph (CDG), (c) the type of analysis, performed ei-
ther only on source code or also on the dynamic ex-
ecution trace, and (d) the type of recognition, which
can be either exact or approximate. Although all of
the above properties are important, the main classify-
ing feature of DPD techniques is the type of analysis.
Following a classification similar to that of current
literature (Rasool and Streitferdt, 2011; Dong et al.,
2007b), we distinguish among structural analysis, be-
havioral analysis, and semantic analysis techniques.

Structural analysis approaches detect patterns us-
ing information extracted from inter-class relation-
ships (e.g. class inheritance, associations, etc.), thus
they are particularly efficient for identifying cre-
ational and structural patterns. By contrast, behav-
ioral analysis approaches employ dynamic program
analysis, using runtime information to distinguish
among structurally identical patterns. Semantic anal-
ysis is usually complementary to the structural and
behavioral types, aspiring to reduce the false positive
rates of structural and behavioral approaches by using
semantic information (e.g. naming conventions).

Several DPD tools in current literature employ
static code analysis techniques to identify patterns.
One of the first tools in this category is the DPD
tool by Tsantalis et al. (2006), which extracts static
information about the software project including in-
heritance, method signatures, etc., and represents the
project as a graph. Relationships among objects are
represented using matrices, while the tool uses simi-
larity algorithms to detect patterns. A slightly differ-
ent approach is followed by Lucia et al. (2009) for the
DPRE tool, which is implemented as an Eclipse plu-
gin. The tool constructs UML diagrams and uses vi-
sual language parsing techniques to identify patterns.

PINOT, designed by Shi and Olsson (2006), is an-
other popular tool that combines both structural and
behavioral analysis. It extracts information from the
AST of the source code, and detects patterns using
structural and behavioral (data flow) template match-
ing. Several tools also use machine learning methods.
Arcelli and Christina (2007) developed MARPLE, an
Eclipse plugin that uses neural networks to classify
source code representations to behavioral patterns.
The authors also extended their work, introducing
JADEPT (Arcelli et al., 2008), a tool that represents
patterns as combinations of rules.

FUJABA (Nickel et al., 2000) is another Eclipse
plugin, which, among other functions, supports de-
tecting design patterns. The tool defines patterns us-
ing UML class diagrams and expresses their behav-
ioral aspects using story-diagrams, i.e. a combina-
tion of activity and interaction diagrams. Metamodel-
based approaches are also popular. Guéhéneuc and
Antoniol (2008) introduced DeMIMA, which extracts
classes, methods, etc. from source code to instanti-
ate a metamodel that is used to specify objects and
their relationships. The tool employs constraint pro-
gramming techniques to identify patterns. A similar
approach is followed by Ptidej, designed by Kaczor
et al. (2006), which uses a constraints solver to detect
sets of objects that are similar to design patterns.

Another notable tool is D-CUBED, by Stencel and
Wegrzynowicz (2008), which formulates design pat-
terns in first order logic and inserts source code into a
database where patterns can be identified via queries.
Finally, DP-Miner by Dong et al. (2007a) is another
quite interesting tool that also uses semantics to dis-
tinguish among certain patterns that may have similar
structural and behavioral aspects. The tool represents
source code entities and relationships in XMI and an-
alyzes class and method names to identify patterns.

The tools analyzed in the previous paragraphs are
quite effective for detecting different types of pat-
terns. However, their applicability is limited to com-
pilable and executable projects. In specific, tools us-

DP-CORE: A Design Pattern Detection Tool for Code Reuse

161

Table 1: DP-CORE Connections.

Connection Type Description UML Relation UML Symbol

A calls B A method of class A calls a meth-
od of class B

Dependency

A creates B Class A creates an object of type
class B

Composition

A uses B A method of class A returns an
object of type B

Dependency/
Multiplicity

A has B Class A has one or more objects
of type B

Aggregation

A references B A method of class A has as pa-
rameter an object of type B

Association

A inherits B Class A inherits or implements
class B or class A realizes inter-
face B

Inheritance/
Realization

ing dynamic analysis techniques, such as D-CUBED
[17] or DP-Miner [5], require the code to be ex-
ecutable. Moreover, static analysis tools, such as
PINOT [16] or DPD [18], also operate on .class files,
therefore require that the developer first resolves any
dependencies to compile the examined project. Fur-
thermore, tools that rely on compilers, such as PINOT
[16], cannot always compile all projects not only
because of dependencies but only because of obso-
lete compiler versions. Finally, several tools such as
DeMIMA [9] or Ptidej [10], use complex representa-
tions that do not allow the developer any control over
the detected patterns. As a result, these tools do not
offer the ability to define custom patterns or the ability
to detect incomplete or similar patterns. To the best
of our knowledge, no tool presented in this Section
and no other tool offers all of the aforementioned fea-
tures. In the following Section, we present an up-to-
date customizable DPD tool that effectively abstracts
the methodology of pattern detection even in uncom-
pilable or incomplete source code.

3 DP-CORE: A DESIGN PATTERN
DETECTION TOOL

In this Section, we describe our DPD tool, DP-CORE,
in detail. Subsection 3.1 describes the representation
used for source code objects and relationships, while
subsection 3.2 provides details about the representa-
tion of design patterns by our system. The extrac-
tion of entities and relationships from source code is
presented in subsection 3.3 and the algorithm for de-
tecting patterns is described in subsection 3.4. Sub-
section 3.5 illustrates how the results are grouped in
order to form combined patterns.

3.1 Representing Objects and
Relationships

As already mentioned, an effective structural repre-
sentation for source code and design patterns should
be complete as well as intuitive. Given that most
developers are more or less familiar with UML, the
representation of DP-CORE is related to UML enti-
ties and relationships. Given intuition from (Birkner,
2007), we define two concepts for our representation:
the abstraction of each class and the connection be-
tween two classes. The abstraction types that we de-
fined for each class, including their description, are
shown in Table 2.

Table 2: DP-CORE Abstraction Types.

Abstraction Type Description

Normal a non-abstracted class
Abstract a Java abstract class
Interface a Java interface
Abstracted an abstract class or an interface
Any any of the above class types

The type Normal refers to a simple non-abstracted
class, while types Abstract and Interface corre-
spond to the known Java abstract classes and inter-
faces. Additionally, we define the type Abstracted
as either one of types Abstract and Interface,
while the type Any denotes any of the above abstrac-
tion types and functions as a wildcard. Apart from
their abstraction types, the classes of the examined
source code connect to each other with directional re-
lationships. We define 6 types of connections that are
summarized in Table 1, including their description,
the corresponding UML relation and the correspond-
ing UML symbol for each connection.

Sixth International Symposium on Business Modeling and Software Design

162

<<interface>>
AbstractFactory

+ CreateProductA()
+ CreateProductB()

ConcreteFactory2

+ CreateProductA()
+ CreateProductB()

ConcreteFactory1

+ CreateProductA()
+ CreateProductB()

<<interface>>
AbstractProductA

ProductA1 ProductA2

<<interface>>
AbstractProductB

ProductB1 ProductB2

Figure 1: Abstract Factory Pattern.

The connections cover all possible relations that
can exist in a source code project. UML dependencies
and associations are handled by connections calls/
uses and references respectively, while composi-
tions and aggregations correspond to the creates and
has connections. Inheritance and realization relations
are handled by the inherits connection. Finally, we
define a relates connection that covers all possible
connection types, and thus is used as a wildcard.

3.2 Representing Design Patterns

Upon having presented how source code entities and
relationships are represented in our system, we illus-
trate how well known (or custom) design patterns can
be represented by our system. For each pattern, one
must define the abstraction of its member classes and
the connections among them. In this subsection, we
illustrate how the Abstract Factory pattern is defined.
According to the GoF (Gamma et al., 1998), the pur-
pose of the Abstract Factory pattern is to “provide an
interface for creating families of related or dependent
objects without specifying their concrete classes”.

Figure 1 depicts the interface AbstractFactory
which defines the methods that are implemented by
AbstractProductA and AbstractProductB, while
ConcreteFactory1 and ConcreteFactory2 define
the methods of the Product objects. Note that
this is one possible illustration, since it is possi-
ble to have different number of ConcreteFactory,
AbstractProduct and/or Product classes. By def-

inition, an Abstract Factory pattern has to include
instances of AbstractFactory, AbstractProduct,
ConcreteFactory, and Product. Using the repre-
sentation of subsection 3.1, we define the 4 members
of the pattern and their connections in Figure 2.

Abstract Factory
A Normal ConcreteFactory
B Abstracted AbstractFactory
C Normal Product
D Abstracted AbstractProduct
End_Members
A inherits B
C inherits D
A creates C
A uses D
End_Connections

Figure 2: Abstract Factory Pattern File.

For each pattern member, A, B, C, and D, we can
see its abstraction type and its ability. The ability of a
member is a description field that can be set by the
developer so that the detected pattern instances are
more comprehensive. The pattern has 4 connections,
2 inherits, one from A (Concrete Factory) to B (Ab-
stract Factory) and one from C (Product) to D (Ab-
stract Product), 1 creates from A (Concrete Factory)
to C (Product), and 1 uses from A (Concrete Factory)
to D (Abstract Product).

DP-CORE: A Design Pattern Detection Tool for Code Reuse

163

public class Car extends Vehicle{

private Model model;
private Fuel fuel;

public Car(Model model ,
float fuelCapacity){

this.model = model;
fuel = new Fuel(fuelCapacity);

}

public Model getModel(){
return model;

}

public void addFuel(float fuelQuantity){
fuel.add(fuelQuantity);

}
}

Car inherits Vehicle

Car has Model

Car has Fuel

Car references Model

Car creates Fuel

Car uses Model

Car calls Fuel

Figure 3: Example of Extracting Connections for a Car Class.

3.3 Extracting Objects and
Relationships from Source Code

The main building blocks of our methodology are ob-
jects and relationships between them. DP-CORE uses
the Java Compiler Tree API (Oracle, 2015) to extract
these elements. Upon extracting the AST for each file,
all class objects are extracted from the code, including
their abstraction type. After that, DP-CORE extracts
the connections. A uses connection from A to B is
extracted if the return type of any method of A is an
object of type B. Connections of type inherits are
extracted if class A extends or implements class B. For
the has connection from A to B, all variables of A are
checked to find if any of them is of type B. For the
calls connection, all method invocations of class A
are checked whether the method invoked is a method
of class B. Connections of type creates are extracted
if class A constructs a new object of type B. Finally, a
references connection from A to B is declared if any
method of A has as parameter an object of type B.

Figure 3 depicts an example of extracting the con-
nections of a Car class which interacts with three
classes. It inherits the Vehicle class and has two ob-
jects of type Model and Fuel. Additionally, Car ref-
erences the Model in its constructor, where the Fuel
object is also created. Finally, the getter function of
Car also implies that it uses the Model class, while
Car also calls a method of Fuel to add fuel to its tank.
Hence, we can define 7 connections among the classes
in this example, which are shown in the annotations
on the right of Figure 3.

3.4 Design Pattern Detection Algorithm

Upon having extracted the objects and relationships
of the examined software project, the next step is to
detect patterns in the extracted structure. Although
this problem could be solved by iterating over all pos-
sible permutations of classes, this brute force method
would be computationally inefficient. For instance,
given a project with 50 classes and a pattern with 4
members, this method would check more than 5 mil-
lion permutations. Thus, we designed an algorithm
that prunes permutations as it recursively finds pattern
candidates.

Input: Objects , Members
Output: Candidates

Detect(Objects , Members , Candidate , d):
if d < Members.length():

Member = Members[d]
for Object in Objects:

if abstraction(Object , Member)
and connections(Object , Member):

Detect(Objects \ {Object},
Candidate ∪ {Object},
Candidate , d + 1)

else:
Add Candidate to Candidates

Figure 4: Design Pattern Detection Algorithm.

Our algorithm is shown in Figure 4. It receives as
input the objects extracted from the examined project
(and their connections), as well as the pattern to be

Sixth International Symposium on Business Modeling and Software Design

164

Car

FuelTires

FuelWheel

Car
uses

Car
uses

Wheel

FuelTires

Car
uses

Car
uses

Car has Car has Car has

(a)

Wheel

FuelTiresCar

Wheel
has

Wheel
has

Wheel
has

(b)

Tires

WheelFuelCar

Tires
has

Tires
has

Tires
has

(c)

Fuel

TiresWheelCar

Fuel
has

Fuel
has

Fuel
has

(d)
Figure 5: Combinations of objects and their relationships, where the object that matches the first pattern member is (a) Car, (b)
Wheel, (c) Tires, and (d) Fuel.

detected in the format defined in the previous subsec-
tions. It iterates over the Objects and checks whether
the current Object can be matched to the current pat-
tern member. This is performed by recursively call-
ing the Detect function and providing the index to
current pattern member as the depth parameter d. At
first, the algorithm is initialized with depth equal to 0
(and Candidate is the empty set). Iterating over the
first Object, it is checked whether its abstraction and
its connections are the same with pattern member 0.
If the Object matches this pattern member, then the
Detect function is called again given as parameters
the Objects without the already matched Object and
the updated Candidate so that it includes the Object,
while the depth parameter is also incremented. If at
any time the current Object does not match the cur-
rent pattern member, then the recursion stops. When
all pattern members are matched, then the Candidate
is added to the detected pattern Candidates.

We illustrate the execution of the algorithm us-
ing an example with 4 classes Car, Tires, Wheel,
and Fuel, connected with the relationships Car has
Tires, Car has Wheel, and Car uses Fuel. The
pattern to be detected has 3 classes A, B, and C, con-
nected with the relationships A has B and A uses C.
To simplify our example let us assume that the objects
of the examined code and the members of the pattern
do not have any abstraction. Some possible combina-
tions for this example are shown in Figure 5.

Note that given 4 objects, their possible permuta-
tions per 3 pattern members are 24. Using our algo-
rithm, however, we examine much fewer. At first, all
permutations involving Wheel, Tires, or Fuel in the
position of member A (shown in Figures 5(b), 5(c),
and 5(d) respectively) are discarded in the first level

of the tree, since they do not connect to any other ele-
ment with the required connections. If Car is matched
with pattern member A, then the other objects are
checked for has and uses connections. As shown in
Figure 5(a), the path of the connection Car has Fuel
is pruned. The other two paths, including the connec-
tions Car has Wheel and Car has Tires, are fur-
ther examined, to finally provide the two instances of
the pattern {A = Car, B = Wheel, C = Fuel} and
{A = Car, B = Tires, C = Fuel} respectively.

3.5 Grouping Design Pattern Instances

In a typical design pattern detection scenario, the ex-
amined code may have several instances of a design
pattern. Since some of these instances may be part
of the same design decision, we need a way to merge
these candidate patterns to form a unified design pat-
tern. For instance, consider the 4 Abstract Factory
candidate instances of Table 3.

DP-CORE merges these instances in two steps. At
first, the tool iterates over all candidate patterns and
checks whether any of them have identical members
except for one. In this case, two super-patterns would
be formed, one for the ReptileFactory, i.e. {A
= ReptileFactory, B = SpeciesFactory, C =
Snake|Tyrannosaurus, D = Animal}, and one for
the MammalFactory, i.e. {A = MammalFactory, B
= SpeciesFactory, C = Cat|Dog, D = Animal}.
After that, DP-CORE iterates over the super-patterns
to identify again the ones having identical members
except for one. Thus, the final hyper-pattern for this
example is visualized in Figure 6.

DP-CORE: A Design Pattern Detection Tool for Code Reuse

165

Table 3: Abstract Factory Candidate Instances.

Member Ability Candidate 1 Candidate 2 Candidate 3 Candidate 4

A ConcreteFactory ReptileFactory ReptileFactory MammalFactory MammalFactory
B AbstractFactory SpeciesFactory SpeciesFactory SpeciesFactory SpeciesFactory
C Product Snake Tyrannosaurus Cat Dog
D AbstractProduct Animal Animal Animal Animal

<<interface>>
SpeciesFactory

MammalFactory ReptileFactory

<<interface>>
Animal

Snake Tyrannosaurus

Cat Dog

Figure 6: Hyper-Pattern for the Pattern Candidate Instances of Table 3.

4 INTERFACES OF DP-CORE

DP-CORE is implemented in Java, and offers two
user interfaces: a Graphical User Interface (GUI) and
a Command Line Interface (CLI). The source code
and the releases are available in the repository:

https://github.com/AuthEceSoftEng/DP-CORE

DP-CORE receives as input project folders including
.java files for pattern detection, as well as .pattern files
that define the pattern to be detected. Its output is a
txt file that includes the results of the detection. An
example output of DP-CORE is shown in Figure 7.
In this case, the examined project has two candidates
of the Command pattern. Since they refer to the same
pattern, the user could also merge them by enabling
the grouping mechanism of subsection 3.5.

The GUI of DP-CORE is shown in Figure 8. The
main screen of the tool, shown in Figure 8(a), includes
3 textfields, which are used to enter the folder where
patterns are stored, the folder of the examined project,
and the folder where the results are saved. Upon en-
tering this information, the user can select the pattern
to be detected using the drop-down menu and push the
“Detect Pattern” button. The “Grouping” checkbox
controls whether the pattern grouping mechanism of
subsection 3.5 is activated. The user can either select

Amount of Candidates found: 2

Candidate of Pattern Command:
A(ConcreteCommand): LightOffCommand
B(Command): Command
C(Receiver): Light
D(Invoker): RemoteControl

Candidate of Pattern Command:
A(ConcreteCommand): LightOnCommand
B(Command): Command
C(Receiver): Light
D(Invoker): RemoteControl

Figure 7: Example Output of DP-CORE.

a predefined pattern or define a new pattern by push-
ing the “Create Custom Pattern” button. Upon press-
ing this button, the user is presented with the screen
shown in Figure 8(b), where the user names the newly
defined pattern and defines the number of its members
and connections. After that, the members and the con-
nections of the pattern are defined in two subsequent
screens shown in Figures 8(c) and 8(d).

Finally, the tool can be used from the command
line to allow the execution of batch jobs with multi-
ple projects and/or patterns. Similarly to the GUI, the
CLI of DP-CORE receives as input the project folder

Sixth International Symposium on Business Modeling and Software Design

166

(a) (b)

(c) (d)
Figure 8: Screenshots of (a) the Main Screen of DP-CORE, (b) the Pattern Creator, including (c) the Members and (d) the
Connections Screens of DP-CORE.

as well as a .pattern file containing the pattern to be
detected. The output is printed in the console.

5 EVALUATION

We assess the effectiveness of DP-CORE using two
evaluation experiments. The first experiment involves
an example project including known instances of pat-
terns, while the second experiment involves a compar-
ison to PINOT (Shi and Olsson, 2006) for detecting
patterns in the source code of known Java libraries.

5.1 Example Design Patterns Project

For the first experiment we used several design pat-
tern examples merged together in a common project.
Although this project is not a typical Java application,
it provides an interesting case study for our tool. We
created pattern files for 6 GoF patterns of all types:
the creational patterns Abstract Factory and Builder,
the structural pattern Bridge, and the behavioral pat-
terns Command, Observer and Visitor. The example
project and the patterns are provided with our tool as
examples. The results are shown in Table 4.

DP-CORE successfully identified all the pattern
instances in the project. It is notable, though, that the
tool detected false positive instances, since 27.27% of
the detected instances are not design patterns. These
false positives, however, are due to the non-strict defi-
nition of the patterns. For instance, the 4 falsely iden-
tified instances of the Command pattern are instances
of the Builder pattern, which is expected since the
definitions of these two patterns are similar. This is
also the case for the Observer pattern which is simi-
lar to the Visitor pattern. In any case, DP-CORE is
quite effective for identifying patterns, as it detects all
instances, while false positives can be minimized by
providing more precise definitions of patterns.

Additionally, upon tweaking the code of this pro-
ject, we conclude that DP-CORE can detect patterns
even in non-compilable code. In specific, our tool
is not affected by common syntax errors, such as
missing brackets, missing semicolons etc. Further-
more, most semantic errors, such as missing imports,
missing variable declarations, etc., are safely ignored
without influencing the detection of patterns. The er-
rors that affect our tool are purely lexical, e.g. writing
fo instead of for or having a space in a variable name.
As a result, DP-CORE supports code reuse scenarios,

DP-CORE: A Design Pattern Detection Tool for Code Reuse

167

Table 4: Pattern Detection Results for Example Project.

#Correctly #Incorrectly %Correctly %Incorrectly
Design Pattern #Instances Detected Instances Detected Instances Detected Instances Detected Instances

Abstract Factory 4 4 0 100% 0%
Command 2 2 4 100% 66.67%
Bridge 4 4 0 100% 0%
Builder 2 2 0 100% 0%
Visitor 2 2 0 100% 0%
Observer 2 2 2 100% 50%

Total 16 16 6 100% 27.27%

Abs
tra

ct

Fa
ct

or
y

Brid
ge

Visi
to

r

Obs
er

ve
r

Design Patterns

0
20
40
60
80

100
120

#
D

e
te

ct
e
d
 I
n
st

a
n
ce

s

20

94

0
9

30

107

1
9

(a)

Abs
tra

ct

Fa
ct

or
y

Brid
ge

Visi
to

r

Obs
er

ve
r

Design Patterns

0
5

10
15
20
25
30

#
D

e
te

ct
e
d
 I
n
st

a
n
ce

s
25 24

2

13

28

15

1

9

(b)

Abs
tra

ct

Fa
ct

or
y

Brid
ge

Visi
to

r

Obs
er

ve
r

Design Patterns

0

2

4

6

8

10

#
D

e
te

ct
e
d
 I
n
st

a
n
ce

s

10

4

1

7
6

5

1

5

(c)
Figure 9: Diagrams of Detected Design Pattern Instances by DP-CORE () and PINOT () for (a) JHotDraw, (b) Java
AWT, and (c) Apache Ant.

given that reusable code is usually lexically correct,
while it may have omissions in syntax or semantics.

5.2 Java Libraries with Design Patterns

For the second experiment we evaluated DP-CORE
against PINOT (Shi and Olsson, 2006) in a dataset
of 3 libraries: JHotDraw 6.0b1, Java AWT 1.3, and
Apache Ant 1.6.2. PINOT was selected as it resem-
bles DP-CORE in the way that it extracts source code
objects and detects patterns. Since, however, the rep-
resentation used by PINOT differs from that of DP-
CORE, the comparison is quantitative, thus the results
can only provide a proof-of concept for our DPD. As
already noted, the scope of DP-CORE lies in provid-
ing an intuitive way of detecting custom patterns and
software architectures, instead of strictly defining the
known design patterns. For compatibility reasons, the
comparison between the two tools includes the pat-
terns Abstract Factory, Bridge, Visitor, and Observer.

The results for the two tools are shown in Figure 9.
For JHotDraw, in Figure 9(a), there are small devia-
tions between the detected patterns of the two tools,
which are mostly due to the pattern representation of
each tool. Upon manually examining the detected pat-
terns, we conclude that both tools successfully iden-
tify the design patterns of this library. The results
for the other two libraries, Java AWT in Figure 9(b)

and ApacheAnt in Figure 9(c), are also similar. Note,
however, that patterns are not always defined con-
sistently in all projects. As a result, for Java AWT,
we had to modify the representation of Abstract Fac-
tory, changing the connection A uses D to A uses C
in Figure 2, thus allowing the ConcreteFactory to
use Product instead of AbstractProduct. Apache
Ant also required a modification to the Bridge pattern,
where the A calls D connection was added (see Fig-
ure 8) to restrict the instances to the ones where the
RefinedAbstraction calls the Implementor.

The main deviations are observed for the Abstract
Factory and Bridge patterns, which is expected since
the representations of these patterns are similar. Sum-
marizing our analysis, the results of the quantitative
comparison between DP-CORE and PINOT indicate
that both tools can successfully detect patterns from
source code. However, it is important to note that all
tools are bound to the representations used to identify
patterns, therefore comparing them is not trivial. DP-
CORE further allows defining custom patterns and ef-
fectively recovers structural design semantics even for
non-standard architectures. Finally, concerning exe-
cution time, DP-CORE is quite efficient; pattern de-
tection in any project required less than 5 seconds.

Sixth International Symposium on Business Modeling and Software Design

168

6 CONCLUSION

Recovering non-functional design information from
source code is a difficult task. Since this informa-
tion is usually provided in the form of design patterns,
several DPD tools have been developed to extract it.
However, most tools are limited to identifying certain
known patterns in executable projects. In this work,
we presented DP-CORE, a DPD tool that can recover
patterns even from non-compilable source code. DP-
CORE uses a flexible and intuitive representation, al-
lowing developers to define their own patterns and
even use wildcards to express ambiguity in these def-
initions. Our tool is up-to-date, relying on the latest
compiler technology, while it offers a GUI and a CLI
so that it can be used for batch tasks. The evalua-
tion of DP-CORE has shown that it can be effective
for identifying patterns in source code that match the
representation provided by the developer.

Future work on our tool lies in several directions.
At first, the negation of current connections could be
added to the options of the representation, thus allow-
ing the developer to define patterns more strictly. Ad-
ditionally, the structural analysis of DP-CORE can be
further extended using semantics on the abilities of
the patterns. Finally, forthcoming versions may in-
clude graphical pattern representations by integrating
with known graphical editors. In any case, pattern re-
covery from source code should be connected to the
requirements of the developer, thus we believe DP-
CORE is an efficient alternative to existing tools.

ACKNOWLEDGEMENTS

Parts of this work have been supported by the FP7
Collaborative Project S-CASE (Grant Agreement No
610717), funded by the European Commission.

REFERENCES

Arcelli, F. and Christina, L. (2007). Enhancing Software
Evolution through Design Pattern Detection. In Pro-
ceedings of the 2007 Third International IEEE Work-
shop on Software Evolvability, pages 7–14, Paris,
France.

Arcelli, F. F., Perin, F., Raibulet, C., and Ravani, S.
(2008). Behavioral Design Pattern Detection through
Dynamic Analysis. In Proceedings of the 4th Interna-
tional Workshop on Program Comprehension through
Dynamic Analysis, pages 11–16, Antwerp, Belgium.

Beck, K. and Cunningham, W. (1987). Using Pattern Lan-
guages for Object-Oriented Programs. In Proceedings
of the OOPSLA-87 Workshop on the Specification and

Design for Object-Oriented Programming, Orlando,
FL, USA.

Birkner, M. (2007). Object-Oriented Design Pattern Detec-
tion Using Static and Dynamic Analysis of Java Soft-
ware. Master’s thesis, University of Applied Sciences
Bonn-Rhein-Sieg Sankt Augustin, Germany.

Dong, J., Lad, D. S., and Zhao, Y. (2007a). DP-Miner:
Design Pattern Discovery Using Matrix. In Proceed-
ings of the 14th Annual IEEE International Confer-
ence and Workshops on the Engineering of Computer-
Based Systems, ECBS ’07, pages 371–380, Tucson,
AZ, USA.

Dong, J., Zhao, Y., and Peng, T. (2007b). Architecture and
Design Pattern Discovery Techniques - A Review. In
Proceedings of the 2007 International Conference on
Software Engineering Research & Practice, volume 2
of SERP 2007, pages 621–627, Las Vegas, NV, USA.

Dong, J., Zhao, Y., and Peng, T. (2009). A Review of De-
sign Pattern Mining Techniques. International Jour-
nal of Software Engineering and Knowledge Engi-
neering, 19(06):823–855.

Gamma, E., Vlissides, J., Johnson, R., and Helm, R.
(1998). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Guéhéneuc, Y.-G. and Antoniol, G. (2008). DeMIMA: A
Multilayered Approach for Design Pattern Identifica-
tion. IEEE Trans. Softw. Eng., 34(5):667–684.

Kaczor, O., Guéhéneuc, Y.-G., and Hamel, S. (2006). Effi-
cient Identification of Design Patterns with Bit-vector
Algorithm. In Proceedings of the 10th European Con-
ference on Software Maintenance and Reengineering,
CSMR 2006, pages 175–184, Bari, Italy.

Lucia, A. D., Deufemia, V., Gravino, C., and Risi, M.
(2009). Design Pattern Recovery Through Visual Lan-
guage Parsing and Source Code Analysis. J. Syst.
Softw., 82(7):1177–1193.

Nickel, U., Niere, J., and Zündorf, A. (2000). The FU-
JABA Environment. In Proceedings of the 22nd Inter-
national Conference on Software Engineering, ICSE
’00, pages 742–745, Limerick, Ireland.

Oracle (2015). Compiler Tree API. Avail. online: http://
docs.oracle.com/javase/8/docs/jdk/api/
javac/tree/index.html, [retrieved March, 2015].

Rasool, G. and Streitferdt, D. (2011). A Survey on Design
Pattern Recovery Techniques. International Journal
of Computer Science Issues, 8(6):251–260.

Shi, N. and Olsson, R. A. (2006). Reverse Engineering of
Design Patterns from Java Source Code. In Proceed-
ings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, ASE ’06, pages
123–134, Tokyo, Japan.

Stencel, K. and Wegrzynowicz, P. (2008). Detection of Di-
verse Design Pattern Variants. In Proceedings of the
2008 15th Asia-Pacific Software Engineering Confer-
ence, APSEC ’08, pages 25–32, Beijing, China.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and
Halkidis, S. (2006). Design Pattern Detection us-
ing Similarity Scoring. IEEE Trans. Softw. Eng.,
32(11):896–909.

DP-CORE: A Design Pattern Detection Tool for Code Reuse

169

