
encrypted traffic. Also, we planned to extend our IS-
CXFlowMeter application to extract the other features
such as Flow-based and Packet-based to experiment
the combination of these feature sets.
REFERENCES
Aghaei-Foroushani, V. and Zincir-Heywood, A. N. (2015).
A proxy identifier based on patterns in traffic flows.
In 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering, pages 118–125.
AlSabah, M., Bauer, K., and Goldberg, I. (2012). Enhanc-
ing tor’s performance using real-time traffic classifi-
cation. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12,
pages 73–84, New York, NY, USA. ACM.
Bai, X., Zhang, Y., and Niu, X. (2008). Traffic identifica-
tion of tor and web-mix. In 2008 Eighth International
Conference on Intelligent Systems Design and Appli-
cations, volume 1, pages 548–551.
Callado, A., Kamienski, C., Szabo, G., Gero, B., Kelner,
J., Fernandes, S., and Sadok, D. (2009). A survey on
internet traffic identification. Commun. Surveys Tuts.,
11(3):37–52.
Chaabane, A., Manils, P., and Kaafar, M. A. (2010). Dig-
ging into anonymous traffic: A deep analysis of the
tor anonymizing network. In Proceedings of the 2010
Fourth International Conference on Network and Sys-
tem Security, NSS ’10, pages 167–174, Washington,
DC, USA. IEEE Computer Society.
Chakravarty, S., Barbera, M. V., Portokalidis, G., Poly-
chronakis, M., and Keromytis, A. D. (2014). On the
effectiveness of traffic analysis against anonymity net-
works using flow records. PAM 2014, pages 247–257,
New York, NY, USA. Springer-Verlag New York, Inc.
Dainotti, A., Pescap, A., and Claffy, K. (2012). Issues and
future directions in traffic classification. IEEE Net-
work, 26(1):35–40.
Dingledine, R., Mathewson, N., and Syverson, P. (2004).
Tor: The second-generation onion router. In Proceed-
ings of the 13th Conference on USENIX Security Sym-
posium - Volume 13, SSYM’04, pages 21–21, Berke-
ley, CA, USA. USENIX Association.
Draper-Gil, G., Lashkari, A. H., Mamun, M. S. I., and Ghor-
bani, A. A. (2016). Characterization of encrypted and
vpn traffic using time-related features. In Proceedings
of the 2nd International Conference on Information
Systems Security and Privacy - Volume 1: ICISSP,,
pages 407–414.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: An update. SIGKDD Explorations,
11(1):10–18.
He, G., Yang, M., Luo, J., and Gu, X. (2014). Inferring
application type information from tor encrypted traf-
fic. In 2014 Second International Conference on Ad-
vanced Cloud and Big Data, pages 220–227.
ISCXFlowMeter (2016). Information security cen-
ter of excellence, university new brunswick.
http://www.unb.ca/research/iscx/dataset /iscxflowme-
ter.html.
Johnson, A., Wacek, C., Jansen, R., Sherr, M., and Syver-
son, P. (2013). Users get routed: Traffic correlation
on tor by realistic adversaries. In Proceedings of the
2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 337–348,
New York, NY, USA. ACM.
Juarez, M., Afroz, S., Acar, G., Diaz, C., and Greenstadt, R.
(2014). A critical evaluation of website fingerprint-
ing attacks. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’14, pages 263–274, New York, NY, USA.
ACM.
Ling, Z., Luo, J., Wu, K., Yu, W., and Fu, X. (2014).
Torward: Discovery of malicious traffic over tor. In
IEEE INFOCOM 2014 - IEEE Conference on Com-
puter Communications, pages 1402–1410.
Mittal, P., Khurshid, A., Juen, J., Caesar, M., and Borisov,
N. (2011). Stealthy traffic analysis of low-latency
anonymous communication using throughput finger-
printing. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11,
pages 215–226, New York, NY, USA. ACM.
Nguyen, T. T. T. and Armitage, G. (2008). A survey of
techniques for internet traffic classification using ma-
chine learning. IEEE Communications Surveys Tuto-
rials, 10(4):56–76.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.
Serjantov, A. and Sewell, P. (2003). Passive Attack Analysis
for Connection-Based Anonymity Systems, pages 116–
131. Springer Berlin Heidelberg, Berlin, Heidelberg.
Shmatikov, V. and Wang, M.-H. (2006). Timing analysis
in low-latency mix networks: Attacks and defenses.
In Proceedings of the 11th European Conference on
Research in Computer Security, ESORICS’06, pages
18–33, Berlin, Heidelberg. Springer-Verlag.
ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy
262