
Feature Model based on Design Pattern for the Service Provider in the
Service Oriented Architecture

Akram Kamoun1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1 and Khalil Drira2

1Laboratory of Development and Control of Distributed Applications (ReDCAD),
National Engineering School of Sfax, Sfax, Tunisia
2Université de Toulouse, CNRS, Toulouse, France

Keywords: Service Oriented Architecture, Service Provider, Service Contract, Design Pattern, Feature Model.

Abstract: In Service Oriented Architecture (SOA), service contracts are widely used for designing and developing the
features (e.g., services and capabilities) of Service Providers (SPs). Two of the most widely used traditional
service contracts in SOA are: WSDL and WADL. We identify that these service contracts suffer from several
problems, like: they only work for SOAP and REST communication technologies and do not rely on modeling
SOA Design Patterns (DPs). One benefit of using SOA DPs is that they permit developing proven SPs for
different platforms. In order to overcome these problems, we introduce a new DP-based Feature Model (FM),
named FMSP, as a service contract that models the variability of SP features including 15 SOA DPs (e.g.,
Event-driven messaging DP) and their corresponding constraints. This permits to easily identify and develop
valid SOA compound DPs. We demonstrate, through a practical case study and a developed tool, that our
FMSP allows to automatically generate fully functional, valid, highly customized and DP-based SPs. We also
show that our FMSP reduces the required effort and time to develop SPs.

1 INTRODUCTION

Service Oriented Architecture (SOA) (Erl, 2007) is
a widely used distributed computing platform. An
SOA application is composed of Service Providers
(SPs) and Service Consumers (SCs) that communi-
cate through services. In this paper, we focus on
designing and developing SPs. A SP can imple-
ment different features like: capabilities (i.e., op-
erations), services and communication technologies
(e.g., Simple Object Access Protocol “SOAP”, Rep-
resentational state transfer “REST” and Middleware
Oriented Messaging “MOM”). In particular, a feature
can be designed to implement a Design Pattern (DP)
(Erl, 2009) (e.g., Event-driven messaging DP).

The DP is an appropriate and proven design so-
lution for a specific problem in a certain context. In
the practice, it is frequent to use a compound DP to
solve specific problems. A compound DP is a coarse-
grained DP, who is composed of a set of finer-grained
DPs. Erl (Erl, 2009) gathers in his book 78 SOA DPs
(e.g., Event-driven messaging DP). In our work,
we focus on studying 15 SOA DPs and their possible
combinations (see Sect. 3).

In SOA, the contract-first is a widely used ap-
proach to develop Service Providers (SPs). It consists
in developing service contracts that will be used to
generate the artifacts of the corresponding SP. A ser-
vice contract is a document (e.g., XML) of meta infor-
mation through which the SP features are expressed.

The service contract represents a core part and
one of the fundamental design principles in SOA (Erl,
2007). Two of the most widely used SOA traditional
service contracts are: Web Services Description Lan-
guage (WSDL) (Chinnici et al., 2007) and Web Ap-
plication Description Language (WADL) (Hadley and
Sun Microsystems, 2009). By studying these service
contracts, we identify that they suffer from several
problems, as follows:

P.1 they are dependent on specific communication
technologies. The WSDL and WADL only work
for the SOAP and REST communication tech-
nologies, respectively;

P.2 they do not use a standardized or common syn-
tax to define SP features. They use different syn-
taxes even to describe the same SP features (e.g.,
input and output data features). This can lead to
misinterpretation and difficulty to understand SP

Kamoun, A., Kacem, M., Kacem, A. and Drira, K.
Feature Model based on Design Pattern for the Service Provider in the Service Oriented Architecture.
DOI: 10.5220/0006332301110120
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 111-120
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

111



features;

P.3 they only allow to express a limited set of features.
This prevents the development of complex SPs;

P.4 they do not rely on modeling SOA DPs and
compound DPs (Erl, 2009). This prevents the
development of proven SPs. Developing SOA
DPs and valid compound DPs is not a straight-
forward and easy task and requires a solid core
of expert knowledge. For example, using the
Event-driven messaging DP (Erl, 2009) re-
quires the use of the Service callback DP (Erl,
2009). In this case, if a given compound DP
includes the Event-driven messaging DP but
omits the Service callback DP, then this com-
pound DP is invalid. Hence, the SP developer
must manually develop valid SOA DPs and com-
pound DPs in order to develop a valid SP;

P.5 some communication technologies (e.g., MOM)
do not offer service contracts. In this case, using
the first-contract approach to develop SPs cannot
be possible.

In order to overcome the enumerated SOA tra-
ditional service contract problems, we propose in
this paper, a DP-based Feature Model (FM), named
FMSP. The latter is designed as a service contract
which models different SP features including SOA
DPs and valid compound DPs. It is also designed
to generate fully functional, valid and highly cus-
tomized SPs for different communication technolo-
gies (SOAP, REST and MOM). In the literature, sev-
eral FMs (Parra and Joya, 2015), (Fantinato et al.,
2008), (Wada et al., 2007), (Ed-douibi et al., 2016)
have been proposed to model the SP features. How-
ever, these FMs do not permit to generate fully func-
tional SPs and do not model DPs and compound DPs.

The rest of this paper is structured as follows. In
Sect. 2, we provide a brief overview of the FM. In
Sect. 3, we introduce our FMSP. In Sect. 4, we eval-
uate our FMSP through a practical case study. In
Sect. 5, we discuss some related works. This paper
is concluded in Sect. 6.

2 A BRIEF OVERVIEW OF THE
FEATURE MODEL

The Software Product Line (SPL) (Pohl et al., 2005)
is a paradigm whose goal is the mass-customization
of applications that fit individual customer needs. In
this context, it relies on the variability modeling of
the application artifacts (e.g., source code and design)
to develop customized applications. The variability

consists in the ability of an artifact to be customized
or configured in a particular context.

The FM (Czarnecki et al., 2005) is the defacto
standard for variability modeling in SPL. It permits to
model the customized applications, based on features,
that the SPL offers to generate. The FM expresses the
legal combination of features to derive customized ap-
plications (e.g., see Fig. 1). An end user can derive
from this FM, an Application Model (AM), by select-
ing the required features and deselecting the others, in
line with the constraints of the FM (e.g., see Fig. 3).
Based on the features of this AM, the SPL will gener-
ate the artifacts of the corresponding application.

The structure of the FM is a rooted tree of features
that can be defined through different notations (Czar-
necki et al., 2005). Many FM metamodels (Kang and
Lee, 2013), (Czarnecki et al., 2005) have been pro-
posed in the literature that offer different notations.
In this work, we rely on the FM metamodel of Czar-
necki et al. (Czarnecki et al., 2005) because its nota-
tions (see Fig. 1) allow to efficiently express the SP
features.

We present in Fig. 1, these notations that will be
briefly presented in the following. The feature can be
either mandatory or optional. The feature attribute al-
lows to add an attribute value (e.g., integer) to specify
extra-functional information for features. The feature
[min,max] defines the lower and upper bounds of in-
stances of a given feature. The “requires” constraint
is in the form: if a feature A requires a feature B, then
the selection of A in the AM requires the selection of
B. The “excludes” constraint is in the form: if a fea-
ture A excludes a feature B, then both features cannot
be selected in the same AM. The feature group XOR
[1,1] allows selecting exactly one out of its child fea-
tures which can be called as alternative exclusive fea-
tures. The feature group OR [1,n] allows selecting
one or many of its child features which can be called
as alternative inclusive features. The FM allows to
define complex constraints between features (e.g., see
the propositional constraints in Fig. 1).

3 FEATURE MODEL FOR THE
SERVICE PROVIDER FFFMMMSSSPPP

In this paper, we propose a new DP-based FM,
named FMSP (see Fig. 1), which allows to generate
fully functional, valid and highly customized Service
Providers (SPs) for different communication tech-
nologies (SOAP, REST and MOM). Our FMSP is de-
signed as a service contract, which models 46 SP fea-
tures, that permits to overcome the SOA traditional
service contract problems (see Problems P.1, P.2, P.3,

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

112



P.4 and P.5 in the introduction). We present in Table 1
the descriptions of these features.

We rely on 15 SOA DPs (Erl, 2009) to
develop our FMSP, which are: Contract
centralization DP, Service messaging DP,
Direct authentication DP, Service agent DP,
Intermediate routing DP, Service callback
DP, Asynchronous queue DP, Event-driven
messaging DP, Reliable messaging DP, Atomic
service transaction DP, Dual protocols
DP, State messaging DP, Stateful services
DP, Service instance routing DP and State
repository DP. These DPs are described as features
in our FMSP.

Mathematically, there exist 215 compound DPs
that represent the existence or the non-existence of the
15 DPs. However, not all of these compound DPs are
valid. For example, in order to use the Event-driven
messaging DP, it is necessary to use the Service
callback DP (see Sect. 3.2). Hence, if a given com-
pound DP includes the Event-driven messaging
DP but omits the Service callback DP, then this
compound DP is invalid. One of the main challenges
tackled in this work is to identify and model the valid
compound DPs in our FMSP. In this context, it is
crucial to identify and model the constraints between
DPs in FMSP (see Sect. 3.2). Erl presents several
constraints between these DPs (Erl, 2009). However,
he illustrates them in many dispersed diagrams. This
makes difficult to identify properly these constraints.
Also, many constraints are missing.

3.1 Benefits

Our FMSP is designed to overcome the SOA tradi-
tional service contract problems (see Problems P.1,
P.2, P.3, P.4 and P.5 in the introduction). We present
in the following the benefits of our FMSP and which
problems they consider:

1. it relies on the FM notations which permit to
efficiently model the features and complex con-
straints (i.e., propositional constraints) of the SP.
Also, the FM graphical presentation can be eas-
ily interpreted and facilitate deriving customized
and valid SPs. In order to generate a valid SP,
the SP developer only needs to derive an AMSP
(e.g., see Fig. 3), by selecting the required fea-
tures and deselecting the others, from FMSP (see
Fig. 1). This facilitates the mass-customization of
SPs. The constraints presented in FMSP allow to
guide the SP developer to derive valid AMSP (con-
sidering Problems P.1, P.2, P.3 and P.5);

2. it is designed as a service contract for SP which
is generic and independent of the communication

technologies. It can be considered as a refer-
ence model (Galster et al., 2013) which reflects
the variability of practical SP features (consider-
ing Problems P.1, P.2, P.3 and P.5);

3. it includes the required features to generate fully
functional, valid and highly customized SPs. This
reduces the required effort and time to develop
SPs (considering Problems P.1, P.2, P.3 and P.5);

4. it models 15 DPs and their corresponding con-
straints (see Sect. 3.2). This permits to easily
identify and derive the valid compound DPs. By
using the FAMILIAR tool (Acher et al., 2013),
we identify, from the DPs constraints modeled in
FMSP, that there are 406 valid compound DPs
from 215 possible ones (considering Problem P.4);

5. many benefits can be enumerated when express-
ing DPs as features in our FMSP. DPs are in-
troduced by veteran problem solvers in order to
provide appropriate and proven design solutions.
A DP shows the right level of abstraction to de-
scribe a certain solution in a generic context, i.e.,
independently of the programming languages and
platforms. It also has a major benefit of providing
a common language which it is understandable by
the developers instead of using terminologies re-
lated to a certain context. For example, simply
saying the Event-driven messaging DP (Erl,
2009) is more efficient and easier than to explain
it in details. Hence, integrating DPs in our FMSP
allows to ensure that the SPs that can be derived
are based on proven solutions and can be used to
generate the artifacts for different contexts (con-
sidering Problems P.1, P.2, P.3, P.4 and P.5);

3.2 Constraints of the Design Patterns

We discuss here the constraints between the 15 DPs
modeled in our FMSP (see Fig. 1). These constraints
have been identified from theoretical and practical
studies that we have led which are essentially based
on these works (Erl, 2009), (Ibsen and Anstey, 2011),
(Giacomelli, 2012), (Switchyard, 2016).

We express the feature Contract
centralization DP as mandatory because our
FMSP is designed as a service contract that models
the SP features, like the SOAP, REST and MOM commu-
nication technology features. In the introduction, we
mention that the MOM does not offer a service contract
(see Problem P.5). Because our FMSP models the
MOM features, then it can be considered as a service
contract for MOM. Hence, it would be possible to use
the first-contract approach to develop SPs based on
the MOM features.

Feature Model based on Design Pattern for the Service Provider in the Service Oriented Architecture

113



A
sy

nc
hr

on
ou

s
qu

eu
e

D
P

A
to

m
ic

se
rv

ic
e

tr
an

sa
ct

io
n

D
P

A
ck

no
w

le
dg

em
en

t

Pe
rs

is
te

nt
de

liv
er

y

E
ve

nt
-d

riv
en

m
es

sa
gi

ng
D

P

M
O

M

R
el

ia
bl

e
m

es
sa

gi
ng

D
P

D
ur

ab
le

Se
rv

ic
e

ca
llb

ac
k

D
P

In
te

rm
ed

ia
te

ro
ut

in
g

D
P

Se
rv

ic
e

ag
en

tD
P

St
at

e

St
at

ef
ul

se
rv

ic
es

D
P

St
at

e
m

es
sa

gi
ng

D
P

Se
rv

ic
e

in
st

an
ce

ro
ut

in
g

D
P

In
te

rn
al

m
em

ro
ry

St
or

ag
e

m
od

e

C
om

m
un

ic
at

io
n

te
ch

no
lo

gy

SO
A

P

1.
1

1.
2

Po
st

G
et

Pu
t

D
el

et
e

R
E

ST

In
pu

t
O

ut
pu

t O
N

am
e

O
Ty

pe

O
D

at
a

cl
as

s
na

m
e

C
ap

ab
ili

ty
na

m
eC

ap
ab

ili
ty

Se
rv

ic
e

Se
rv

ic
e

na
m

e

Se
rv

ic
e

co
nt

ra
ct

[1
,n

]

[1
,n

]

A
dd

re
ss

St
at

e
re

po
si

to
ry

D
P

Te
m

po
ra

ry
m

em
or

y

Pr
op

os
iti

on
al

co
ns

tr
ai

nt
s:

1:
D

ua
lp

ro
to

co
ls

D
P
↔

((
M

O
M

∧
R

E
ST

)∨
(M

O
M

∧
SO

A
P)

∨
(R

E
ST

∧
SO

A
P)

∨
(M

O
M

∧
R

E
ST

∧
SO

A
P)

)
2:

(M
O

M
∧

O
ut

pu
t)
→

(A
to

m
ic

se
rv

ic
e

tr
an

sa
ct

io
n

D
P
∨

A
ck

no
w

le
dg

em
en

t)

D
ir

ec
ta

ut
he

nt
ic

at
io

n
D

P

D
ua

lp
ro

to
co

ls
D

P
Se

rv
ic

e
m

es
sa

gi
ng

D
P

C
on

tr
ac

t
ce

nt
ra

liz
at

io
n

D
P

O
D

at
a

[1
,n

]

IN
am

e
IT

yp
e

ID
at

a
cl

as
s

na
m

e

ID
at

a
[1

,n
]

Figure 1: Feature model FMSP (design pattern features are
colored).

Table 1: Descriptions of the features of FMSP.

Feature name Description

Service contract Root feature
Address Address of the SP
Service [1,n] Services of the SP
Service name Service name
Capability [1,n] Capabilities of the SP
Capability name Capability name
Input Input data of a given capability
IData [1,n] Gathering input data features
IName Input data name
IType Input data type
IData class name Input data class name (e.g., Java

class name)
Output Output data of a given capability
OData [1,n] Gathering output data features
OName Output data name
OType Output data type
OData class
name

Output data class name (e.g., Java
class name)

Communication
technology

Gathering the communication
technologies

SOAP SOAP communication technology
1.1 SOAP version 1.1
1.2 SOAP version 1.2
REST REST communication technology
Get HTTP get method for REST
Post HTTP post method for REST
Put HTTP put method for REST
Delete HTTP delete method for REST
MOM Middleware oriented messaging

communication technology
Durable The MOM stores the messages of

the publisher (i.e., SP) for the sub-
scribers (i.e., SCs) if the latter dis-
connect. Upon reconnecting, the
subscribers will receive all these
messages

Acknowledgem-
ent

The MOM acknowledges the SP
about the received messages

Persistent deliv-
ery

Persisting the SP messages in a
data store so they are not lost if the
MOM fails. Therefore, we ensure
that the SP messages are delivered
to the SC

Contract central-
ization DP

Gathering the SP features within
the service contract so it will be
used by the SC as the sole entry
point to communicate with the SP

Direct authenti-
cation DP

Requiring that the SCs must pro-
vide authentication credentials to
invoke a capability

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

114



Table 1: Descriptions of the features of FMSP (cont.).

Service messag-
ing DP

Using a messaging-based com-
munication technology which re-
moves the need for persistent con-
nections and reduces coupling re-
quirements between the SP and
SC

Service agent DP Deferring some logic (e.g., log-
ging messages) from services to
event-driven programs to reduce
the size and performance strain of
services

Intermediate
routing DP

Dynamically routing messages
through the use of a service agent

Service callback
DP

Redirecting the SP response mes-
sages to a callback address that
can be different of the requester
SC address

Asynchronous
queue DP

Deploying an intermediary MOM
allowing the SP and SC to asyn-
chronously communicate and to
independently process messages
by remaining temporally decou-
pled

Event-driven
messaging DP

Asynchronously sending the re-
sponse messages of the publisher
(i.e., SP), when ready, to its corre-
sponding subscribers (i.e., SCs)

Reliable messag-
ing DP

Adding a reliability mechanism to
the SP response messages in order
to ensure message delivery. This
mechanism relies on acknowledg-
ing the SP messages and persist-
ing them in a data store

Atomic service
transaction DP

Treating a group of the SP re-
sponse messages as a single work
unit. The latter is wrapped in a
transaction with a rollback feature
that resets all actions and changes
if the exchanging messages fails

Dual protocols
DP

The capability is designed to sup-
port two or more communication
technologies

State Gathering the techniques that han-
dle the state data of capabilities

Stateful services
DP

Managing and storing state data
by intentionally stateful utility ser-
vices

Service instance
routing DP

Supplementing the exchanged
messages with an instance identi-
fier, given by the SP as messaging
metadata, so the SC uses it to
communicate with the same
instance of a given capability

Table 1: Descriptions of the features of FMSP (cont.).

State messaging
DP

Delegating the storage of state
data to the SP response messages
instead to the SP internal memory

State repository
DP

Deferring storing state data from
a temporary memory to a state
repository

Internal memory Storing the state data in the SP in-
ternal memory

Storage mode Gathering the modes of how the
state data are stored

Temporary
memory

Storing and managing the state
data in a temporary memory

3.2.1 Constraints between the Design Patterns
with the Communication Types

The SC needs to send a request message to the SP in
order to invoke a capability. This communication type
is called one-way. If this capability returns a response
message, then the communication type is called two-
way. In FMSP, the feature Output represents the two-
way communication type. If this feature is omitted
when deriving an AMSP, then the result type of the
capability is void and the communication type is con-
sidered as one-way.

The features Service callback DP, Atomic
service transaction DP, Reliable messaging
DP and State messaging DP can be only applied for
the SP response messages, i.e., for the two-way com-
munication type (see Table 1). Thus, we define “re-
quires” constraints from these features to the feature
Output.

3.2.2 Constraints of the Communication Design
Patterns

We express the feature Service messaging DP as
mandatory because the three communication tech-
nologies (SOAP, REST and MOM) expressed in the FMSP
are messaging-based.

The Dual protocols DP requires that a given
capability must support two or more communication
technologies and vice-versa. The first propositional
constraint defined in FMSP implements this require-
ment.

The SOAP and REST rely on a synchronous com-
munication for the message exchanging between the
SP and SC. The problem of the synchronous commu-
nication is that it forces processing overhead because
the SP and SC must wait and continue to consume re-
sources (e.g., memory) until they finish the message
exchanging. To overcome this problem, the asyn-
chronous communication is used as a solution. Also,

Feature Model based on Design Pattern for the Service Provider in the Service Oriented Architecture

115



in certain cases, it is necessary to implement (i.e., de-
velop the artifacts of) the features Atomic service
transaction DP and Reliable messaging DP.

In this context, it is possible to configure the SOAP
and REST to implement the features Atomic service
transaction DP and Reliable messaging DP
and to support the asynchronous communication by
implementing the feature Service callback DP.
However, this requires significant costs associated
with necessary infrastructure upgrades in the SP and
also in the SC (Erl, 2009). In the other hand, the MOM
offers advanced functionalities to implement these
features in both the SP and SC. Thus, we propose
implementing these features with the feature MOM.
Hence, we express the three asynchronous communi-
cation DPs (Service callback DP, Asynchronous
queue DP and Event-driven messaging DP),
the Atomic service transaction DP and the
Reliable messaging DP as child features of the
feature MOM.

In the MOM, the SC request messages are always
carried on by an asynchronous queue (Giacomelli,
2012) which it is an implementation of the feature
Asynchronous queue DP. This is the reason why we
define this feature as mandatory. In order to im-
plement the feature Event-driven messaging DP,
we use an asynchronous topic (Giacomelli, 2012).
The latter is used to send asynchronously the SP re-
sponse messages as notifications to its subscribers
(i.e., SCs). The addresses of the asynchronous queue
and topic are different. In this context, we define a
“requires” constraint from the feature Event-driven
messaging DP to the feature Service callback
DP because one need redirecting the SP response mes-
sages to the asynchronous topic address.

In the case where the features Asynchronous
queue DP and Service callback DP are selected
and the feature Event-driven messaging DP is
omitted when deriving an AMSP, then the SC request
and SP response messages are handled by two differ-
ent asynchronous queues with different addresses. If
the Service callback DP is omitted, then all mes-
sages are handled by a single asynchronous queue.

Because the MOM communication technology en-
sures a loosely coupled and an asynchronous commu-
nication between the SP and SC, then it should inform
the SP and SC if their outgoing messages have been
successfully received. In this context, the MOM should
use either the features Acknowledgement or Atomic
service transaction DP (Erl, 2009), (Giacomelli,
2012). This requirement is considered in our FMSP
by defining these two features as mutually exclusive
and by defining the second propositional constraint in
Fig. 1.

3.2.3 Constraints of the Service Agent Design
Patterns

The feature Intermediate routing DP is imple-
mented through a service agent (see Table 1). Thus,
we define the Intermediate routing DP as an op-
tional child feature of the feature Service agent
DP.

In contrast of SOAP and REST, the SC request
messages which are dedicated to MOM do not explic-
itly contain information about which capability the
SC wants to invoke. As a consequence, it would
be not possible to invoke the required capability.
As a solution, we propose implementing the feature
Intermediate routing DP that dynamically rout-
ing the SC request messages to the required ca-
pability. Hence, we define, in our FMSP, a “re-
quires” constraint from the feature MOM to the feature
Intermediate routing DP.

3.2.4 Constraints of the Service State Design
Patterns

Erl reports that the service state DPs (Service
instance routing DP, State messaging DP,
Stateful services DP and State repository
DP) can be implemented in conjunction in the SP
(Erl, 2009). This requirement is implemented in our
FMSP by defining these DPs as alternative inclusive
features.

The goal of the State messaging DP is dele-
gating the storage of state data to the SP response
messages. In this context, we propose implement-
ing the Service agent DP to automatically per-
form this delegation. Hence, we define, in our
FMSP, a “requires” constraint from the feature State
messaging DP to the feature Service agent DP.

4 EVALUATION

In order to show the merits and evaluate our FMSP
(see Fig. 1) in practice, we propose to use the case
study of the Integrated Air Defense (IAD) (see Fig. 2).
The IAD is a command and control compound of geo-
graphically dispersed force elements already in peace
time as well as in crisis. In Fig. 2, we illustrate 17
force elements which are grouped into three main
forces: ground force (command and control system,
radars, anti-aircrafts and infantry), air force (drones,
helicopters and jet aircrafts) and maritime force (air-
craft carriers and submarines). These force elements
communicate with services to achieve their missions.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

116



Infantary

Command and
control system

Radars

Anti-crafts

Ground force

Jet aircrafts HelicoptersDrones

Air force

Maritime force

Aircraft carriers Submarines

AMSP1

AMSP2
AMSP3 AMSP4 AMSP5 AMSP6

AMSP7 AMSP8 AMSP9
AMSP10

AMSP11
AMSP12

AMSP13

AMSP14
AMSP15

AMSP16 AMSP17

Figure 2: Case study of the integrated air defense.

One main requirement must be satisfied to realize this
IAD case study:

Requirement 1. Each of the 17 force elements illus-
trated in the IAD case study is a SP, named SPi, which
it is responsible to implement its own features (see
Fig. 1).

As illustrated in the introduction (see Problems
P.1, P.2, P.3, P.4 and P.5), the SOA traditional service
contracts WSDL (Chinnici et al., 2007) and WADL
(Hadley and Sun Microsystems, 2009) suffer from
several problems to develop SPs which prevent to ef-
ficiently realize the Requirement 1. In order to over-
come these problems and to efficiently realize the Re-
quirement 1, we propose deriving for each SPi of
the 17 IAD force elements a specific AMSPi (e.g., see
Fig. 3) from our FMSP (see Fig. 1). For example, in
Fig. 2, the AMSP13 includes the SP features of the com-
mand and control system force element.

Using our FMSP has several benefits as mentioned
in Sect. 3.1 like it facilitates the mass-customization
of SPs. This is important especially when we have
an important SP count to develop which it is the case
of our IAD case study (17 SPs to develop). Pohl et

al. (Pohl et al., 2005) show, from empirical investi-
gations, that a given SPL is necessary and efficient if
there are more than three or four systems to develop
which it is our case.

In fact, Erl (Erl, 2009) reports that the U.S. De-
partment of Defense (DoD) has decided to plan and
manage its business IT (Information Technology) via
an architectural approach based upon SOA. The IAD
system presented in Fig. 2 is a part of the DoD’s busi-
ness IT. He also reports that due to the scale, complex-
ity and diversity of the DoDs business IT, the DoD
developed a strategy with guiding principles which
relies on the SOA DPs (Erl, 2009). In this context,
because our FMSP relies on the SOA DPs, it can help
contribute to develop the DoDs business IT.

We present in Fig. 3 an example of a derived AMSP
that contains 40 SP features. We note that this AMSP
implements a valid compound DP that is composed of
15 DPs. It is possible that an AMSP contains different
services and capabilities (see Fig. 1). For the sake of
simplicity, we illustrate in Fig. 3, an AMSP that con-
tains a single service, named “Personal”, which it is
composed of a single capability, named “login”. The

Feature Model based on Design Pattern for the Service Provider in the Service Oriented Architecture

117



A
sy

nc
hr

on
ou

s
qu

eu
e

D
P

A
to

m
ic

se
rv

ic
e

tr
an

sa
ct

io
n

D
P

Pe
rs

is
te

nt
de

liv
er

y

E
ve

nt
-d

riv
en

m
es

sa
gi

ng
D

P

M
O

M

R
el

ia
bl

e
m

es
sa

gi
ng

D
P

D
ur

ab
le

Se
rv

ic
e

ca
llb

ac
k

D
P

In
te

rm
ed

ia
te

ro
ut

in
g

D
P

Se
rv

ic
e

ag
en

tD
P

St
at

e

St
at

ef
ul

se
rv

ic
es

D
P

St
at

e
m

es
sa

gi
ng

D
P

Se
rv

ic
e

in
st

an
ce

ro
ut

in
g

D
P

In
te

rn
al

m
em

ro
ry

St
or

ag
e

m
od

e

C
om

m
un

ic
at

io
n

te
ch

no
lo

gy

SO
A

P 1.
2

G
et

R
E

ST

C
ap

ab
ili

ty
na

m
eC

ap
ab

ili
ty

Se
rv

ic
e

Se
rv

ic
e

na
m

e

Se
rv

ic
e

co
nt

ra
ct

A
dd

re
ss

St
at

e
re

po
si

to
ry

D
P

D
ir

ec
ta

ut
he

nt
ic

at
io

n
D

P

D
ua

lp
ro

to
co

ls
D

P
Se

rv
ic

e
m

es
sa

gi
ng

D
P

C
on

tr
ac

t
ce

nt
ra

liz
at

io
n

D
P

Fe
at

ur
e

at
tr

ib
ut

e
va

lu
es

:
A

dd
re

ss
=

”h
ttp

://
lo

ca
lh

os
t:8

08
0/

SP
”

Se
rv

ic
e

na
m

e
=

”P
er

so
na

l”
C

ap
ab

ili
ty

na
m

e
=

”l
og

in
”

IN
am

e
=

”i
d”

It
yp

e
=

”S
tr

in
g”

ID
at

a
cl

as
s

na
m

e
=

”S
es

si
on

”
O

N
am

e
=

”o
k”

O
ty

pe
=

”B
oo

le
an

”
O

D
at

a
cl

as
s

na
m

e
=

”S
es

si
on

R
es

po
ns

e”

In
pu

t
O

ut
pu

t O
N

am
e

O
Ty

pe

O
D

at
a

cl
as

s
na

m
e

O
D

at
a

IN
am

e
IT

yp
e

ID
at

a
cl

as
s

na
m

e

ID
at

a

Figure 3: Application model AMSP (design pattern features
are colored).

signature of this capability has a single input data,
named “id”, with a String type and included in the
class “Session” (Java class). It also has a single out-
put data, named “ok”, with a Boolean type and in-
cluded in the class “SessionResponse” (Java class).
The goal of this capability is to enable a user to lo-
gin to his/her account. We define the SP address as
“http://localhost:8080/SP”.

We developed a tool (MSPL4SOA tool, 2017),
(Kamoun et al., 2016) that relies on the Apache Veloc-
ity1 tool (a “model to code” template engine) in order
to transform a given AMSP to the artifacts of the corre-
sponding SP. Our tool generates SPs based on the En-
terprise Service Bus (ESB) Switchyard (Switchyard,
2016). Switchyard is a recent free software ESB that
includes different technologies, such as the Service
Component Architecture (SCA), HornetQ (a MOM
implementation) (Giacomelli, 2012), SOAP, REST,
Spring and Apache Camel (Ibsen and Anstey, 2011).
These technologies are integrated on demand in the
generated SP depending on the features of AMSP. Our
tool also relies on the FAMILIAR tool (Acher et al.,
2013) to develop and manage the FMSP and AMSP
(e.g., to check that AMSP is in conformity with FMSP).

From the AMSP illustrated in Fig. 3, our tool suc-
ceeds to automatically generate a valid and fully func-
tional SP. This generated SP has been successfully
deployed in the JBoss Java server without any fur-
ther manual interventions. It should be noted that
the SP developer can manually adapt the generated
SP to his/her application requirements (e.g., defin-
ing the business logic of the SP). The generated SP
is composed of 333 Java code instructions and five
XMLs2. These XMLs permit to configure the SOAP
and MOM technologies and to configure the ESB
Switchyard. The time required to derive the AMSP
(see Fig. 3) and generate its corresponding SP is sev-
eral seconds. By using the SOA traditional approach
(i.e., using the SOA traditional service contracts and
relying on the tools offered by the ESB Switchyard),
we require more than 20 minutes to develop the same
SP and we need many manual interventions. Hence,
we can say that using our FMSP (see Fig. 1) reduces
the required effort and time to develop valid and fully
functional SPs.

5 RELATED WORK

Many works have been proposed to model the SP fea-
tures (Wada et al., 2007), (Fantinato et al., 2008), (Ed-

1http://velocity.apache.org
2https://github.com/MSPL4SOA/MSPL4SOA-

tool/tree/master/generated SPs SCs/conf/sp

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

118



douibi et al., 2016), (Parra and Joya, 2015), (Kajsa
and Návrat, 2012), (Kamoun et al., 2014). In this sec-
tion, we discuss these works and compare them with
our FMSP (see Table 2).

Table 2: Comparing our FMSP with related work (FGC:
Functionality of the Generated Code, CT: Communication
Technology; CDP: Compound DP).

Approach Tool FGC CT DP CDP

WSDL XML Fully SOAP - -
WADL XML Fully REST - -
Wada et al.,
2007

FM Semi n/a - -

Fantinato et
al., 2008

FM Semi SOAP - -

Ed-douibi et
al., 2016

EMF Semi REST - -

Parra and
Joya, 2015

FM Semi Generic - -

Kajsa and
Návrat, 2012

FM Semi - + -

Our FFFMMMSSSPPP FM Fully Generic + +

Wada et al. (Wada et al., 2007) propose a FM that
expresses the variability of non-functional aspects of
the SP. Although their FM includes communication
features, it does not explicitly specify which commu-
nication technologies it supports. That is why we put
the symbol “n/a” in Table 2. Their FM can be used
to extend our FMSP (see Fig. 1) in order to express
the variability of SP non-functional aspects. In con-
trast, our FMSP permits to generate fully functional
SPs and models DPs and compound DPs.

Fantinato et al. (Fantinato et al., 2008) elaborate a
FM that models the variability of WSDL service con-
tract of SOAP. Our FMSP is more complete than theirs
in a way that it contains the required features (e.g., the
features of the input and output data) to generate fully
functional SPs. As reported by Fantinato et al., the
input and output data features are absent in their FM.
Another advantage of our FMSP is that it expresses
the variability of different communication technolo-
gies (SOAP, REST and MOM) and models DPs and
compound DPs.

Ed-douibi et al. (Ed-douibi et al., 2016) intro-
duce a MDE-based approach, called EMF-REST, that
takes EMF data models as input to generate their cor-
responding REST services. In our work, we propose
FMSP to model the REST features. Their approach
supports generating more REST features (e.g., secu-
rity features) than ours. In contrast, our FMSP per-
mits to generate services with different communica-
tion technologies (SOAP, REST and MOM) and mod-
els SOA DPs and compound DPs.

Parra and Joya (Parra and Joya, 2015) propose an
approach that generates a FM (using reverse engineer-
ing techniques) from current JEE artifacts. The latter,
as affirmed by the authors, can support only limited
features (e.g., the input and output data features and
the MOM features are missing). The advantage of
our FMSP is that it permits to generate fully func-
tional and highly customized SPs and models SOA
DPs and compound DPs. Parra and Joya report that
their approach should be extended to generate fully
functional SPs.

Kajsa and Návrat (Kajsa and Návrat, 2012) intro-
duce a FM to handle the variability of the object ori-
ented DPs. The goal is to support the instantiation and
the evolution which occur to these DPs. Their work
helps to generate the artifacts of a specific DP. The ad-
vantage of our FMSP is that it allows to generate the
artifacts of DPs and also of compound DPs.

6 CONCLUSION

In Service Oriented Architecture (SOA), the service
contract is one of the fundamental design principles
used to develop Service Providers (SPs). In this pa-
per, we have proposed, based on SOA Design Pat-
terns (DPs), a Feature Model (FM) for SP, named
FMSP. The latter is designed as a service contract
for SP that is generic and independent of the com-
munication technologies. We have modeled in our
FMSP 15 SOA DPs (e.g., Event-driven messaging)
and their corresponding constraints. This allows to
easily identify and generate the possible valid com-
pound DPs which permits to develop valid SPs, ac-
cordingly. Based on our FMSP, we have identified
that there are 406 valid compound DPs from 215 pos-
sible ones. We have demonstrated through a practical
case study and based on a developed tool, that our
FMSP permits to automatically generate valid, highly
customized, fully functional, proven and DP-based
SPs. We have shown that using our FMSP reduces
the required effort and time to develop SPs. We have
also demonstrated the efficiency of our FMSP com-
pared with related works notably the SOA traditional
service contracts WSDL and WADL.

For future research, we plan to extend our FMSP
by other features, including other DPs, in order to
generate more complex SPs.

REFERENCES

Acher, M., Collet, P., Lahire, P., and France, R. B. (2013).
FAMILIAR: a domain-specific language for large

Feature Model based on Design Pattern for the Service Provider in the Service Oriented Architecture

119



scale management of feature models. Science of Com-
puter Programming, 78(6):657–681.

Chinnici, R., Moreau, J.-J., Ryman, A., and Weer-
awarana, S. (2007). WSDL 2.0. https://www.w3.org/
TR/wsdl20.

Czarnecki, K., Helsen, S., and Ulrich, E. (2005). Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169.

Ed-douibi, H., Izquierdo, J. L. C., Gómez, A., Tisi, M., and
Cabot, J. (2016). EMF-REST: generation of RESTful
APIs from models. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing (SAC’2016),
pages 1446–1453, Pisa, Italy.

Erl, T. (2007). SOA Principles of Service Design. Prentice
Hall.

Erl, T. (2009). SOA Design Patterns. Prentice Hall.
Fantinato, M., Felgar, D. M. B., and Maria, D. I. (2008).

WS-contract establishment with QOS: an approach
based on feature modeling. Cooperative Information
Systems, 17(03):373–407.

Galster, M., Avgeriou, P., and Tofan, D. (2013). Constraints
for the design of variability-intensive service-oriented
reference architectures – an industrial case study. In-
formation and Software Technology, 55(2):428–441.

Giacomelli, P. (2012). HornetQ Messaging Developer’s
Guide. Packt Publishing.

Hadley, M. and Sun Microsystems (2009). WADL.
https://www.w3.org/Submission/wadl.

Ibsen, C. and Anstey, J. (2011). Camel in Action. Manning
Publications Corporation.

Kajsa, P. and Návrat, P. (2012). Design pattern support
based on the source code annotations and feature mod-
els. In Proceedings of the 38th International Con-
ference on Current Trends in Theory and Practice
of Computer Science on SOFtware SEMinar (SOF-
SEM’2012), pages 467–478, Špindlerův Mlýn, Czech
Republic.

Kamoun, A., Hadj Kacem, M., and Hadj Kacem, A. (2014).
Feature model for modeling compound SOA design
patterns. In Proceedings of the 11th ACS/IEEE Inter-
national Conference on Computer Systems and Appli-
cations (AICCSA’2014), pages 381–388, Doha, Qatar.

Kamoun, A., Hadj Kacem, M., and Hadj Kacem, A. (2016).
Multiple software product lines for software oriented
architecture. In Proceedings of the 25th IEEE In-
ternational Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET-
ICE’2016), pages 56–61, Paris, France.

Kang, K. C. and Lee, H. (2013). Systems and Software
Variability Management: Concepts, Tools and Expe-
riences. chapter 2: Variability Modeling, pages 25–42.
Springer.

MSPL4SOA tool (2017). https://mspl4soa.github.io.
Parra, C. and Joya, D. (2015). SPLIT: an automated ap-

proach for enterprise product line adoption through
SOA. Internet Services and Information Security,
5(1).

Pohl, K., Böckle, G., and Van Der Linden, F. (2005). Soft-
ware Product Line Engineering. Springer.

Switchyard (2016). Switchyard tool. http://switchyard.
jboss.org.

Wada, H., Suzuki, J., and Oba, K. (2007). A feature mod-
eling support for non-functional constraints in ser-
vice oriented architecture. In Proceedings of the 4th
IEEE International Conference on Services Comput-
ing (SCC’2007), pages 187–195, Salt Lake City, Utah,
USA.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

120


