Challenges and Opportunities of Modularizing Textual
Domain-Specific Languages

Christoph Rieger, Martin Westerkamp and Herbert Kuchen
ERCIS, University of Miinster, Miinster, Germany

Keywords:

Abstract:

Domain-Specific Language, Modularization, Xtext, Language Composition.

Over time, domain-specific languages (DSL) tend to grow beyond the initial scope in order to provide new

features. In addition, many fundamental language concepts are reimplemented over and over again. This
raises questions regarding opportunities of DSL modularization for improving software quality and fostering
language reuse — similar to challenges traditional programming languages face but further complicated by
the surrounding editing infrastructure and model transformations. Mature frameworks for developing textual
DSLs such as Xtext provide a wealth of features but have only recently considered support for language com-
position. We therefore perform a case study on a large-scale DSL for model-driven development of mobile
applications called MD?, and review the current state of DSL composition techniques. Subsequently, chal-
lenges and advantages of modularizing MD? are discussed and generalized recommendations are provided.

1 INTRODUCTION

Domain-specific languages (DSL) have emerged for
various purposes (Mernik et al., 2005). Despite their
unique capabilities, shared fundamental concepts are
rarely reused but are re-implemented for every new
language. In the context of Model-Driven Software
Development (MDSD) which tries to automate the
process of software creation, this causes a frequent
re-implementation of similar functionality. In recent
years, modularization of DSLs has become a topic of
increasing interest in academia due to the expected
improvements on software quality (Pescador et al.,
2015; Cazzola and Vacchi, 2016). Tightly coupled to
the concepts of language evolution, the composition
of languages introduces a variety of opportunities re-
garding maintainability, reusability, and extensibility
(Cazzola and Poletti, 2010). For example, changes to
language features can be performed in isolation, re-
quiring one to update and rebuild only parts of the
language (Vacchi et al., 2014).

Whereas a variety of DSL development frame-
works have evolved in the past, support for lan-
guage composition varies in practice (Erdweg et al.,
2015). On the one hand, development frameworks
specifically tailored to language modularization of-
ten emerged from niche projects and lack features
such as sophisticated Integrated Development Envi-
ronment (IDE) support (Vacchi et al., 2014; Ekman

Rieger, C., Westerkamp, M. and Kuchen, H.
Challenges and Opportunities of Modularizing Textual Domain-Specific Languages.
DOI: 10.5220/0006601903870395

and Hedin, 2007). On the other hand, language work-
benches used in practice often provide a broad set
of features for developers and modellers but consider
DSL composition as a negligible feature.

For example, the mature Xtext framework is
widely used for developing textual DSLs and provides
seamless IDE integration. However, modularization
capabilities such as grammar inheritance are still lim-
ited. One objective of this work is to analyse capabili-
ties concerning language modularization in Xtext and
the resulting implications for DSL developers.

The analysis is based on a prototypical imple-
mentation of a modularized DSL. With Model-Driven
Mobile Development (MD?), Heitkotter and Ma-
jchrzak (2013) presented a cross-platform develop-
ment approach to create data-driven business apps for
smartphones and tablets. MD? generates native apps
for multiple platforms, providing a native look and
feel, access to device sensors, and a high level of ab-
straction for modellers. Whereas the textual DSL fa-
cilitates modularization by utilizing the Model-View-
Controller (MVC) pattern (Ernsting et al., 2016) for
its models, the framework itself is not aligned with
this structure but implemented in a monolithic project.
In order to improve maintainability and extensibility,
an enhanced framework architecture is proposed for
MD? with respect to its DSL design and tooling.

The contributions of this work are threefold.
Firstly, the paper reviews language modularization

387

In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 387-395

ISBN: 978-989-758-283-7

Copyright © 2018 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

approaches in the field of external domain-specific
languages. Secondly, modularization capabilities and
limitations of the Xtext framework are further inves-
tigated, using a case study of the large-scale MD?
DSL. Thirdly, we generalize the observed benefits and
drawbacks and propose recommendations for modu-
larizing existing DSLs. The structure of this paper
follows these contributions. Based on related work
presented in Section 2 and general modularization
concepts in Section 3, Section 4 provides the case
study. The findings are then generalized and dis-
cussed in Section 5 before concluding in Section 6.

2 RELATED WORK

Introducing formal models as a higher level of ab-
straction permits domain experts to express their
requirements using semantics close to the notation
known within the domain, usually using either a tex-
tual or graphical syntax (Volter, 2013).

External DSLs are independently developed lan-
guages and separate to any host-language, therefore
often providing a custom syntax specifically crafted
according to domain experts’ requirements (Fowler,
2005). Since they are independent, appropriate tools
such as linkers, parsers, compilers, or interpreters
need to be provided (Volter, 2013). Internal DSLs are
encapsulated into a General Purpose Language (GPL)
and consequently use the same syntax. However, they
utilize only a subset of its features to create domain
abstractions (Fowler, 2005). Language Workbenches
offer a custom IDE, specifically designed to the de-
velopment and usage of DSLs. The IDE becomes an
integral part of model-processing, blurring the lines
between programming and modelling (Fowler, 2005).

In contrast to GPLs, DSLs are designed in line
with a (potentially changing) domain scope and soft-
ware systems need to cope with changes in their en-
vironment (Cazzola and Poletti, 2010). Moreover,
DSLs are often iteratively developed, e.g., when de-
ficiencies in the language design are exposed or a
DSL is intentionally designed to cover only the most
important domain concepts in the beginning, with
further components to be developed in the future
(Volter, 2013). Additional complexities arise when
downward compatibility to previous versions should
be provided through techniques such as deprecation
markers (Volter, 2013).

Consequently, the attempt to enhance maintain-
ability during the ongoing evolution of a language is a
major driver for DSL modularization. Internal DSLs
use the extensibility of a host language, e.g., macros
in Lisp or metaprogramming in C++ . They, however,

388

lack DSL-specific tooling support as well as a cus-
tomizable syntax (Fowler, 2005). Therefore, we focus
on external DSLs as well as Language Workbenches
in the following.

Inrecent years, the implementation of modular ex-
ternal DSLs has become a subject of increasing re-
search interest (Ekman and Hedin, 2007; Krahn et al.,
2010; Cazzola and Vacchi, 2016). Subsequently, a
variety of development frameworks have been pre-
sented that support the creation of necessary tooling
such as parser generation, implementing generators,
and supplying IDE integration (Erdweg et al., 2015).
With Neverlang, Cazzola and Poletti have introduced
a language development framework that specifically
focuses on creating reusable DSLs (Cazzola and Po-
letti, 2010). In Neverlang, modularization is organ-
ised along two dimensions. Language features are
defined individually in modules, containing the syn-
tax definition in Backus-Naur-Form (BNF) notation
and an arbitrary amount of so-called roles describing
the semantics (Vacchi et al., 2014). Whereas Nev-
erlang provides sophisticated modularization tech-
niques such as traits (Cazzola and Vacchi, 2016), it
does not provide IDE integration for generated DSLs,
hampering its adoption by domain experts.

A DSL development framework that supports the
entire MDSD process including language definition,
generator implementation, and IDE integration, is
MontiCore. The framework generates Eclipse plug-
ins for DSLs which support syntax highlighting, fold-
able code regions, and error messages. Flexible lan-
guage composition is enabled through interfaces and
multiple inheritance. MontiCore includes external
fragments at runtime so that modellers are capable of
utilizing arbitrary DSLs when modelling. While a va-
riety of template-engines are available for MontiCore,
the framework provides a native engine that facili-
tates agile development by introducing tags within the
source code which are implementable in later itera-
tions (Krahn et al., 2010). Although the framework is
under active development, no supporting community
has established yet, leaving its future maintenance un-
certain.

Being part of the Eclipse Modeling Project, the
Xtext' framework’s evolution and support is backed
by a comparably large community. It provides so-
phisticated tooling support such as IDE integration
but is not specifically tailored towards language com-
position (cf. Section 4). For code generation, Xtext
advocates Xtend?, a Java-like programming language
that additionally supplies developers with template
expressions to ease the implementation of generators.

IXtext — http://www.eclipse.org/Xtext/documentation/
2Xtend — https://www.eclipse.org/xtend/

Challenges and Opportunities of Modularizing Textual Domain-Specific Languages

3 DSL MODULARIZATION
CONCEPTS

A large amount of design patterns for domain-specific
languages have been presented in literature (Spinellis,
2001; Krahn et al., 2010). As this work focuses on
modularizing external DSLs, six applicable modular-
ization techniques are visualized in Figure 1.

Language extension allows new features to be
added to an existing language (Spinellis, 2001). The
novel DSL inherits from the base language, includ-
ing its semantics and syntax. Being closely related to
object-oriented forms of inheritance, language exten-
sion is generally not limited to single inheritance, but
also allows obtaining features from multiple DSLs.
However, due to the threat of possible conflicts,
mainly single inheritance is used in practice (Ducasse
et al., 2006).

Mixins represent a special form of language ex-
tension. Unlike multiple inheritance, mixins are not
tied to a particular super class in the type hierar-
chy. Instead, a mixin provides a self-contained incre-
ment of functionality and specifies its dependencies
(to classes or other mixins). Concepts defined in a
mixin can therefore be used by multiple classes, thus
enabling a more flexible class composition. During
language compilation, the type hierarchy is linearised
such that all language dependencies are resolved us-
ing single inheritance (Bracha and Cook, 1990).

Language specialization represents the counter-
part to language extension. Rather than extending a
DSL, unnecessary parts of a language are removed,
creating a novel DSL. It thereby comprises a subset
of the former language elements (Spinellis, 2001).
Pipeline Pattern. In contrast to language extension
and specialization, the language modules in this pat-
tern are on the same hierarchical level. Each language
handles a set of language elements and passes the rest
to the next one, so that a language’s output is the input
for the next language in the pipeline. Pipelining thus
encourages the separation of tasks and discourages
the use of too feature-rich languages (Mernik et al.,
2005).

Trait. Only recently, the use of traits has been pro-
posed for DSL composition (Cazzola and Vacchi,
2016). Similar to an interface with method imple-
mentations, a trait is a collection of methods and at-
tributes. Nonetheless, a trait is stateless by definition
and does not enforce an order of composition, en-
abling a more flexible reuse across classes compared
to inheritance. In language composition, traits pro-
vide or extend language constructs, and conflicts are
explicitly disambiguated by the target language. In
contrast to mixins, a trait only provides reusable func-

(e @ LBaseG?
ﬁl Lixin @; <t *‘

® a® e @

LExtension
a) Language extension b) Mixin

R e I 2>

£ s
@@@) @‘

d) Pipeline

LBase

LSpeciaI ization

c) Language specialization

Lsase@ @ LGy

LBase T

h
“aspect
/' weaving

LTrait @
T@
Lcombined @ LAspect

e) Trait f) Aspect

@ Language concept definition «229°
inheritance
Supported language concept <]7

Figure 1: Language modularization concepts.

tionality without affecting the type hierarchy and re-
spective semantic implications (Ducasse et al., 2006).

Aspect. Similar to traits, aspects provide compos-
able units of functionality which are independent of
their order and enable a flexible architecture design.
However, in contrast to traits, aspects are not invoked
within the target class, but an aspect itself declares
pointcuts, i.e., the set of events during program ex-
ecution for which the aspect’s action should be exe-
cuted (Wand et al., 2004). This composition mecha-
nism requires a language processor, the so-called as-
pect weaver, which is used to resolve the composition
of components and aspects. With respect to language
composition, there are two general approaches to im-
plement aspects. Firstly, aspects can be defined in cor-
respondence with generated GPL code as long as an
aspect weaver for the target language exists. More-
over, the developer needs detailed knowledge about
the generator to define pointcuts. Secondly, defining
aspects on a grammar-level provides the possibility to
declare pointcuts according to a DSL’s structure (Wu
et al., 2005). Yet, such an approach requires a trans-
formation engine which operates as aspect weaver.

389

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

4 MODULARIZATION IN Xtext

In this section, we present a case study on a large
DSL called MD? in order to demonstrate the practical
implications of current modularization capabilities of
DSLs created using the language workbench Xtext.

4.1 Modularization Concepts in Xtext

Whereas a large variety of modularization concepts
exists for DSLs in general (cf. Section 3), Xtext’s sup-
port for language extension is limited. As depicted in
Listing 1, grammars can extend other grammars using
the with keyword (line 1). The inheriting grammar
may extend existing language concepts, replace rule
definitions, or introduce new ones. However, Xtext
only supports single inheritance.

grammar de.md2.View with de.md2.Md2Basics

import "http://md2.de/Model" as model
OptionInput: 'Option' name=ID
widgetInfo
'options' values = [model::Enum]

fragment widgetInfo:
'label' labelText = STRING
'tooltip' tooltipText = STRING

O 0 NN R W N =

Listing 1: Language inheritance and grammar mixins.

In addition, Xtext provides a feature called gram-
mar mixins. In contrast to the modularization con-
cept with the same name presented in the previous
section, any metamodel can be used as Xtext mixin
using the import keyword (line 2). When importing
a metamodel, elements may then be referenced across
models. However, Xtext does not actually employ the
referenced grammar, but its metamodel. Therefore,
it is not possible to directly access rules from these
referenced grammars. Consequently, its syntax is not
available within the importing DSL to define new ele-
ments of the imported class in the including language.
For example, a modeller adding an OptionInput el-
ement can reference a list of values provided in a dis-
tinct model file (according to line 6) but cannot create
an Enum object directly in the View model.

Finally, the concept of fragments is another instru-
ment for enhanced reusability which has been added
recently’. Instead of repetitively declaring a similar
syntax in multiple parser rules, common parts can be
extracted into a fragment and integrated by multiple
rules. For example, the fragment widgetInfo (line 7)
specifies the syntax of two attributes and is included
in the OptionInput rule (line 5). Although this con-
cept introduces multiple inheritance on the level of

3http://zarnekow.blogspot.de/2015/10/the-xtext-
grammar-learned-new-tricks.html

390

model elements, it is only available within a single
grammar and cannot be used across languages.

4.2 Case Study on MD?

Cross-platform development frameworks aim to mit-
igate the redundancy of developing applications for
multiple platforms. However, hybrid apps based on
web technologies lack a native look & feel and do
not provide an additional level of abstraction beyond
a common Application Programming Interface (API),
e.g., regarding platform-dependent design guidelines
(Heitkotter et al., 2013). The Model-Driven Mo-
bile Development (MD?) framework abstracts from
the low-level implementation of business apps — i.e.
form-based, data-driven apps interacting with back-
end systems (Majchrzak et al., 2015) — and allows
for modelling the desired result in a platform-agnostic
fashion (Heitkotter et al., 2013). From this model, the
framework currently generates native source code for
the Android and iOS platform as well as a Java-based
back-end application.

Models designed using the MD? DSL follow the
Model-View-Controller (MVC) pattern, extended by
an additional workflow layer (Ernsting et al., 2016).
Workflows can trigger workflow elements defined in
the controller, while conversely the controller can fire
a workflow’s events as illustrated in Figure 2.

Workflow

Controller
Workflow
Elements
Model < View

Figure 2: Architecture of MD? models.

In contrast to the subdivided design of MD?
models, the DSL itself is defined in a single Xtext
grammar, roughly grouped into Model, View, Con-
troller, and Workflow components which reference
each other. However, some cases exist in which this
hierarchy is bypassed. For example, the AutoGener-
ator feature is used to automatically derive a generic
view representation from a given data structure. This
feedback between view layer and content provider
(located in the controller component) causes a circu-
lar dependency which needs to be considered while
restructuring the language.

The purpose of MD?’s modularization is there-
fore twofold. First and foremost, it should result in
a framework that provides enhanced maintainability

Challenges and Opportunities of Modularizing Textual Domain-Specific Languages

Basics

Model View

Controller Workflow

Figure 3: Proposed module structure for MD? models.

and increased software quality. Resulting from a se-
ries of modifications and extensions, the DSL was not
well structured and interrelations were hard to grasp
for developers due to the sheer size of the language.
Before modularizing, the Xtext file comprised 924
lines of code organized in 188 grammar rule defini-
tions. This makes MD? one of the five largest Xtext-
based DSLs (in lines of code and file size) published
on Github. However, the initial structure contradicted
the MVC approach enforced in MD? models, and
DSL evolution was seriously hampered by this com-
plexity. For example, evaluations of the framework
have unveiled a lack of abstraction in the DSL’s View
layer (Vaupel et al., 2014) which could be tackled
more efficiently when dependencies to other compo-
nents of MD? are clear.

Second, MD? is tailored to the domain of data-
driven business apps (Heitkotter et al., 2013). Future
users may wish to create DSLs tailored to their sub-
domains or even organisations. This can be achieved
by extending or specializing reusable modules. In ad-
dition, the creation of multiple (technical) sub-DSLs
can remedy current deficiencies and foster a more ag-
ile and targeted evolution of language features.

To achieve these aims, a clear separation of con-
cerns is mandated on DSL level and further compo-
nents dealing with code generation to trace concepts
along the processing chain, indicate dependencies,
and clarify interrelations. In order to focus this work
on the modularization of the DSL itself, the existing
generators were adapted to the new project structure
without formally subdividing them into submodules.

4.3 Modularizing MD?

Complying with the structure of the MD?-DSL and
corresponding reference architecture (Ernsting et al.,
2016), the MVC+Workflow pattern is adopted to de-
compose the monolithic MD? grammar into four sub-
DSLs. In addition, a fifth Basics DSL is introduced as
common infrastructure.

4.3.1 Inheritance-based Modularization

Each module is a domain-specific language on its own
but does not exist in isolation as visualized in Fig-
ure 3. The Model module only relies on Basics and
provides the MD? type system, rules for modelling
custom entity structures, and typed parameter defini-
tions to be used by other modules. While the View
module depends on Model in order to reference data
types, the Controller relies on both Model and View
such that the modeller can define custom actions link-
ing data objects with the desired representation. The
Workflow module only depends on Controller, since it
builds workflow paths from low-level process steps.
Sophisticated modularization techniques such as
multiple inheritance are not available in Xtext. How-
ever, it permits reusing grammars to a certain extent
through single inheritance (see Section 4.1). In the-
ory, unidirectional dependencies between sub-DSLs
could be recompiled into a chain of DSLs only us-
ing single inheritance, similar to the concept of mix-
ins (see Section 3). Nevertheless, automation would
be required to build a (temporary) inheritance struc-
ture from the dependency graph each time any of the
modules changes, and adapt the IDE and generator
code accordingly. We therefore decided to avoid this
approach and interrelate multiple DSLs differently.

4.3.2 Interface-based Modularization

In contrast to single inheritance, more than one DSL
can be imported in Xtext. As explained in Section 4.1,
the flexibility of importing multiple sub-DSLs comes
at the cost of modelling components in multiple files
according to the module in which the rules are lo-
cated, and reference the respective objects.

To achieve a coherent structure across multiple
DSLs, Voelter and Solomatov (2010) suggest the uti-
lization of interfaces. The modularized MD? DSL
creatively combines standard Xtext features to cre-
ate such extensible interfaces as depicted in Listings

391

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

grammar de.md2.Basics

1

2

3 MD2Model:

4 package = PackageDefinition &

5 model = LanguageElement?;

6 LanguageElement:

7 {LanguageElement};

8 PackageDefinition:

9 'package' pkgName = QUALIFIED_NAME;
Listing 2: Basics grammar defining interfaces.

1 grammar de.md2.Model with de.md2.Basics

2 import "http://md2.de/Basics" as basics

3

4 MD2Model returns basics::MD2Model:

5 super

6 model = Model;

7 Model returns basics::LanguageElement:

8 {Model} modelElements += ModelElement+;

Listing 3: Model grammar implementing interfaces.

2 and 3. Firstly, the concept of unassigned rule calls
(line 7 in Listing 2) forces the instantiation of rules.
As no further attributes are specified, the rule is effec-
tively transformed into an empty interface. Secondly,
the returns keyword influences the meta model by
explicitly merging the inferred class with the given
type. A common use case for this feature is the def-
inition of expressions such that the actual subtype is
transparent to referencing elements.

For example, the Model rule (line 7 in List-
ing 3) creates valid Basics::LanguageElement ob-
jects, effectively implementing the imported inter-
face. Thirdly, the super keyword (line 5 in Listing 3)
provides all contents of the inherited rule to the im-
plementing rule. Therefore, Basic::MD2Model’s at-
tributes are available in the corresponding rule of the
Model grammar and can be overwritten. Together, the
concept of interfaces is emulated in Xtext not only
within a single language but also across DSLs.

4.3.3 Modularizing Bidirectional Dependencies

Beyond the presented linear dependency structure, in-
tertwined components can also be extracted into sep-
arate sub-DSLs. As mentioned before, the AutoGen-
erator feature is such an example that provides a view
element but relies both on the Model and Controller
module. During the language generation process,
Xtext is not able to resolve bidirectional language ref-
erences. Extracting the problematic feature is possi-
ble by introducing a separate module that implements
a new LanguageElement subtype complying with the
aforementioned interface principles. The new struc-
ture as visualized in Figure 4 inevitably creates circu-
lar dependencies between those DSLs. However, the
metamodel of each DSL can be built independently

392

Basics

N

| |

Model View
AutoGenerator

Figure 4: Resolving bidirectional dependencies.

Controller

by avoiding bidirectional dependencies. Using cross-
language references via imports, other grammars can
access the respective target normally and the resulting
cycle is resolved soundly by Xtext.

4.3.4 Domain Extension

Domain extension is a second type of extension to the
presented modular structure. The modularization of
MD?, as described to this point, mainly provides ben-
efits from a DSL developer’s perspective. The sepa-
rated modules retain clear responsibilities and depen-
dencies, easing future development of the framework.
Nevertheless, it could be extended to specialized do-
mains or applied to specific organizations which bring
along new requirements by adapting MD? to the tar-
get domain, thus achieving a variable scope of the lan-
guage (Volter and Solomatov, 2010). Instead of cre-
ating new modules that inherit from the Basics gram-
mar, existing modules can be reused through inheri-
tance. For example, a newly introduced ViewAddon
module inherits from the View grammar to add a new
type of view element as depicted in Figure 5.

The add-on’s grammar needs to implement the
common root of MD?Z, i.e. MD2Model. Note that in
this case, the super call (line 6 in Listing 4) does not
refer to the rule in Basics but to the inherited defi-
nition within the View module. In order to extend a
specific rule, e.g., adding a specific view element, a

Basics

Model View Controller

L

ViewAddon

Figure 5: Domain extension.

Challenges and Opportunities of Modularizing Textual Domain-Specific Languages

grammar de.md2.ViewAddon with de.md2.View

1

2 import "http://md2.de/View" as view

3 import "http://md2.de/Basics" as basics

4

5 MD2Model returns basics::MD2Model:

6 super;

7 ContentElement returns view::ContentElement:
8 super | AddedButton;

9 AddedButton: ...

Listing 4: ViewAddon grammar.

new rule alternative can be provided for the defini-
tion of a ContentElement (lines 7-8). Nevertheless,
the original implementation is maintained by delegat-
ing other model inputs to the super language imple-
mentation. Conversely, rules may limit which super
language rules can be referenced, or place inherited
elements arbitrarily in the derived language’s struc-
ture without affecting the inherited grammar.

4.4 Advantages and Disadvantages of
Modularization

In this section, the results of the modularization are
discussed with regard to the implications for MD?
modellers and DSL developers.

Modelling Experience. DSL modularization should
minimize changes to the language’s scope and its us-
age for modellers. It can be observed that the scope
of the modularized MD? DSL has not changed and
all language concepts could be transferred. Because
the language syntax was not modified, three structural
metrics were chosen from a plethora of grammar-
related metrics in order to asses the overhead of the
modularization (érepinéek etal., 2010). Table 1 com-
pares the different DSL sizes using the number of
grammar rules, non-comment and non-blank lines of
code (NCLOC), and the amount of (non-comment)
characters in each DSL grammar. As can be seen,
the modularization process incurs a slight overhead
of about 5% lines of code due to the declaration of
imports and the specification of interfaces. However,
complexity is greatly reduced compared to the origi-
nal DSL specification with 2087 lines (including com-
ments). Admittedly, the resulting six DSLs represent
only a first high-level separation of concerns. How-
ever, the effects of the modularization will amplify
when complex constructs of the large Controller and
View modules are further broken down.

However, as drawback of the extension approach,
new model files (and file types) are required for each
type of extension such as AutoGenerator model ele-
ments. This restriction is acceptable for large modules
(such as enforcing MVC separation on file level) but
gets inconvenient in case of multiple small additions.

Table 1: DSL comparison metrics.

(Sub-)DSL Rules NCLOC Characters
Original MD? 188 924 30.208
Basics 26 93 1.893
Model 20 97 3.498
View 62 301 8.319
Controller 85 421 16.198
Workflow 8 31 1.050
AutoGenerator 5 27 955
Modular MD? 206 970 31.913
Difference +9.6 % +5.0 % +5.6 %

Language Development. With regard to DSL devel-
opment, several advantages can be observed. Firstly,
splitting the large-scale DSL makes the framework
more maintainable. Both MD? and Xtext evolve over
time, therefore some parts of the implementation be-
came outdated but could not be replaced because of
the unknown implications of such actions. Also, the
underlying functionalities for validation, preprocess-
ing, and source code generation are untangled. There-
fore, deprecated and irrelevant code can be better
spotted and safely deleted without fearing side-effects
on other parts of the framework.

Secondly, the separation of concerns will likely
improve development speed and quality of sub-DSLs.
Instead of managing the whole language scope, par-
ticular sub-DSLs can evolve separately. This does
not only apply to language features but also includes
tool support for validation, formatting, code comple-
tion, etc. Also, developing generators does not re-
quire comprehensive knowledge about MD? anymore
but can focus on the transformation of specific domain
concepts to the respective target platform.

Finally, the modularization prepares the language
for future developments. New sub-DSLs can intro-
duce new or extend existing language concepts. Also,
language reuse in different DSLs is possible. How-
ever, the complete replacement of a language with an
existing DSL in the same domain is currently not eas-
ily possible because of the interface-based language
structure. Yet, considering the complex interrelations
within generated code it is questionable whether a re-
placement is actually desired.

Modularizing MD? also introduces some draw-
backs for language developers: The grammar of each
sub-DSL is simplified at the cost of fragmentation in
the overall framework structure. In particular, each
new DSL in Xtext is based on five Eclipse projects for
grammar definition, editor integration, and unit tests.
The current module structure of six DSLs already re-
sults in a set of 30 projects and will quickly rise if

393

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

new extensions and add-ons are introduced. Manag-
ing the configuration — including dependencies, DSL
versions, and overall language bundling — needs to be
automated using build tools such as Gradle*.

From a conceptual perspective, a balance between
core language features and extensions needs to be
found. Language specializations may be tailored to
the specific environment but such adjustments ide-
ally do not require any change to the core language
to avoid compromising on the reusability of the host
language. Furthermore, the composition of domain
extensions is based on grammar inheritance and there-
fore prone to the same problems of manually main-
taining inheritance chains. As a consequence, intro-
ducing a multitude of minor DSL extensions is cur-
rently not advisable.

S DISCUSSION

Beyond MD?-related advantages and disadvantages
derived from the case study, the generalized reflec-
tions on the results are presented as recommendations
for the modularization of DSLs in a broader context.

Recommendation 1. Inheritance-based modulariza-
tion should be limited to closely related language ex-
tensions and language specialization.

Language workbenches often do not support pow-
erful language composition techniques. For exam-
ple in Xtext, the limitation to single-inheritance and
language imports as main approaches to modulariza-
tion is not flexible enough to cope with the extensive
(de-)composition of real-world DSLs. Because in-
heritance introduces tight coupling between two lan-
guages, this should be used sparingly. Common base
languages and language specialization, for instance
regarding sub-domains or company-/project-specific
adaptations, are well-suited use cases for grammar
inheritance. On the other hand, inheritance only al-
lows for the addition or modification of grammar rules
but cannot remove existing language concepts. Also,
long inheritance chains of otherwise unrelated sub-
languages provide maintainability benefits compared
to one large-scale definition.

Recommendation 2. Interface-based modulariza-
tion should be used for a flexible combination of inde-
pendent languages as large-scale layers of the DSL.
A multi-layer structure of the resulting DSL can
be achieved by emulating interfaces between differ-
ent languages as described in Section 4.3.2. With the
concept of language imports, references between ele-
ments from different DSLs cannot only be performed

4Gradle Build Tool — https://gradle.org/

394

for hierarchical relationships but can also be used in
settings with bidirectional or circular dependencies.
Although it was shown how issues can be overcome
using existing features, the workarounds are based on
implicit conventions that need to be shared by all in-
volved DSL developers.

Recommendation 3. Language reuse works best if a
common root language and infrastructure exists.

Unfortunately, there is no simple way to
“mix & match” arbitrary DSL specifications in Xtext.
Reusing a distinct set of rules in different languages
is complicated for reasons detailed in Section 4.1. In
general, a common infrastructure is required to ef-
fectively integrate language concepts across multiple
languages. A set of fundamental interfaces shared by
all related sub-DSLs eases the integration process also
in development frameworks which are not targeted to
language modularization. However, the dependency
on such a base language limits wide-spread language
reuse as no standard set of primitives exists that can
be applied generically to a broad set of languages.

Recommendation 4. The granularity of modules
should match the designed DSL’s structure.

Due to the limited flexibility of referencing con-
structs by importing the target metamodel, the module
structure ideally matches the structure of the result-
ing DSL. For example, the effect of requiring separate
model files for language add-ons is potentially accept-
able for larger chunks of functionality that form in-
trinsic sub-units of the designed DSL. Otherwise, nu-
merous small language extensions require content to
be modelled in many different files, potentially caus-
ing confusion for the modeller.

Obviously, these pieces of advice are based on the
current features of the Xtext framework. If better con-
cepts for modularization are introduced, these recom-
mendations might change over time. Possible options
include native interfaces that can be implemented by
any grammar rule (Krahn et al., 2010) or techniques
such as aspects and traits (general multi-inheritance
has its own shortcomings) for embedding individual
language concepts in different DSLs such that the re-
sulting integration is transparent to the user. However,
currently no development efforts beyond the fragment
concept for non-extensible and DSL-internal inter-
faces are known.

6 CONCLUSION AND OUTLOOK

Until now, basic language constructs in DSLs need to
be implemented from scratch again and again, thus

Challenges and Opportunities of Modularizing Textual Domain-Specific Languages

limiting the degree of true domain-specificity. Conse-
quently, interoperability, maintainability, and reuse of
DSLs do not reach their full potential. In this work,
modularization techniques for language (de-) com-
position using a state-of-the-art framework for DSL
development called Xtext were investigated. A case
study on the large Xtext-based DSL MD? for mod-
elling business apps is presented in order to achieve
a high degree of modularity using available modular-
ization techniques.

Several challenges limit the flexible applicability
of language modules. Most importantly, the con-
straints of single-inheritance and Xtext’s inability to
embed external grammars negatively affect the possi-
bilities of modular languages and the resulting mod-
elling experience for users. Beyond the particular use
case, general opportunities of DSL modularization in
Xtext include the reduction of legacy code and im-
proved maintainability of the current code base. The
applied practices are distilled into four recommenda-
tions for exploiting the current features.

This work reveals future research need concerning
suitable modularization techniques for textual DSLs
which necessitate more flexibility regarding the reuse
of small-scale languages and the extraction of — of-
ten technical and not domain-specific — concepts into
sub-DSLs. Also, fully modularizing the model-driven
process including editing component, model proces-
sor, and code generators constitutes future work.

REFERENCES

Bracha, G. and Cook, W. (1990). Mixin-based inheritance.
ACM SIGPLAN Notices, 25(10):303-311.

Cazzola, W. and Poletti, D. (2010). DSL Evolution through
Composition. In 7th Workshop on Reflection, AOP
and Meta-Data for Software Evolution, pages 1-6.

Cazzola, W. and Vacchi, E. (2016). Language components
for modular DSLs using traits. Computer Languages,
Systems & Structures, 45:16-34.

Crepin§ek, M., Kosar, T., Mernik, M., Cervelle, J., Forax,
R., and Roussel, G. (2010). On automata and lan-
guage based grammar metrics. Computer Science and
Information Systems, 7(2):309-330.

Ducasse, S., Nierstrasz, O., Schirli, N., Wuyts, R., and
Black, A. P. (2006). Traits: A Mechanism for Fine-
Grained Reuse. ACM Transactions on Programming
Languages and Systems, 28(2):331-388.

Ekman, T. and Hedin, G. (2007). The JastAdd system —
modular extensible compiler construction. Science of
Computer Programming, 69(1-3):14-26.

Erdweg, S., van der Storm, T., Volter, M., Tratt, L.,
Bosman, R., Cook, W. R., Gerritsen, A., Hulshout,
A., Kelly, S., Loh, A., Konat, G., Molina, P. J., Palat-
nik, M., Pohjonen, R., Schindler, E., Schindler, K.,

Solmi, R., Vergu, V., Visser, E., van der Vlist, K.,
Wachsmuth, G., and van der Woning, J. (2015). Eval-
uating and comparing language workbenches: Exist-
ing results and benchmarks for the future. Computer
Languages, Systems & Structures, 44, Part A:24-47.

Ernsting, J., Rieger, C., Wrede, F., and Majchrzak, T. A.
(2016). Refining a Reference Architecture for Model-
Driven Business Apps. In Intl. Conference on Web In-
formation Systems and Technologies, pages 307-316.

Fowler, M. (2005). Language workbenches: The killer-app
for domain specific languages? http://martinfowler.
com/articles/languageWorkbench.html.

Heitkotter, H., Majchrzak, T. A., and Kuchen, H. (2013).
Cross-platform model-driven development of mobile
applications with MD2. In 28th Annual ACM Sympo-
sium on Applied Computing, pages 526-533.

Krahn, H., Rumpe, B., and Volkel, S. (2010). MontiCore: a
framework for compositional development of domain
specific languages. International Journal on Software
Tools for Technology Transfer, 12(5):353-372.

Majchrzak, T. A., Ernsting, J., and Kuchen, H. (2015).
Achieving business practicability of model-driven
cross-platform apps. OJIS, 2(2):3-14.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and How to Develop Domain-specific Languages.
ACM Computing Surveys, 37(4):316-344.

Pescador, A., Garmendia, A., Guerra, E., Sanchez
Cuadrado, J., and de Lara, J. (2015). Pattern-based de-
velopment of Domain-Specific Modelling Languages.
In International Conference on Model Driven Engi-
neering Languages and Systems, pages 166—175.

Spinellis, D. (2001). Notable design patterns for domain-
specific languages. Journal of Systems and Software,
56(1):91-99.

Vacchi, E., Olivares, D. M., Shagqiri, A., and Cazzola, W.
(2014). Neverlang 2: A Framework for Modular Lan-
guage Implementation. In /3th International Confer-
ence on Modularity, pages 29-32. ACM.

Vaupel, S., Taentzer, G., Harries, J. P., Guckert, M., Stroh,
R., Gerlach, R., and Guckert, M. (2014). Model-
Driven Development of Mobile Applications Allow-
ing Role-Driven Variants. MODELS, 45(355):1-17.

Volter, M. (2013). DSL Engineering. CreateSpace Inde-
pendent Publishing Platform.

Volter, M. and Solomatov, K. (2010). Language modu-
larization and composition with projectional language
workbenches illustrated with MPS. 3rd Intl. Confer-
ence on Software Language Engineering, LNCS.

Wand, M., Kiczales, G., and Dutchyn, C. (2004). A se-
mantics for advice and dynamic join points in aspect-
oriented programming. TOPLAS, 26(5):890-910.

Wu, H., Gray, J., Roychoudhury, S., and Mernik, M. (2005).
Weaving a debugging aspect into domain-specific lan-
guage grammars. In Proceedings of the 2005 ACM
Symposium on Applied computing, pages 1370-1374.

395

