REFERENCES
Aafer, Y., Du, W., and Yin, H. (2013). Droidapiminer: Mi-
ning api-level features for robust malware detection
in android. In International Conference on Security
and Privacy in Communication Systems, pages 86–103.
Springer.
Andrews, S., Tsochantaridis, I., and Hofmann, T. (2003).
Support vector machines for multiple-instance learning.
In Becker, S., Thrun, S., and Obermayer, K., editors,
Advances in Neural Information Processing Systems
15, pages 577–584. MIT Press.
Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., and
Rieck, K. (2014). Drebin: Efficient and explainable
detection of android malware in your pocket. In Procee-
dings of 21th Annual Network and Distributed System
Security Symposium (NDSS).
Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel, P.
(2014). Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices, 49(6):259–269.
Bunescu, R. C. and Mooney, R. J. (2007). Multiple instance
learning for sparse positive bags. In Proceedings of
the 24th Annual International Conference on Machine
Learning (ICML-2007), Corvallis, OR.
Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F.,
and Visaggio, C. A. (2015a). Effectiveness of op-
code ngrams for detection of multi family android mal-
ware. In Availability, Reliability and Security (ARES),
2015 10th International Conference on, pages 333–340.
IEEE.
Canfora, G., Di Sorbo, A., Mercaldo, F., and Visaggio, C. A.
(2015b). Obfuscation techniques against signature-
based detection: a case study. In 2015 Mobile Systems
Technologies Workshop (MST), pages 21–26. IEEE.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2015c). Detecting android malware using sequences
of system calls. In Proceedings of the 3rd Internatio-
nal Workshop on Software Development Lifecycle for
Mobile, pages 13–20. ACM.
Canfora, G., Medvet, E., Mercaldo, F., and Visaggio, C. A.
(2016). Acquiring and analyzing app metrics for ef-
fective mobile malware detection. In Proceedings of
the 2016 ACM International Workshop on Interna-
tional Workshop on Security and Privacy Analytics.
ACM.
Canfora, G., Mercaldo, F., Moriano, G., and Visaggio, C. A.
(2015d). Composition-malware: building android mal-
ware at run time. In Availability, Reliability and Secu-
rity (ARES), 2015 10th International Conference on,
pages 318–326. IEEE.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2014). Ma-
licious javascript detection by features extraction. e-
Informatica Software Engineering Journal, 8(1).
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015e).
Evaluating op-code frequency histograms in malware
and third-party mobile applications. In E-Business and
Telecommunications, pages 201–222. Springer.
Canfora, G., Mercaldo, F., and Visaggio, C. A. (2015f). Mo-
bile malware detection using op-code frequency histo-
grams. In Proceedings of International Conference on
Security and Cryptography (SECRYPT).
Carbonneau, M.-A., Cheplygina, V., Granger, E., and Gag-
non, G. (2016). Multiple instance learning: A survey
of problem characteristics and applications. arXiv pre-
print arXiv:1612.03365.
Cimitile, A., Martinelli, F., Mercaldo, F., Nardone, V., and
Santone, A. (2017). Formal methods meet mobile code
obfuscation identification of code reordering technique.
In Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE), 2017 IEEE 26th Inter-
national Conference on, pages 263–268. IEEE.
Dalla Preda, M. and Maggi, F. (2017). Testing android
malware detectors against code obfuscation: a sys-
tematization of knowledge and unified methodology.
Journal of Computer Virology and Hacking Techniques,
13(3):209–232.
Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis techni-
ques and tools. ACM computing surveys (CSUR),
44(2):6.
Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-
G., Cox, L. P., Jung, J., McDaniel, P., and Sheth,
A. N. (2014). Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartpho-
nes. ACM Transactions on Computer Systems (TOCS),
32(2):5.
Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G.,
and Furnell, S. (2017). Androdialysis: analysis of
android intent effectiveness in malware detection. com-
puters & security, 65:121–134.
Ferrante, A., Medvet, E., Mercaldo, F., Milosevic, J., and
Visaggio, C. A. (2016). Spotting the malicious moment:
Characterizing malware behavior using dynamic fea-
tures. In Availability, Reliability and Security (ARES),
2016 11th International Conference on, pages 372–381.
IEEE.
Fiaz, A. S., Asha, N., Sumathi, D., and Navaz, A. S. (2016).
Data visualization: Enhancing big data more adapta-
ble and valuable. International Journal of Applied
Engineering Research, 11(4):2801–2804.
Lindorfer, M., Neugschwandtner, M., and Platzer, C. (2015).
Marvin: Efficient and comprehensive mobile app clas-
sification through static and dynamic analysis. In Com-
puter Software and Applications Conference (COMP-
SAC), 2015 IEEE 39th Annual, volume 2, pages 422–
433. IEEE.
Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C. A., and
Martinelli, F. (2017). R-packdroid: Api package-based
characterization and detection of mobile ransomware.
In Proceedings of the Symposium on Applied Compu-
ting, pages 1718–1723. ACM.
Martinelli, F., Marulli, F., and Mercaldo, F. (2017a). Eva-
luating convolutional neural network for effective mo-
bile malware detection. Procedia Computer Science,
112:2372–2381.
Martinelli, F., Mercaldo, F., and Saracino, A. (2017b). Bride-
maid: An hybrid tool for accurate detection of android