
OdysseyProcessReuse
A Component-based Software Process Line Approach

Eldânae Nogueira Teixeira1, Aline Vasconcelos2 and Cláudia Werner1
1Systems Engineering and Computer Science Program, COPPE/UFRJ,

ZIP Code: 21945-970, P.O. Box 68511, Rio de Janeiro, RJ, Brazil
2Federal Fluminense Institute of Education, Science and Technology, Campos dos Goytacazes, RJ, Brazil

Keywords: Software Process Reuse, Software Process Line, Software Process Component.

Abstract: It is expected that managing process variations and organizing process domain knowledge in a reusable way

can provide support to handle complexity in software process definition. In this context, the purpose of this

paper is to describe a systematic software process reuse methodology, by combining process reuse

techniques, such as Software Process Line and Component Based Process Definition, aiming to increase

reuse possibilities. SPrL approach manages the variability aspect inherent to software process domain and

CBPD focuses on modularizing the domain process information into process components. The proposed

SPrL modelling metamodel and notation address reusable process elements, explicitly representing the

variability concept in both process domain structure and behaviour. Based on the results of the evaluation

studies, it was possible to get evidences of the approach feasibility, with a higher expressiveness when using

the process variability notation proposed, which allow that more semantic concepts inherent to SPrL

scenarios can be graphically described. Also, the set of heuristics to support mappings among artefacts in

distinct abstraction levels was considered useful to keep the traceability of variability properties,

relationships and restrictions. Further research is being conducted to explore ways to support project

managers during the decision-making in new software process definitions.

1 INTRODUCTION

One way for defining a process can be to apply

process tailoring approaches. Software process

tailoring is “the act of adjusting the definition and/or

particularizing the terms of a general description to

derive a description applicable to an alternate (less

general) environment” (Ginsberg and Quinn, 1995).

In this scenario, organisations normally adopt an

ad hoc tailoring approach, where the intuition and

expertise of an experienced project manager or

process designer are always involved (Zakaria et al.,

2015). It demands experience and involves

knowledge from several aspects of software

engineering, which usually requires a highly skilled

professional who is able to reconcile all these factors

(Barreto et al., 2011).

Conventional tailoring approaches can be

divided into two major types: component-based

approaches and generator approaches (Washizaki,

2006). The former tries to build a project-specific

process based on existing process parts, but it lacks a

way to address the overall compatibility and

consistency of the derived processes and the latter

tries to build a project-specific process by

instantiating a process architecture, but it lacks a

way to reuse process fragments (Washizaki, 2006).

In this context, Software Process Line (SPrL)

(Rombach, 2013) has emerged as an approach for

software process reuse, based on the concepts of

Software Product Line (SPL) (Northrop, 2002). The

concepts of Component Based Development (CBD)

(Sametinger, 1997) have been applied by approaches

that conduct the definition of software processes

using components as a Component Based Process

Definition (CBPD) (Gary and Lindquist, 1999).

Although several initiatives regarding software

process tailoring in software processes exist in the

literature, there is no standard approach or consensus

regarding how to perform process tailoring in a

controlled and consistent manner nor there is a

complete notation that supports it (Martínez-Ruíz et

al., 2012). There is no current consensus on a

standard notation to support process tailoring (Pillat

Nogueira Teixeira, E., Vasconcelos, A. and Werner, C.
OdysseyProcessReuse.
DOI: 10.5220/0006672902310238
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 231-238
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

231

et al., 2015) and we lack the ability to capture

required flexibility of software processes due to a

missing ability to express flexibility using current

process modelling languages (Kuhrmann, 2014).

Also, although different approaches contribute to

the componentization strategy of reusable process

elements, as stated by Aoussat et al. (2010), even if

most existing approaches advance to the same

definition for a software process component, no

consensus or metamodel describing the software

process component characteristics is achieved. Each

component definition is based on the intended use of

a particular approach and there is a lack of

techniques guiding the components development.

So, if knowledge belonging to experienced

process engineers could be made explicit,

formalized, and available to other professionals, it

would probably be possible to reuse this knowledge

in an effective way (Barreto et al., 2011). It is

expected to minimize rework on process definitions

and the need of most experienced process engineers.

Considering this scenario, a systematic software

process reuse approach is presented in order to

address some of the challenges described above. It

combines SPrL and CBPD techniques, aiming to

address two aspects involved in the organization of

process domain reusable information: (1) process

domain variability, and (2) process domain

modularity. The approach includes: (i) methodology

for SPrL development; (2) process variability

representation; (3) domain information modularity

treatment; (4) the semi-automation of some steps of

Software Process Domain development, aiming to

reduce its definition effort; and (5) a supporting

environment. The process reuse support deals with

how to organize the reusable information in a

comprehensive way, where the knowledge required

is explicitly represented and it is expected to balance

the domain amount of information complexity by

using components to organize the domain in a

modular way, improving its understandability,

maintainability, and ultimately its reusability.

Following this Introduction, the rest of the paper

is organised in four sections, namely: Section 2

presents the concepts involved in background

knowledge and related work. The method is

described in Section 3, contextualizing an overview

of the variability modelling proposed. The approach

had been evaluated and gradually refined through a

set of evaluation studies, presented in Section 4,

where the SPrL representation and mapping

heuristics evaluation studies briefly describe the

approach feasibility. Finally, Section 5 presents the

conclusions, ongoing and future work.

2 BACKGROUND AND RELATED

WORK

This section introduces the concepts of SPrL and
software process components and presents the
related work.

2.1 Software Process Reuse

Given the diversity of aspects involved in software
development, there is no single framework and
guideline that can be used to define the software
process in all project environments (Zakaria et al.,
2015). In order to cope with this diversity,
adaptations according to the context of projects and
teams, besides the reuse of past experiences in the
definition of new software processes, are needed
(Magdaleno et al., 2015). Several approaches were
proposed to improve reusability of software
processes, and to allow defining methods for
composition of customized processes (Schramm et
al., 2015). Reusing software processes is important
for many reasons, such as: reducing costs and time;
increasing quality; promoting expert knowledge
reuse; and making process definition accessible to
less experienced people (Magdaleno et al., 2015).

In this context, software reuse concepts have

been applied for supporting processes reuse (Kellner

et al., 1996), emerging approaches as SPrLs and the

definition of software processes by using smaller

and reusable units, called as process components.

Variability management is a key requirement in

the development of SPrLs, providing support to

specification, implementation, variability resolution

and customized processes generation (Dias and

Oliveira Junior, 2016). It is necessary that process

modelling languages, and therefore their

corresponding metamodels, include variability

constructors (Martínez-Ruíz et al., 2011).

Much research has addressed the SPrL topic, but

still it can be considered an immature area, since

there is not a well-defined taxonomy and the quality

assessment of the proposed approaches needs

improvement in terms of empirical validation (De

Carvalho et al., 2014). Also, a problem with the

realization of software process lines is the lack of a

common understanding of what is considered to be a

process line in practice (Kuhrmann et al., 2016).

Another relevant approach is process definition

by composition based on smaller units called process

components. It is pointed out as a relevant aspect by

reference models and standards, such as MPS.BR

(Softex, 2016) and CMMI (Chrissis, 2006).

Although different approaches contribute to the

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

232

componentization strategy of process elements, no

consensus or metamodel describing software process

component characteristics is yet available (Aoussat

et al., 2010). Also, there is not a general agreement

on which information has to exist in a process

component or which level of detail it must have

(Barreto et al., 2011). These approaches do not

provide support to the components organization in

architectures and decisions are usually based on their

intended use in each approach. Also, there are not

components grouping techniques to deal with

coupling and granularity.

2.2 Software Process Variability
Modelling

Software Process Modelling Languages (SPMLs)
have been created from different sources and aiming
to address different problems, including software
process reuse (García-Borgoñon et al., 2014). Due to
the large number of SPMLs users, it is difficult to
establish the best language to be used and software-
intensive organizations have not yet adopted any of
the proposed ones in a practical sense, nor there is a
basis or standard (García-Borgoñon et al., 2014).

A set of SPrL works has been analysed in order
to identify process variability modelling proposals:
(1) Software and Systems Process Engineering
Metamodel (SPEM 2.0) (OMG, 2008) defines the
variability representation by four types of relations:
contributes, replaces, extends and extends-replaces;
(2) vSPEM approach (Martínez-Ruíz et al., 2008)
was proposed as an extension of SPEM 2.0; (3)
Stereotype based Variability Management proposal
for SPEM (SMartySPEM) (Dias and Oliveira Jr,
2016) aims to support identification and
representation of variability in SPEM-based
software process elements; and (4) Casper approach
(Alegría and Bastarrica, 2012) presents the SPrL
representation by three models: contextual model,
feature model and process model with variability
represented by eSPEM, an extension of SPEM 2.0.

None of the representations proposed can fully
meet the needs for process variability modelling,
still missing issues such as: process elements
variable in a process family (i.e., activity, task, role,
work product, tool, and relations) and variation in
control flows are not completely addressed; the
variability and optionality of process elements
cannot be defined together; only few studies propose
notations to represent variability in different
perspectives (Martínez-Ruíz et al., 2012); and still
there is the need for empirical studies and
evaluations of proposals (Oliveira Jr et al., 2013).
Also, there is a lack of domain complexity treatment

by different abstraction levels and the provision of a
mapping support among them.

To address these topics, a software process reuse
approach is proposed as described in the next
section.

3 A SYSTEMATIC SOFTWARE

PROCESS REUSE APPROACH

A systematic process reuse approach is proposed and

involves the definition of a SPrL Engineering

composed by five main elements: i) a method, which

is a Process Domain Engineering process combined

with CBPD; ii) a representation to variability

modelling, addressing two abstraction levels; iii) a

mapping mechanism as a guide to trace properties

throughout different domain artefacts; iv) a

components’ grouping technique that aims to

address coupling and granularity properties; and v) a

supporting environment (Odyssey, 2017).

The Process Domain Engineering process is

composed by two main phases (Figure 1): Software

Process Domain Engineering (SPDE) - phase where

an infrastructure to systematize reuse is conceived

and it is the main focus of the proposed approach -

and Software Process Project Engineering (SPPE) -

phase where project specific processes are derived

using the reusable process domain artefacts

produced by SPDE.

Figure 1: Process Domain Engineering overview.

3.1 Software Process Domain
Engineering (SPDE)

During the SPDE phase, the following main

activities are covered: (1) Domain Identification, (2)

Domain Knowledge Acquisition, (3) Domain

OdysseyProcessReuse

233

Similarity and Variability Analysis, and (4) Domain

Modelling.

The first activity includes the scope definition

that involves a domain feasibility study. Reuse

opportunities are investigated considering the

current and future organizational strategic goals. The

main objective is to identify an appropriate domain

with the delimited scope, according to time and

resources available versus the expected results.

The second activity aims to capture information

and knowledge within the software process domain

identified. It is divided into the following tasks: (1)

knowledge source(s) identification; and (2)

knowledge capture and storage. These tasks may

vary depending on the approach applied: bottom-up

or top-down and possibly even a combination of

both.

The third activity determines points where the

domain processes are similar (mandatory elements)

and points where they diverge (optional and

alternative elements), which represent adaptation

points during specific process derivation.

The forth activity results in the final models for a

SPrL: (1) Process Domain Feature Model with

compositional rules; (2) Projects Context Model

with context rules that make the link between these

two first models, and (3) Process Domain

Component Model, generated by applying mapping

heuristic, as described in Section 3.1.2 (Figure 2).

Figure 2: Process Domain Analysis Models.

The process domain knowledge is represented

using the metamodel and notation for variability

management developed, called OdysseyProcess-

FEX (Teixeira et al., 2015). This metamodel defines

an abstract syntax for two levels of abstraction: (1)

feature model, and (2) component model. It was

specified by analysing different process models,

such as OpenUP and RUP, SPEM 2.0 (OMG, 2008),

a process ontology (Falbo and Bertollo, 2005), the

process variability modelling literature - briefly

presented in Section 2.2, and feature modelling in

SPL approaches, specifically Odyssey-FEX

(Fernandes and Werner, 2008).

A Domain Contextual Model may be defined to

represent project properties that can affect processes

derivations. It is modelled using Ubi-FEX notation,

as described in Fernandes and Werner (2008),

considering the process feature model defined.

A checklist-based inspection technique was also

proposed to the verification of syntactic and

semantic feature and component models, called

PVMCheck (Teixeira et al., 2015).

3.1.1 Process Feature Modelling

The Process Feature Modelling represents a process

domain conceptual model, i.e., a high-level analysis

abstraction of the organizational process and its

variations. This includes a domain variability

structural representation and a behavioural one,

which establishes control flows, indicating the

execution order variations among work units. This

feature modelling includes the following activities,

which can be conducted in parallel:

(1) Represent Process Elements (activities and

tasks, roles, work products and tools);

(2) Determine Optionality - Classify each element

as mandatory or optional;

(3) Determine Variability - Classify each element

as invariant, variation point or variant;

(4) Determine for each variation point its

alternatives of configuration (related variants);

(5) Determine structural relations and their

optionality property, using Association,

Aggregation, Composition among work units,

roles, work products and tools relationships;

(6) Define dependency and mutual exclusivity

relationships by inclusive and exclusive

composition rules, respectively; and

(7) Determine behavioural relations and their

optionality property (define control flows and

their variations).

Each element and relation is represented by a

specific graphical element with icons and

stereotypes, as described in Figure 3. This figure

also presents an excerpt of a Project Planning SPrL.

This SPrL describes three initial mandatory

planning activities: Develop Project Charter,

Determine Project Size and effort. The effort can be

defined based on of two different techniques for

project size determination (Function Points (FP) or

by applying a historical base), characterizing a

variation point with two variants classified as

optional and mutual exclusive and dependent on

other elements in the domain. The dependences

among elements are defined by composition rules

identified by R and R_1 stereotypes in Figure 3.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

234

Figure 3: Project Planning SPrL Feature Model (Adapted from Teixeira (2016)).

3.1.2 Process Components Modelling

A process component, in our work, can be

understood as a process fragment abstraction based

on the “black box” principle, representing a modular

part of a process that encapsulates its contents and

communicates with its environment by interfaces.

Each component is composed by work units (activity

and task) that represent its possibilities of

realization. Four aspects can classify a process

component orthogonally: (i) variability (variation

point, variant or invariant), (ii) optionality

(mandatory and optional), (iii) internal structure

(simple or composed by other components), and (iv)

internal variation (concrete or abstract). A process

component can be considered concrete when there is

no kind of internal variation to be resolved, i.e., all

its process elements are defined to be directly

instantiated and enacted during a process execution

with no remaining decisions, otherwise, it is

classified as abstract.

The relations among components are established

through interfaces. An interface can be of two types:

data flow or control flow. The Data Interface

represents relations between work units and work

products that are exchanged beyond the process

component borders, as provided interfaces (work

products produced) or required interfaces (work

products required).

Components flow execution is represented by

process components’ control interfaces. A control

interface comprises a source component with an out

port, a target component with an in port, and a

connector establishing an association rule. The ports

specify distinct interaction points between a

component and its environment. Connectors are

lines between the various ports, in order to express

the connections that one wants to establish between

process components (OMG, 2008). In this approach,

the association rule related to the connector is

represented by the control flow type: sequence; fork;

join; merge and decision.

In this approach, a process component domain

model is derived, being considered a modular view

of the domain knowledge. This modular

organization can improve the domain’s

comprehension, maintainability and, ultimately, its

reusability. A mapping mechanism, described as

heuristics, was defined as a guide to assist the

mapping of properties from the feature model to the

corresponding component model, guaranteeing their

consistency and traceability. These heuristics were

derived based on Blois et al. (2006), adapting the

concepts of software products to software processes.

Also, the elements defined in the metamodel and the

process component model concepts were considered

while defining the heuristics. Heuristics were

proposed for mapping: (a) work unit features into

components or internal elements of a component; (b)

OdysseyProcessReuse

235

work products features into related interfaces or

internal elements of a component; (c) roles into

internal elements of a component; d) tools into

internal elements of a component; e) control flows to

control interfaces; and f) composition rules to

restrictions. A more detailed explanation of this

technique can be found in Teixeira (2016).

Figure 4 presents the component model of the

Project Planning feature model (Figure 4) resulted

after heuristics mapping application, as follows: (1)

the activity features mapped into components, four

of them are internal components of others; (2) all

tasks were mapped to internal elements of

components; (3) each relation between a work

product and a work unit beyond the process

component borders were mapped as an interface; (4)

the Project manager role and the tool were mapped

to components internal elements; (5) control flows

were mapped to sequential control interfaces; and

(6) composition rules to restrictions.

Figure 4: Project Planning SPrL Component Model

(Adapted from Teixeira (2016)).

4 EVALUATIONS STUDIES

The approach has been evaluated and gradually
refined through a series of studies that focused in
different contributions. In this paper, SPrL
representation and mapping heuristics studies are
presented. It could be identified a higher
expressiveness using the process variability notation
proposed, where more semantic concepts inherent to
SPrL scenarios can be described with more graphical
representations. Also, the set of heuristics to perform
mappings among artefacts was considered useful to
keep the traceability of variability properties,
relationships and restrictions.

An initial observational study was applied to

evaluate the applicability of the first version of

process domain metamodel and notation (Teixeira

2014). The same version was also used in an

experimental study conducted in the context of a

large oil and gas company in Brazil. Evolutions of

the metamodel and notation were performed after

these studies, including the use of cardinality, the

component level development, specification of

control and data flows, and treatment of variations in

processes behaviours. Considering this last version,

a more recent study was conducted (Teixeira, 2016),

aiming to analyse the semantic and syntactic

modelling capability and the expressiveness

representation of reusable artefacts. A comparative

analysis between the variability representation

proposed and the one proposed in Barreto et al.

(2011), was chosen as the assessment by the

complexity involved in the analysed modelling

notations that address semantically different

concepts. Some results were: the proposed

representation presented a higher expressiveness to

represent more semantic concepts inherent to SPrL

scenarios; and it has more graphical representations

allowing more visual analysis of domain

configuration points.

Another contribution evaluated was the

feasibility of the mapping heuristics technique. An

in vitro study was performed aiming to analyse a set

of heuristics to generate a SPrL component model

from a SPrL feature model in order to characterize,

with respect to its effectiveness (ratio between the

number of correct component model elements

created by a subject and the total amount of original

component model elements) and efficiency (average

time that the subject needed to create a correct

component model element) in generating SPrL

component model from the perspective of Software

Engineering researchers in the context of software

developers (represented by five graduate students

from a Software Reuse course) in one software

process domain (see Figure 4).

As can be seen in Table 1, none of the subjects

caught the total value of effectiveness (1). Although

the subjects were not able to map all known

elements from the feature model, all derived the

expected components correctly, only presenting

inversions in their internal structure type and internal

variation type classifications. The major problems

were related to work products relations and control

flow mapping. A significant difference in the values

of effectiveness and efficiency between the more

and less experienced subjects was not observed.

However, the time spent shows the complex

involved in the activity.

Table 1: Execution Results.

Subj.
Exp.

Level

Time

(min)

#Correct

Elements
Effectiveness Efficiency

P1 0,57 128 34 0,68 0,271

P2 0,35 157 28,75 0,575 0,183

P3 0,25 81 23 0,46 0,284

P4 0,20 97 27,5 0,55 0,284

P5 0,19 90 21,5 0,43 0,239

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

236

The subjects filled an evaluation form after their

mapping. Some subjects pointed out the need of

some examples as useful additional information to

support the heuristics application. No suggestion

was indicated pointing out the need to reorganize the

heuristics. Subjects did not identify any redundant

heuristics. Most subjects agreed that a computational

tool should support the mapping activity.

Some identified threats to the validity of this

quasi-experiment are: the small sample size of the

subjects; the absence of a comparison with another

method; the academic environment, which is the

same of the researchers. Although it was possible to

get evidences of the technique feasibility, these

issues indicate the need of further studies.

5 CONCLUSIONS

Software processes are complex dynamic systems,

which involve several software engineering aspects

and vary across projects. When this process family is

managed by a systematic reuse approach, processes

within an organization could be pro-actively

organized, allowing for better tailoring to a specific

project and organizational needs.

This paper presented a systematic process reuse

approach. This approach combines SPrL and CBPD

principles, also proposing a more complete

variability process metamodel and notation, aiming

to improve software process reuse, treating the

variability aspect inherent to the process domain and

considering modularity principles. The main

contribution is related to supporting Domain

Engineers in organizing knowledge from

experienced process engineers and lessons learned in

previous projects in a reusable way.

To complete SPDE, a set of criteria for

components grouping were defined to support the

organization of components derived in coarser-

grained domain architectural elements, aiming to

increase the domain understandability (Teixeira,

2016). Due to space limitation, it was not presented.

Also, a process reuse infrastructure was

implemented, called Odyssey (Odyssey, 2017). This

environment supports all phases of software reuse

and was adapted to support SPrLs construction

based on the proposed approach, including: (1)

domain modelling in different abstraction levels

described (feature and component models) and

context models; and (2) mechanisms to support the

application of the predefined heuristic mappings

from features to components, an activity that is

costly if done manually. Also, a verification

mechanism was implemented to monitor the

inconsistencies introduced during the modelling

activity.

One of the limitations of this work is related to

the preliminary support to the SPPE phase, which is

being explored in further research. Case-based

reasoning techniques are being studied to be applied

in this scenario.

Further studies are planned to evaluate the whole

approach in real scenarios or specific domains,

aiming to validate the development of process lines

in a real organization. It is important to involve

software process experts.

ACKNOWLEDGEMENTS

This research was partially funded by CNPq.

REFERENCES

Alegría, J.A.H. and Bastarrica, M.C.: “Building software

process lines with CASPER”, In: Proceedings of

International Conference on Software and System

Process (ICSSP), Zurich, Suíça, IEEE (2012), 170 -

179.

Aoussat, F., Ahmed-Nacer, M., Oussalah, M. C.: New

approach for software processes re-using based on

software architectures. In: 15th World Multi-

Conference on Systemics, Cybernetics and Informatics

(WMSCI'10), Orlando, United States, pp. 327-332

(2010).

Barreto, A., Murta, L., Rocha, A.R.: Software Process

Definition: a Reuse-Based Approach. Journal of

Universal Computer Science 17(13), 1765–1799

(2011).

Blois, A., de Oliveira, R., Maia, N., Werner and C.,

Becker, K. (2006) “Variability Modeling in a

Component-based Domain Engineering Process”, In:

9th International Conference on Software Reuse,

Turin, Italy, June, Lecture Notes in Computer Science,

Springer, Heidelberg, Germany, ISSN 0302-9743, pp.

395-398.

Chrissis, M.B., Konrad, M. and Shrum, S. (2006) “CMMI:

Guidelines for Process Integra-tion and Product

Improvement”, In: 2nd ed., New York, USA:

Addison-Wesley.

De Carvalho, D., Chagas, L. F., Lima, A. M., & Reis, C.

A. L. (2014). Software Process Lines: A Systematic

Literature Review. In Software Process Improvement

and Capability Determination (pp. 118-130). Springer

International Publishing.

Dias, Jaime W.; Oliveira Jr, Edson A. Modeling

Variability in Software Process with EPF Composer

and SMartySPEM: An Empirical Qualitative Study.

In: ICEIS (1). 2016. p. 283-293.

OdysseyProcessReuse

237

Falbo, R. A., Bertollo, G., 2005, Establishing the Common

Vocabulary for Software Organizations to Understand

Software Processes. EDOC International Workshop on

Vocabularies, Ontologies and Rules for The Enterprise

(VORTE), Enschede, The Netherlands, 2005, pp. 1-8.

Fernandes, P., Werner, C., 2008, Ubifex: Modelling

context aware software product lines. In 2nd

International Workshop on Dynamic Software Product

Line Conference, Limerick, Ireland, 2008, pp. 3-8.

Gary, K.A. and Lindquist, T.E., (1999) “Cooperating

Process Components”, In COMPSAC99, pp.218-223.

Phoenix, United States.

García-Borgoñon, L., Barcelona, M. A., García-García, J.

A., Alba, M., & Escalona, M. J. (2014). Software

process modeling languages: A systematic literature

review. Information and Software Technology, 56(2),

103-116.

Ginsberg, M. P., and Quinn, L. H., 1995, "Process

Tailoring and the Software Capability Maturity Model.

Technica Report CMU/SEI-94-TR-024," Software

Engineering Institute, Pittsburgh, PA1995.

Kellner, M.I.: “Connecting Reusable Software Process

Elements and Components”. In 10th International

Software Process Workshop, Dijon, France, pp. 8-11

(1996).

Kuhrmann, M., 2014, “You can't tailor what you haven't

*modeled”. In: Proceedings of the 2014 International

Conference on Software and System Process, pp. 189-

190, ACM.

Kuhrmann, M., Méndez Fernández, D., and Ternité, T.

2016. On the use of variability operations in the V-

Modell XT software process line. In Journal of

Software: Evolution and Process, 28(4), 241-253.

DOI: 10.1002/smr.1751.

Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M.

L., de Araujo, R. M., & Batista, C. F. A..:

Collaboration optimization in software process

composition. Journal of Systems and Software, 103,

452-466 (2015).

Martínez-Ruíz, T., García, F., Piattini, M.: Towards a

SPEM v2.0 Extension to Define Process Lines

Variability Mechanisms. In: Lee, R. (ed.) Software

Engineering Research, Management and Applications.

SCI, vol. 150, pp. 115–130. Springer, Heidelberg

(2008)

Martínez-Ruíz, T., García, F., Piattini, M. and Münch, J.:

"Modelling software process variability: an empirical

study", In: Software, IET, 5, 2 (2011), 172,187.

Martínez-Ruíz, T., Münch, J., García, F. and Piattini, M.:

“Requirements and constructors for tailoring software

processes: a systematic literature review”. In: Software

Quality Jour-nal, 20, 1 (2012), 229–260.

Northrop, L., 2002, “SEI’s Software Product Line Tenets”,

IEEE Software, v.19, n.4, pp. 32-40, July/August.

Odyssey (2017) “Odyssey Project”, In: http://reuse.cos.

ufrj.br/ odyssey

Oliveira Junior, E. A., Pazin, M. G., Gimenes, I. M.,

Kulesza, U., & Aleixo, F. A. (2013). SMartySPEM: A

SPEM-Based Approach for Variability Management

in Software Process Lines. In Product-Focused

Software Process Improvement (pp. 169-183).

Springer Berlin Heidelberg.

OMG, 2008: “Software Process Engineering Metamodel”,

In: http://www.omg.org/technology/documents/

formal/spem.htm

Pillat, R. M., Oliveira, T. C., Alencar, P. S., Cowan, D. D.,

2015, “BPMNt: A BPMN extension for specifying

software process tailoring”, In: Information and

Software Technology, 57, pp. 95-115.

Rombach, D., 2013, “Integrated Software Process and

Product Lines”. In Perspectives on the Future of

Software Engineering, pp. 359-366. Springer Berlin

Heidelberg.

Sametinger, J., 1997, Software Engineering with Reusable

Components, Springer-Verlag New York, Inc.

Schramm, J., Dohrmann, P., and Kuhrmann, M. 2015.

Development of flexible software process lines with

variability operations: a longitudinal case study. In

Proceedings of the 19th International Conference on

Evaluation and Assessment in Software Engineering.

ACM (2015), 13. DOI: 10.1145/2745802.2745814.

Silvestre, L., Bastarrica, M. C., and Ochoa, S. F. 2014. A

model-based tool for generating software process

model tailoring transformations. In 2nd International

Conference on Model-Driven Engineering and

Software Development (MODELSWARD). IEEE

(2014), 533-540.

Softex, 2016, “MPS.BR - Brazilian Software Process

Improvement, General Guide: 2016" [Online]. In:

SOFTEX - Association for Promoting the Brazilian

Software Excellence, Available: http://www.softex.br.

Teixeira, E.N., 2014, “A Component-Based Software

Process Line Engineering with Variability

Management in Multiple Perspectives”, In: 18th

International Software Product Line Conference

Doctoral Symposium, Italy.

Teixeira, E.; Mello, R.; Motta, R.; Werner, C.;

Vasconcelos, A.. “Verification of Software Process

Line Models: A Checklist-based Inspection

Approach". In: XVIII Iberoamerican Conference on

Software Engineering, 2015, Lima, p. 81-94.

Teixeira, E.N., “OdysseyProcessReuse: A Methodology

for Component Based Software Process Line

Engineering”, PhD Thesis. COPPE/UFRJ (In

Portuguese), Rio de Janeiro, RJ, Brasil (2016).

Washizaki, H.: "Building Software Process Line

Architectures from Bottom Up", In: Product-Focused

Software Process Improvement (PROFES),

Amsterdam, The Netherlands: LNCS, chapter 4034

(2006), 415-421.

Zakaria, N. A., Ibrahim, S., & Mahrin, M. N. R. (2015,

August). The state of the art and issues in software

process tailoring. In Software Engineering and

Computer Systems (ICSECS), 2015 4th International

Conference on (pp. 130-135). IEEE.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

238

