
Usage of Cognitive Architectures in the Development of Industrial 

Applications 
Utilization of a General Cognitive Process in the Domain Building Automation 

Alexander Wendt1, Stefan Kollmann1, Lydia Siafara1 and Yevgen Biletskiy2 
1Institute of Computer Technology, TU Vienna, Vienna, Austria 

2Department of Electrical and Computer Engineering, University of New Brunswick, New Brunswick, Canada 

 

Keywords: Cognitive Architecture, AI, Building Automation, Decision-making, KORE, Industrial Application, ACONA, 

Control Strategy. 

Abstract: Cognitive architectures, which originate from the field of Artificial Intelligence, implement models for 

problem-solving and decision-making. These architectures have a wide room for implementation in industrial 

applications. The goal is to adapt a cognitive architecture to the demands of an application in the area of 

building automation. It is analyzed, why cognitive architectures are difficult to apply in industrial domain. 

The result of the analysis is a cognitive process, which is applied to an application in the building automation 

domain. The use of the architectures is demonstrated within a Java-based based middleware. There, the 

cognitive architecture is applied for the automatic generation and improvement of control strategies in 

building automation, which have the goal to minimize energy consumption with minimal reduction of the 

comfort. 

1 INTRODUCTION 

Cognitive architectures provide a general framework 

for developing computational decision-making 

applications and are often, but not necessarily, based 

on theories of the human mind (Langley et al., 2009). 

Autonomous decision-making ability is demanded in 

the context of the growing complexity of industrial 

applications. Therefore, they have a potential to 

contribute to such applications. Unfortunately, up to 

now, the few examples of industrial applications. 

(Kotseruba et al., 2016) raise the question whether 

cognitive architectures are suitable to apply for 

software development besides of experiments. This 

problem is addressed by proposing an approach to 

enhance the systematic application of cognitive 

architectures in the field of industrial systems.  

As a method, we initially review well-known 

examples of cognitive architectures and discuss their 

functionality and usage in industrial applications. 

Then, we specify the types of software applications 

where cognitive architectures fit into and identify 

problems that may emerge during the adaptation of 

the architectures to a certain application. Based on 

this analysis, we propose in the last part of the paper 

our solution that consists of a cognitive process, 

which is common for all studied architectures. The 

process is implemented as an architecture. Finally, the 

functionality of the architecture is demonstrated 

within the project KORE (Cognitive Optimization of 

Control Strategies for Increasing Energy-efficiency 

in Buildings) (Zucker et al., 2016). KORE is applied 

in the domain of building automation, which has the 

purpose to optimize energy consumption under the 

constraints of comfort. 

2 EXISTING APPLICATIONS OF 

COGNITIVE ARCHITECTURES 

Cognition, according to Vernon et al., “can be viewed 

as the process by which the system achieves robust, 

adaptive, anticipatory, autonomous behaviour, 

entailing perception and action” (Vernon et al., 2007). 

It implies that the cognitive system is able not only to 

understand the current situation but also to function 

efficiently in situations for which it was not intended.  

Among cognitive architectures, SOAR (State 

Operator and Result) (Langley et al., 2009) and LIDA 

(Learning Intelligent Distribution Agent) 
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(Ramamurthy et al., 2006) are prominent examples 

with different origins. While SOAR origins from the 

domain of logical problem solvers in classical 

artificial intelligence, LIDA tries to model the human 

mind and origins from neurological theories. Each 

cognitive architecture has its advantages and 

drawbacks.  

SOAR is a general-purpose architecture that 

implements cognitive functionality and defines 

system behaviours by rules. LIDA is a cognitive 

architecture that aims to model the human mind. It 

provides a framework for cognitive architectures, 

where modules can be arbitrary created and linked. 

LIDA uses a partly bottom-up approach, where 

activated content or ideas of what to do are competing 

for attention. The winning content receives the 

attention and gets its action developed and executed. 

The cognitive architecture ICARUS (Langley et al., 

2011) origins from the area of autonomous robots. It 

differs from SOAR as it uses several different 

memories to store skills, concepts and beliefs.  

The cognitive architecture BDI (Belief, Desire, 

Intention) (Gottifredi et al., 2008) adds the 

component of a desire to cognitive architectures, 

where desires represent the goals of the system. SiMA 

(Simulation of the Mental Apparatus & Applications) 

(Schaat et al., 2017) extends the desires further into 

drives, emotions and feelings, which are used as 

evaluation mechanisms of different options of the 

system. Multi-agent solutions have gained attention 

within the community due to their ability to scale and 

allow partitioned development. An approach is the 

ACNF Cognitive Framework (Crowder et al., 2014). 

SOAR and BDI (Gottifredi et al., 2008) have been 

applied as the decision-making in robots. ICARUS 

(Choi et al., 2009), BDI (Dignum et al., 2009), LIDA 

(Sandsmark and Viktil, 2012) and SiMA (Schaat et 

al., 2017) have been applied to games or simulations 

of virtual human-like actors. The agent TAC-Air-

Soar (Heinze et al., 1999) shows the potential of 

cognitive architectures as virtual pilots in the 

modelling of fighter pilots in air combat scenarios. 

Since the theory of cognitive architectures often 

origins from psychology, some of them are used to 

mimic human behaviour in psychological 

experiments (Anderson et al., 2004), (Wendt et al., 

2015), (Gobet and Lane, 2010). In addition, there 

exist real-world applications, where the predecessor 

of LIDA has been deployed. In the US Navy, it 

manages jobs for sailors, where the task is to offer 

jobs for sailors depending on the sailor’s preferences, 

the Navy’s policies, the needs of the tasks and the 

urgency (Franklin and Patterson Jr, 2006). 

3 ANALYSIS OF APPLICATIONS 

Cognitive architectures tend to be more suitable for 

particular application classes. The criteria for such 

applications are analyzed in the following. 

3.1 Suitable Applications 

As the human mind is claimed to be the most complex 

biological system that we know about, it would be 

expected that the same decision process would benefit 

industrial applications that are applied in complex 

environments (Dietrich and Zucker, 2008). These 

applications do not have access to all information 

about their environments and have to make decisions 

based on judgment instead of deterministic inputs. 

Current applications can be categorized into two 

main groups: controllers for physical robots and 

virtual human in simulations. The domains are close 

to the area of the human mind. An application that 

differs from the others is the LIDA sailor application. 

Their common denominator is that they have to select 

one action out of several possible, comparable and 

competing actions, to fulfil certain goals. Due to the 

risk of applying a massive overhead, applications that 

operate only with complicated problems, where the 

environment is completely known are therefore not 

appropriate. 

Because decisions in these applications are based 

on judgment and not on determinism, the evaluation 

of options plays a major role. The program logic 

together with stored data determines how to evaluate 

option. Compared to a straightforward coded 

program, a cognitive architecture has the advantage 

that a lot of necessary program logic is transferred 

from the code into knowledge. Due to the provided 

infrastructure, it can be claimed that if a cognitive 

architecture is used in a certain complexity of an 

environment, the implementation should be possible 

with less effort than using a direct implementation of 

a state machine. 

The claim can be understood in the following 

context: Suppose that a game like Pacman is 

developed. The goal is for a player to eat food and 

avoid the ghosts. In the simplest case, decision-

making consists of some rules that define the 

behaviour for each situation. The more inputs are 

available, the more rules have to be written. At the 

point of competing options, the code gets messy. 

Evaluation of each option regarding some criteria is 

necessary. Here, a cognitive architecture makes 

sense. If such a system is extended, only to the way 

options are created and evaluated has to be addressed. 

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

642



3.2 Problems with Common Cognitive 
Architectures 

Although cognitive architectures seem to be very 

useful, most of them have never left the laboratory 

(Kotseruba et al., 2016). The importance of extracting 

the correct problem is given through an example in 

the project VKT GOEPL (Wendt et al., 2012). The 

purpose was to develop a decision support system for 

the collaboration between agencies to protect critical 

infrastructure in case of an earthquake. It should 

answer queries like "how many hospital beds are 

available within 10 km radius from the epicentre?" A 

cognitive architecture only make sense, if there are 

several competing methods to answer the question. 

Another problem is that although cognitive 

architectures claim to be very general, they tend to be 

highly tailored to a certain problem. As an industrial 

application is often very specific, the cognitive 

architecture must not be too specialized, in order to 

cover the required functionality. For instance, SiMA 

models the human mind with high detail according to 

a model derived from psychoanalysis. Compared to a 

generic architecture like SOAR, SiMA contains much 

pre-programmed functionality. In the project ECABA 

(Zucker et al., 2016), the idea was to apply SiMA with 

minimal changes to a problem in automated building 

control. The SiMA model assumes that a drive is 

independent. Because the proposed drives of the 

building controller are interdependent, a workaround 

with bad benefit/cost ratio had to be used. 

SOAR and BDI use a minimal cognitive cycle. If 

an industrial application has a need for an attentional 

functionality, which filters relevant from non-

relevant content like in SiMA or LIDA, it may not be 

possible to use these architectures because an 

attentional mechanism is not a part of their concepts. 

Perhaps, it is possible to implement this functionality 

with high effort. General-purpose architectures, 

which are more general problem solvers often lack 

the flexibility needed for a certain application. 

4 THE COGNITIVE PROCESS 

To be able to use the potential of cognitive systems in 

industrial applications, the shortcomings described 

previously have to be addressed. The method 

proposed in this paper is to create a meta-architecture 

that consists of a common cognitive process, which 

executes customized functions. According to (Wendt, 

2016), a general cognitive process can be extracted 

and common cognitive architectures can be mapped  
   

 

Figure 1: The cognitive process. 

to it. In this paper, the idea is to use a modified version 

of that process. 

Figure 1 shows an overview. The cognitive 

process describes one cognitive cycle, i.e. the path 

from input to an action. In the following, each step is 

described: 

The first step is to "perceive" the input data (A: 

Read system input), which can be a user request in an 

application. It corresponds to the neural layer in 

SiMA that contains raw data. Sensor data is 

transformed into the internal representation (B: 

Activate Concepts from Input). A knowledge base is 

used to classify the data and to load the matching 

symbol. No additional reasoning is performed. It 

corresponds to the Perceptual Associative Memory of 

LIDA or the Perceptual Buffer in ICARUS. 

Then, the activated symbols are enhanced with 

inferred knowledge. System goals (C: Create System 

Goals) are activated by the sensor content if they are 

not predefined. In addition, inferred knowledge about 

the environment is activated (D: Activate Option 

Related Content). Belief templates are tested and 

beliefs are instantiated in a working memory. Implicit 

knowledge is made explicit. In SiMA, the system 

goals are drives, which rely on sensor data from its 

body. In BDI, desires are tested against the beliefs 

that originated from the sensor data (steps C and D 

are swapped).  

Based on the beliefs and the goals, ways of 

fulfilling the system goals are proposed (E: Propose 

options). These options define what the system is able 

to do. They may contain possible actions that the 

system can execute. In some applications, this step 

may be optional if the options are equal to the actions 

(F: Propose Action for each Option). Options can 

also be interpreted as directives that can be fulfilled 

by actions. In SOAR, operators and in BDI, intentions 

are proposed. In LIDA, the options are presented 

through coalitions of attention codelets with the 

beliefs. All cognitive architectures have some means 

to evaluate the proposed options, in order to rank 

them (G: Evaluate Options). There are two sorts of 

evaluations: Degree of goal fulfilment and the effort. 

In SiMA, a rich set of evaluation methods is used. 

Options are evaluated against the drives, the feelings  
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and the effort. Other methods used by e.g. SOAR is 

the usage of preferences for certain operators like 

"operator1 is better than operator2". 

Through evaluation, options receive a score. One 

option is selected based on its score (H: Select Option 

with Highest Score). In the architectures SiMA and 

LIDA, a second cognitive process would start to 

develop a plan for each option. An action that is 

associated with the option is executed (I: Execute 

Action). It can be an action that alters the state of the 

environment or an action that alters the internal state 

of the system itself. In SOAR, that is what the 

operators are doing. They only alter the internal state 

of the working memory. An external action is 

transformed into actuator commands, in order to 

make a change in the system environment (J: Execute 

Actuator Command). 

Architectures like SOAR and BDI execute the 

described process once, while due to an attentional 

mechanism SiMA and LIDA executes it twice. The 

winning option is further developed into detailed 

plans. 

5 TRANSFORMATION INTO A 

COGNITIVE ARCHITECTURE 

In case of a reactive system, the cognitive process can 

be implemented straightforward. In the general case, 

however, a deliberative system is applied, which 

needs multiple cognitive cycles to decide about an 

action. Figure 2 shows the architecture. 

In most cognitive architectures, the execution of 

actions is sequential. While an external action is an 

action that alters the state of the environment, an 

internal action only alters the internal state. For 

instance, if data is loaded from a long-term memory, 

it does only change the internal state. It may be 

necessary to execute multiple internal actions before 

an external action is executed. The key to handle this 

is to keep track of the system's own decisions in a 

working memory to know what has already been done 

in a sequence of actions. 

The system needs functions. In LIDA, the concept 

of codelets was introduced. A codelet is a small piece 

of code that executes independently on the content of 

the working memory, e.g. to test sensor data and 

activate an internal representation in the Perceptual 

Associative Memory. Inspired by LIDA, codelets will 

be implemented as the functions of the system. They 

wait for a trigger to start. All codelets are assigned a 

process step in Figure 1. The idea is that instead of 

having fixed functions in the architecture, every 

function is a codelet that can be added or removed, in 

order to allow complete customization of the 

cognitive process. 

Every architecture needs memories. The long-

term memory can be in any format, e.g. an ontology 

or a relational database, depending on the purpose of 

the system. Through the codelets, its content is loaded 

and converted into the internal representation. The 

internal representation is defined in two memories: 

the working memory and the internal state memory. 

In the working memory, all content, which is relevant 

for the current situation is stored, similar to SOAR. It 

keeps actual instances of input data, data from the 

long-term memory and data, which is generated 

through codelets. In the internal state memory, only 

decision-making relevant data like goals and options 

is kept. It makes sense to separate the memories as 

one of them only handles meta-data, which is linked 

to the real data. 

 

 

Figure 2: The general cognitive architecture that implements the cognitive process. 
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6 THE APPLICATION KORE 

Building Energy Management Systems (BEMS) 

monitor and control the operation of the building 

systems to maintain acceptable indoor comfort levels 

under the constraint of energy efficiency. For the 

control of these systems, automated decisions are 

made using a control logic, which consists of a set of 

rules defined by an expert. These rules are static or 

updated during a re-commissioning phase. To reduce 

the engineering effort, the focus in the project KORE 

(Cognitive Optimization of Control Strategies for 

Increasing Energy-efficiency in Buildings) (Zucker et 

al., 2016) is to automatically generate and propose 

rule-sets to the building operator. 

A rule-set is defined as a parameterized set of 

interconnected control blocks like the example in 

Figure 3. A control block is function of the building, 

e.g. an actuator for a heating element or a CO2 sensor. 

Defined control blocks are instantiated in Matlab 

Simulink. A Simulink model is then used to simulate 

the rule-sets within a virtual building and get 

feedback on how well they performed. 

The task of the KORE application is to 

automatically generate rule-sets, test them, evaluate 

them and decide about the best method to continue 

the optimization process. The system consists of three 

components: A cognitive system for rule-set 

generation, a simulator to test the generated rule-sets 

and an ontology to store test results as well as 

building information. The ontology is the long-term 

memory of the cognitive system. An algorithm inside 

of the cognitive system does the rule-set generation. 

It arranges predefined control blocks corresponding 

to a problem definition, which are later 

parameterized. 
 

 

Figure 3: Example of a rule structure in KORE. 

There are three parts of information used. The 

problem definition consists of the building structure, 

the environmental setup, e.g., the season of the year 

to be tested, and user requirements regarding comfort 

and energy. The problem definition is stored in an 

ontology, which has been created by domain experts. 

The available utilities include a collection of 

available control blocks and semantic knowledge. 

The solution space consists of rules, generated by 

interconnecting and parameterizing the available 

control blocks. A further concept used is the episode. 

It is the evaluation of a particular generated and tested 

rule structure and parameters. Each episode is 

evaluated regarding the fulfilment of the system 

goals, i.e., energy efficiency, comfort and penalty that 

describes the fulfilment of external rules applied to 

the system. 
 

 

Figure 4: The process of the KORE Application. 

The process of the KORE application is visualized 

in Figure 4. The process steps are described with the 

numbers 1 to 7. It starts with a user request, which 

contains the problem description address, the season 

to optimize and the evaluation criteria (1 in Figure 4). 

The problem description is enriched with information 

stored in the knowledge base and is sent as input to 

the cognitive system (2). First, the system retrieves 

episodes from similar problems to find matching rule-

sets, using case-based reasoning. Rule-sets that 

resulted in episodes with high returns have higher 

probabilities of being selected by the system as 

potential solutions in the future. The cognitive system 

provides options to start rule generation from scratch 

or to vary parameters of existing episodes. The 

generated rule-structure (3) is sent to the building 

simulator (4). It is returned as raw data to an evaluator 
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that adds the evaluations as meta-data (5). The 

episode is stored in the ontology (6). Then, the 

process starts over again or returns to the user if a 

rule-set satisfies the input conditions (2), (7). 

7 IMPLEMENTATION OF KORE 

he cognitive process is to the architecture in Figure 4. 

The main problem is divided into subsystems. They 

are marked with a dark colour in Figure 5. Each 

subsystem is defined as a separate cognitive problem. 

In this paper, one exemplary subsystem will be 

presented to show how a cognitive process is applied 

outside of the standard uses like robots and artificial 

life simulators. 
 

 

Figure 5: Subsystems of the KORE application. 

7.1 Subsystem Request Handling 

When a user request is received by the subsystem 

<Subsystem Request Handling>, the system must 

select among existing episodes. The fulfilment of the 

request by highest evaluated episode is the goal of the 

system. In case the goal is not fulfilled, the second 

best alternative is selected: to generate a new rule-set. 

In Table 1, goals, options and actions of the 

subsystem <Request Handling> are listed. Goals is 

the fulfillment of a request, where <request 

interrupted> is the more important goal. Actions are 

predefined. The options are matched with the actions. 

For each activated episode, an option is generated 

<episode 1..n> that is connected to the action <return 

episode>. In addition, an option is generated to 

generate a new rule-set <new rule-set> with the action 

<generate rule-set>. 

Table 1: Overview of the subsystem Request Handling. 

Goals Options Actions 

request fullfilled episode 1..n return episode 

request 

interrupted 
new rule-set generate rule-set 

 
untested rule-

set 
test rule-set 

 interruption  

 

Generated, untested rule-sets return to the 

<Request Handling> as <untested rule-set> 

connected to the action <test rule-set>. 

7.2 Software Implementation 

In (Wendt and Sauter, 2016), the ACONA framework 

for implementing cognitive architectures in the Java-

based multi-agent platform Jade was presented. On 

the lowest level, Jade agents are located. To allow 

synchronous calls like reading a value from another 

agent while blocking the method, having multiple 

behaviours running in parallel and to get more control 

over the external communication, the ACONA 

framework adds a layer on top of Java Jade.  

ACONA introduces cell functions, which allow 

remote procedure calls for functions in other agents 

and the communication is completely separated from 

the function logic. Each agent also receives a memory 

with the structure of datapoints for Json strings, in 

order to provide a flexible internal representation.  

Processes are implemented as codelet handlers, 

where a codelet handler is an engine, which runs 

codelets. In Figure 2, the setup is shown. The top 

process is a codelet handler, where the processes steps 

of the cognitive process are also codelet handlers. 

Each process step allows customized codelets to be 

executed. With this software setup, a flexible and 

highly customizable cognitive system has been 

designed. 

7.3 Test Results 

A request is provided through a RESTful web service 

to the <Request Handling Subsystem>. A request 

consists of CO2, energy and penalty requirements. 

The system is demonstrated with two requests: 

<Request 1> and <Request 2>. The goal conditions to 

fulfil is an evaluation in the range [0, 1] of CO2, 

energy and penalty, In <Request 1>, all conditions are 

set to 0.9. In <Request 2>, they are 0.5. In Figure 6, 

dashed lines show the request conditions. 

For beliefs, a memory loader is triggered that 

loads only the metadata of episodes, which perfectly 

matches the scenario to be tested. Three episodes 

match the two requests. Their evaluations are shown 
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with filled lines in Figure 6. After option codelets 

have generated one option for each activated episode 

and an additional option to generate a new rule-set, 

evaluation codelets look for goal conditions and the 

evaluations in the episodes and add them to the total 

evaluation of that particular option. Each option has a 

current state and a next state. Action codelets match 

each option with a precondition state and a 

postcondition state and adds a proposed action to the 

matching option. 
 

 

Figure 6: Evaluation of episodes regarding CO2, energy 

and penalty criteria. 

After evaluation, the option with the highest score 

is selected. The results have been visualized in Figure 

7. For <Request 1>, the option <GenerateRule> was 

selected, which means that no loaded episode fulfilled 

the requirements of the request. All evaluations are 

negative because they do not match the requirements. 

Therefore, a new rule-set and episode have to be 

generated. However, an interesting effect occurs if the 

possibility to generate new rules is removed. The 

system always execute the action of the best option 

and in such a case an episode would be returned 

although it does not fulfill the requirement. 

In <Request 2>, the requirements were lowered to 

0.5 each and the option <OptionEpisode2> was 

selected as it had the best rank. The corresponding 

action was to return the rule-set of that episode to the 

user. 
 

 

Figure 7: Evaluation of available options for two requests. 

8 DISCUSSION 

A general cognitive process was extracted based on 

the analysis of common cognitive architectures. It 

should make it easier to apply cognitive architectures 

in industrial applications. The most important task is 

to find the suitable problem, i.e. problems, where a 

system has several competing options to choose from. 

The cognitive architecture has to be very flexible to 

be applied to industrial applications specialized for 

only one task. The more specialized a cognitive 

architecture gets, the harder it is to implement without 

violating the underlying cognitive model. The 

cognitive process was turned into a general cognitive 

architecture that allows more customization as all 

functions are defined as codelets. Codelets enhance 

and modify existing concepts in the working memory 

in a deliberative way. 

The implementation shows that an architecture 

can be quickly setup and extended through codelets. 

Another advantage is that every codelet can be 

separately tested by unit tests, as the system is "open" 

to injections into the working memory and the 

internal state memory. It is easy to integrate new 

actions or option types with low effort. 

A drawback noticed, which is common for all 

rule-based cognitive architectures, is that with 

increasing possibilities, the complexity of the system 

rises because codelets are generally interdependent. 

For instance, if new ways of evaluations are added, 

perhaps it makes the system unbalanced, which 

results in selecting the "wrong" option. 

As future work, the architecture will be adapted 

and applied in the area of Industry 4.0 within the 

project Self-Aware health Monitoring and Bio-

inspired coordination for distributed Automation 

systems (SAMBA). Apart from the decision-making 

module, the architecture includes other two modules 

for error detection and communication with other 

agents for distributed decision-making. The challenge 

here is to adapt the system in a distributed 

environment, therefore to exhibit collective 

behaviour that will be able to pursue the goals of the 

larger system. However, because the cognitive 

process is general enough, the effort for 

transformation in another domain is expected to be 

kept low. 

As the common cognitive cycle can be extracted 

from the studied cognitive architectures, a perfect 

validation would be to implement an existing 

cognitive architecture with all specialized functions. 

Besides, of the cognitive process, the key to 

implementing an architecture would be to create the 

proper state machine, which is correctly represented 
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within the internal state memory. SiMA, which has 

much specialized cognitive functionality would be 

suitable for such a test. 
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