
Usage of Cognitive Architectures in the Development of Industrial

Applications
Utilization of a General Cognitive Process in the Domain Building Automation

Alexander Wendt1, Stefan Kollmann1, Lydia Siafara1 and Yevgen Biletskiy2
1Institute of Computer Technology, TU Vienna, Vienna, Austria

2Department of Electrical and Computer Engineering, University of New Brunswick, New Brunswick, Canada

Keywords: Cognitive Architecture, AI, Building Automation, Decision-making, KORE, Industrial Application, ACONA,

Control Strategy.

Abstract: Cognitive architectures, which originate from the field of Artificial Intelligence, implement models for

problem-solving and decision-making. These architectures have a wide room for implementation in industrial

applications. The goal is to adapt a cognitive architecture to the demands of an application in the area of

building automation. It is analyzed, why cognitive architectures are difficult to apply in industrial domain.

The result of the analysis is a cognitive process, which is applied to an application in the building automation

domain. The use of the architectures is demonstrated within a Java-based based middleware. There, the

cognitive architecture is applied for the automatic generation and improvement of control strategies in

building automation, which have the goal to minimize energy consumption with minimal reduction of the

comfort.

1 INTRODUCTION

Cognitive architectures provide a general framework

for developing computational decision-making

applications and are often, but not necessarily, based

on theories of the human mind (Langley et al., 2009).

Autonomous decision-making ability is demanded in

the context of the growing complexity of industrial

applications. Therefore, they have a potential to

contribute to such applications. Unfortunately, up to

now, the few examples of industrial applications.

(Kotseruba et al., 2016) raise the question whether

cognitive architectures are suitable to apply for

software development besides of experiments. This

problem is addressed by proposing an approach to

enhance the systematic application of cognitive

architectures in the field of industrial systems.

As a method, we initially review well-known

examples of cognitive architectures and discuss their

functionality and usage in industrial applications.

Then, we specify the types of software applications

where cognitive architectures fit into and identify

problems that may emerge during the adaptation of

the architectures to a certain application. Based on

this analysis, we propose in the last part of the paper

our solution that consists of a cognitive process,

which is common for all studied architectures. The

process is implemented as an architecture. Finally, the

functionality of the architecture is demonstrated

within the project KORE (Cognitive Optimization of

Control Strategies for Increasing Energy-efficiency

in Buildings) (Zucker et al., 2016). KORE is applied

in the domain of building automation, which has the

purpose to optimize energy consumption under the

constraints of comfort.

2 EXISTING APPLICATIONS OF

COGNITIVE ARCHITECTURES

Cognition, according to Vernon et al., “can be viewed

as the process by which the system achieves robust,

adaptive, anticipatory, autonomous behaviour,

entailing perception and action” (Vernon et al., 2007).

It implies that the cognitive system is able not only to

understand the current situation but also to function

efficiently in situations for which it was not intended.

Among cognitive architectures, SOAR (State

Operator and Result) (Langley et al., 2009) and LIDA

(Learning Intelligent Distribution Agent)

Wendt, A., Kollmann, S., Siafara, L. and Biletskiy, Y.
Usage of Cognitive Architectures in the Development of Industrial Applications - Utilization of a General Cognitive Process in the Domain Building Automation.
DOI: 10.5220/0006679806410648
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 2, pages 641-648
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

641

(Ramamurthy et al., 2006) are prominent examples

with different origins. While SOAR origins from the

domain of logical problem solvers in classical

artificial intelligence, LIDA tries to model the human

mind and origins from neurological theories. Each

cognitive architecture has its advantages and

drawbacks.

SOAR is a general-purpose architecture that

implements cognitive functionality and defines

system behaviours by rules. LIDA is a cognitive

architecture that aims to model the human mind. It

provides a framework for cognitive architectures,

where modules can be arbitrary created and linked.

LIDA uses a partly bottom-up approach, where

activated content or ideas of what to do are competing

for attention. The winning content receives the

attention and gets its action developed and executed.

The cognitive architecture ICARUS (Langley et al.,

2011) origins from the area of autonomous robots. It

differs from SOAR as it uses several different

memories to store skills, concepts and beliefs.

The cognitive architecture BDI (Belief, Desire,

Intention) (Gottifredi et al., 2008) adds the

component of a desire to cognitive architectures,

where desires represent the goals of the system. SiMA

(Simulation of the Mental Apparatus & Applications)

(Schaat et al., 2017) extends the desires further into

drives, emotions and feelings, which are used as

evaluation mechanisms of different options of the

system. Multi-agent solutions have gained attention

within the community due to their ability to scale and

allow partitioned development. An approach is the

ACNF Cognitive Framework (Crowder et al., 2014).

SOAR and BDI (Gottifredi et al., 2008) have been

applied as the decision-making in robots. ICARUS

(Choi et al., 2009), BDI (Dignum et al., 2009), LIDA

(Sandsmark and Viktil, 2012) and SiMA (Schaat et

al., 2017) have been applied to games or simulations

of virtual human-like actors. The agent TAC-Air-

Soar (Heinze et al., 1999) shows the potential of

cognitive architectures as virtual pilots in the

modelling of fighter pilots in air combat scenarios.

Since the theory of cognitive architectures often

origins from psychology, some of them are used to

mimic human behaviour in psychological

experiments (Anderson et al., 2004), (Wendt et al.,

2015), (Gobet and Lane, 2010). In addition, there

exist real-world applications, where the predecessor

of LIDA has been deployed. In the US Navy, it

manages jobs for sailors, where the task is to offer

jobs for sailors depending on the sailor’s preferences,

the Navy’s policies, the needs of the tasks and the

urgency (Franklin and Patterson Jr, 2006).

3 ANALYSIS OF APPLICATIONS

Cognitive architectures tend to be more suitable for

particular application classes. The criteria for such

applications are analyzed in the following.

3.1 Suitable Applications

As the human mind is claimed to be the most complex

biological system that we know about, it would be

expected that the same decision process would benefit

industrial applications that are applied in complex

environments (Dietrich and Zucker, 2008). These

applications do not have access to all information

about their environments and have to make decisions

based on judgment instead of deterministic inputs.

Current applications can be categorized into two

main groups: controllers for physical robots and

virtual human in simulations. The domains are close

to the area of the human mind. An application that

differs from the others is the LIDA sailor application.

Their common denominator is that they have to select

one action out of several possible, comparable and

competing actions, to fulfil certain goals. Due to the

risk of applying a massive overhead, applications that

operate only with complicated problems, where the

environment is completely known are therefore not

appropriate.

Because decisions in these applications are based

on judgment and not on determinism, the evaluation

of options plays a major role. The program logic

together with stored data determines how to evaluate

option. Compared to a straightforward coded

program, a cognitive architecture has the advantage

that a lot of necessary program logic is transferred

from the code into knowledge. Due to the provided

infrastructure, it can be claimed that if a cognitive

architecture is used in a certain complexity of an

environment, the implementation should be possible

with less effort than using a direct implementation of

a state machine.

The claim can be understood in the following

context: Suppose that a game like Pacman is

developed. The goal is for a player to eat food and

avoid the ghosts. In the simplest case, decision-

making consists of some rules that define the

behaviour for each situation. The more inputs are

available, the more rules have to be written. At the

point of competing options, the code gets messy.

Evaluation of each option regarding some criteria is

necessary. Here, a cognitive architecture makes

sense. If such a system is extended, only to the way

options are created and evaluated has to be addressed.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

642

3.2 Problems with Common Cognitive
Architectures

Although cognitive architectures seem to be very

useful, most of them have never left the laboratory

(Kotseruba et al., 2016). The importance of extracting

the correct problem is given through an example in

the project VKT GOEPL (Wendt et al., 2012). The

purpose was to develop a decision support system for

the collaboration between agencies to protect critical

infrastructure in case of an earthquake. It should

answer queries like "how many hospital beds are

available within 10 km radius from the epicentre?" A

cognitive architecture only make sense, if there are

several competing methods to answer the question.

Another problem is that although cognitive

architectures claim to be very general, they tend to be

highly tailored to a certain problem. As an industrial

application is often very specific, the cognitive

architecture must not be too specialized, in order to

cover the required functionality. For instance, SiMA

models the human mind with high detail according to

a model derived from psychoanalysis. Compared to a

generic architecture like SOAR, SiMA contains much

pre-programmed functionality. In the project ECABA

(Zucker et al., 2016), the idea was to apply SiMA with

minimal changes to a problem in automated building

control. The SiMA model assumes that a drive is

independent. Because the proposed drives of the

building controller are interdependent, a workaround

with bad benefit/cost ratio had to be used.

SOAR and BDI use a minimal cognitive cycle. If

an industrial application has a need for an attentional

functionality, which filters relevant from non-

relevant content like in SiMA or LIDA, it may not be

possible to use these architectures because an

attentional mechanism is not a part of their concepts.

Perhaps, it is possible to implement this functionality

with high effort. General-purpose architectures,

which are more general problem solvers often lack

the flexibility needed for a certain application.

4 THE COGNITIVE PROCESS

To be able to use the potential of cognitive systems in

industrial applications, the shortcomings described

previously have to be addressed. The method

proposed in this paper is to create a meta-architecture

that consists of a common cognitive process, which

executes customized functions. According to (Wendt,

2016), a general cognitive process can be extracted

and common cognitive architectures can be mapped

Figure 1: The cognitive process.

to it. In this paper, the idea is to use a modified version

of that process.

Figure 1 shows an overview. The cognitive

process describes one cognitive cycle, i.e. the path

from input to an action. In the following, each step is

described:

The first step is to "perceive" the input data (A:

Read system input), which can be a user request in an

application. It corresponds to the neural layer in

SiMA that contains raw data. Sensor data is

transformed into the internal representation (B:

Activate Concepts from Input). A knowledge base is

used to classify the data and to load the matching

symbol. No additional reasoning is performed. It

corresponds to the Perceptual Associative Memory of

LIDA or the Perceptual Buffer in ICARUS.

Then, the activated symbols are enhanced with

inferred knowledge. System goals (C: Create System

Goals) are activated by the sensor content if they are

not predefined. In addition, inferred knowledge about

the environment is activated (D: Activate Option

Related Content). Belief templates are tested and

beliefs are instantiated in a working memory. Implicit

knowledge is made explicit. In SiMA, the system

goals are drives, which rely on sensor data from its

body. In BDI, desires are tested against the beliefs

that originated from the sensor data (steps C and D

are swapped).

Based on the beliefs and the goals, ways of

fulfilling the system goals are proposed (E: Propose

options). These options define what the system is able

to do. They may contain possible actions that the

system can execute. In some applications, this step

may be optional if the options are equal to the actions

(F: Propose Action for each Option). Options can

also be interpreted as directives that can be fulfilled

by actions. In SOAR, operators and in BDI, intentions

are proposed. In LIDA, the options are presented

through coalitions of attention codelets with the

beliefs. All cognitive architectures have some means

to evaluate the proposed options, in order to rank

them (G: Evaluate Options). There are two sorts of

evaluations: Degree of goal fulfilment and the effort.

In SiMA, a rich set of evaluation methods is used.

Options are evaluated against the drives, the feelings

Usage of Cognitive Architectures in the Development of Industrial Applications - Utilization of a General Cognitive Process in the Domain
Building Automation

643

and the effort. Other methods used by e.g. SOAR is

the usage of preferences for certain operators like

"operator1 is better than operator2".

Through evaluation, options receive a score. One

option is selected based on its score (H: Select Option

with Highest Score). In the architectures SiMA and

LIDA, a second cognitive process would start to

develop a plan for each option. An action that is

associated with the option is executed (I: Execute

Action). It can be an action that alters the state of the

environment or an action that alters the internal state

of the system itself. In SOAR, that is what the

operators are doing. They only alter the internal state

of the working memory. An external action is

transformed into actuator commands, in order to

make a change in the system environment (J: Execute

Actuator Command).

Architectures like SOAR and BDI execute the

described process once, while due to an attentional

mechanism SiMA and LIDA executes it twice. The

winning option is further developed into detailed

plans.

5 TRANSFORMATION INTO A

COGNITIVE ARCHITECTURE

In case of a reactive system, the cognitive process can

be implemented straightforward. In the general case,

however, a deliberative system is applied, which

needs multiple cognitive cycles to decide about an

action. Figure 2 shows the architecture.

In most cognitive architectures, the execution of

actions is sequential. While an external action is an

action that alters the state of the environment, an

internal action only alters the internal state. For

instance, if data is loaded from a long-term memory,

it does only change the internal state. It may be

necessary to execute multiple internal actions before

an external action is executed. The key to handle this

is to keep track of the system's own decisions in a

working memory to know what has already been done

in a sequence of actions.

The system needs functions. In LIDA, the concept

of codelets was introduced. A codelet is a small piece

of code that executes independently on the content of

the working memory, e.g. to test sensor data and

activate an internal representation in the Perceptual

Associative Memory. Inspired by LIDA, codelets will

be implemented as the functions of the system. They

wait for a trigger to start. All codelets are assigned a

process step in Figure 1. The idea is that instead of

having fixed functions in the architecture, every

function is a codelet that can be added or removed, in

order to allow complete customization of the

cognitive process.

Every architecture needs memories. The long-

term memory can be in any format, e.g. an ontology

or a relational database, depending on the purpose of

the system. Through the codelets, its content is loaded

and converted into the internal representation. The

internal representation is defined in two memories:

the working memory and the internal state memory.

In the working memory, all content, which is relevant

for the current situation is stored, similar to SOAR. It

keeps actual instances of input data, data from the

long-term memory and data, which is generated

through codelets. In the internal state memory, only

decision-making relevant data like goals and options

is kept. It makes sense to separate the memories as

one of them only handles meta-data, which is linked

to the real data.

Figure 2: The general cognitive architecture that implements the cognitive process.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

644

6 THE APPLICATION KORE

Building Energy Management Systems (BEMS)

monitor and control the operation of the building

systems to maintain acceptable indoor comfort levels

under the constraint of energy efficiency. For the

control of these systems, automated decisions are

made using a control logic, which consists of a set of

rules defined by an expert. These rules are static or

updated during a re-commissioning phase. To reduce

the engineering effort, the focus in the project KORE

(Cognitive Optimization of Control Strategies for

Increasing Energy-efficiency in Buildings) (Zucker et

al., 2016) is to automatically generate and propose

rule-sets to the building operator.

A rule-set is defined as a parameterized set of

interconnected control blocks like the example in

Figure 3. A control block is function of the building,

e.g. an actuator for a heating element or a CO2 sensor.

Defined control blocks are instantiated in Matlab

Simulink. A Simulink model is then used to simulate

the rule-sets within a virtual building and get

feedback on how well they performed.

The task of the KORE application is to

automatically generate rule-sets, test them, evaluate

them and decide about the best method to continue

the optimization process. The system consists of three

components: A cognitive system for rule-set

generation, a simulator to test the generated rule-sets

and an ontology to store test results as well as

building information. The ontology is the long-term

memory of the cognitive system. An algorithm inside

of the cognitive system does the rule-set generation.

It arranges predefined control blocks corresponding

to a problem definition, which are later

parameterized.

Figure 3: Example of a rule structure in KORE.

There are three parts of information used. The

problem definition consists of the building structure,

the environmental setup, e.g., the season of the year

to be tested, and user requirements regarding comfort

and energy. The problem definition is stored in an

ontology, which has been created by domain experts.

The available utilities include a collection of

available control blocks and semantic knowledge.

The solution space consists of rules, generated by

interconnecting and parameterizing the available

control blocks. A further concept used is the episode.

It is the evaluation of a particular generated and tested

rule structure and parameters. Each episode is

evaluated regarding the fulfilment of the system

goals, i.e., energy efficiency, comfort and penalty that

describes the fulfilment of external rules applied to

the system.

Figure 4: The process of the KORE Application.

The process of the KORE application is visualized

in Figure 4. The process steps are described with the

numbers 1 to 7. It starts with a user request, which

contains the problem description address, the season

to optimize and the evaluation criteria (1 in Figure 4).

The problem description is enriched with information

stored in the knowledge base and is sent as input to

the cognitive system (2). First, the system retrieves

episodes from similar problems to find matching rule-

sets, using case-based reasoning. Rule-sets that

resulted in episodes with high returns have higher

probabilities of being selected by the system as

potential solutions in the future. The cognitive system

provides options to start rule generation from scratch

or to vary parameters of existing episodes. The

generated rule-structure (3) is sent to the building

simulator (4). It is returned as raw data to an evaluator

Usage of Cognitive Architectures in the Development of Industrial Applications - Utilization of a General Cognitive Process in the Domain
Building Automation

645

that adds the evaluations as meta-data (5). The

episode is stored in the ontology (6). Then, the

process starts over again or returns to the user if a

rule-set satisfies the input conditions (2), (7).

7 IMPLEMENTATION OF KORE

he cognitive process is to the architecture in Figure 4.

The main problem is divided into subsystems. They

are marked with a dark colour in Figure 5. Each

subsystem is defined as a separate cognitive problem.

In this paper, one exemplary subsystem will be

presented to show how a cognitive process is applied

outside of the standard uses like robots and artificial

life simulators.

Figure 5: Subsystems of the KORE application.

7.1 Subsystem Request Handling

When a user request is received by the subsystem

<Subsystem Request Handling>, the system must

select among existing episodes. The fulfilment of the

request by highest evaluated episode is the goal of the

system. In case the goal is not fulfilled, the second

best alternative is selected: to generate a new rule-set.

In Table 1, goals, options and actions of the

subsystem <Request Handling> are listed. Goals is

the fulfillment of a request, where <request

interrupted> is the more important goal. Actions are

predefined. The options are matched with the actions.

For each activated episode, an option is generated

<episode 1..n> that is connected to the action <return

episode>. In addition, an option is generated to

generate a new rule-set <new rule-set> with the action

<generate rule-set>.

Table 1: Overview of the subsystem Request Handling.

Goals Options Actions

request fullfilled episode 1..n return episode

request

interrupted
new rule-set generate rule-set

untested rule-

set
test rule-set

 interruption

Generated, untested rule-sets return to the

<Request Handling> as <untested rule-set>

connected to the action <test rule-set>.

7.2 Software Implementation

In (Wendt and Sauter, 2016), the ACONA framework

for implementing cognitive architectures in the Java-

based multi-agent platform Jade was presented. On

the lowest level, Jade agents are located. To allow

synchronous calls like reading a value from another

agent while blocking the method, having multiple

behaviours running in parallel and to get more control

over the external communication, the ACONA

framework adds a layer on top of Java Jade.

ACONA introduces cell functions, which allow

remote procedure calls for functions in other agents

and the communication is completely separated from

the function logic. Each agent also receives a memory

with the structure of datapoints for Json strings, in

order to provide a flexible internal representation.

Processes are implemented as codelet handlers,

where a codelet handler is an engine, which runs

codelets. In Figure 2, the setup is shown. The top

process is a codelet handler, where the processes steps

of the cognitive process are also codelet handlers.

Each process step allows customized codelets to be

executed. With this software setup, a flexible and

highly customizable cognitive system has been

designed.

7.3 Test Results

A request is provided through a RESTful web service

to the <Request Handling Subsystem>. A request

consists of CO2, energy and penalty requirements.

The system is demonstrated with two requests:

<Request 1> and <Request 2>. The goal conditions to

fulfil is an evaluation in the range [0, 1] of CO2,

energy and penalty, In <Request 1>, all conditions are

set to 0.9. In <Request 2>, they are 0.5. In Figure 6,

dashed lines show the request conditions.

For beliefs, a memory loader is triggered that

loads only the metadata of episodes, which perfectly

matches the scenario to be tested. Three episodes

match the two requests. Their evaluations are shown

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

646

with filled lines in Figure 6. After option codelets

have generated one option for each activated episode

and an additional option to generate a new rule-set,

evaluation codelets look for goal conditions and the

evaluations in the episodes and add them to the total

evaluation of that particular option. Each option has a

current state and a next state. Action codelets match

each option with a precondition state and a

postcondition state and adds a proposed action to the

matching option.

Figure 6: Evaluation of episodes regarding CO2, energy

and penalty criteria.

After evaluation, the option with the highest score

is selected. The results have been visualized in Figure

7. For <Request 1>, the option <GenerateRule> was

selected, which means that no loaded episode fulfilled

the requirements of the request. All evaluations are

negative because they do not match the requirements.

Therefore, a new rule-set and episode have to be

generated. However, an interesting effect occurs if the

possibility to generate new rules is removed. The

system always execute the action of the best option

and in such a case an episode would be returned

although it does not fulfill the requirement.

In <Request 2>, the requirements were lowered to

0.5 each and the option <OptionEpisode2> was

selected as it had the best rank. The corresponding

action was to return the rule-set of that episode to the

user.

Figure 7: Evaluation of available options for two requests.

8 DISCUSSION

A general cognitive process was extracted based on

the analysis of common cognitive architectures. It

should make it easier to apply cognitive architectures

in industrial applications. The most important task is

to find the suitable problem, i.e. problems, where a

system has several competing options to choose from.

The cognitive architecture has to be very flexible to

be applied to industrial applications specialized for

only one task. The more specialized a cognitive

architecture gets, the harder it is to implement without

violating the underlying cognitive model. The

cognitive process was turned into a general cognitive

architecture that allows more customization as all

functions are defined as codelets. Codelets enhance

and modify existing concepts in the working memory

in a deliberative way.

The implementation shows that an architecture

can be quickly setup and extended through codelets.

Another advantage is that every codelet can be

separately tested by unit tests, as the system is "open"

to injections into the working memory and the

internal state memory. It is easy to integrate new

actions or option types with low effort.

A drawback noticed, which is common for all

rule-based cognitive architectures, is that with

increasing possibilities, the complexity of the system

rises because codelets are generally interdependent.

For instance, if new ways of evaluations are added,

perhaps it makes the system unbalanced, which

results in selecting the "wrong" option.

As future work, the architecture will be adapted

and applied in the area of Industry 4.0 within the

project Self-Aware health Monitoring and Bio-

inspired coordination for distributed Automation

systems (SAMBA). Apart from the decision-making

module, the architecture includes other two modules

for error detection and communication with other

agents for distributed decision-making. The challenge

here is to adapt the system in a distributed

environment, therefore to exhibit collective

behaviour that will be able to pursue the goals of the

larger system. However, because the cognitive

process is general enough, the effort for

transformation in another domain is expected to be

kept low.

As the common cognitive cycle can be extracted

from the studied cognitive architectures, a perfect

validation would be to implement an existing

cognitive architecture with all specialized functions.

Besides, of the cognitive process, the key to

implementing an architecture would be to create the

proper state machine, which is correctly represented

0

0,2

0,4

0,6

0,8

1
Co2

EP

Episode Evaluation

Epsiode1 Episode2

Episode3 Request 2

Request 1

1,075

1,8

0,35

1

0 0,5 1 1,5 2

1

Option Evaluation Request 2

GenerateRule OptionEpisode3

OptionEpisode2 OptionEpisode1

-0,025

-0,03

-0,75

1

-1 -0,5 0 0,5 1 1,5

1

Option Evaluation Request 1

GenerateRule OptionEpisode3

OptionEpisode2 OptionEpisode1

Usage of Cognitive Architectures in the Development of Industrial Applications - Utilization of a General Cognitive Process in the Domain
Building Automation

647

within the internal state memory. SiMA, which has

much specialized cognitive functionality would be

suitable for such a test.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support

provided to us by the BMVIT and FFG (Austrian

Research Promotion Agency) under the KORE

project (848805).

REFERENCES

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,

Lebiere, C., Qin, Y., 2004. An integrated theory of the

mind. Psychol. Rev. 111, 1036.

Choi, D., Kang, Y., Lim, H., You, B.-J., 2009. Knowledge-

based control of a humanoid robot, in: Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ

International Conference On. IEEE, pp. 3949–3954.

Crowder, J.A., Carbone, J.N., Friess, S.A., 2014. Artificial

cognition architectures. Springer.

Dietrich, D., Zucker, G., 2008. New approach for

controlling complex processes. An introduction to the 5

th generation of AI, in: Human System Interactions,

2008 Conference On. IEEE, pp. 12–17.

Dignum, F., Westra, J., van Doesburg, W.A., Harbers, M.,

2009. Games and agents: Designing intelligent

gameplay. Int. J. Comput. Games Technol. 2009.

Franklin, S., Patterson Jr, F., 2006. The LIDA architecture:

Adding new modes of learning to an intelligent,

autonomous, software agent. pat 703, 764–1004.

Gobet, F., Lane, P.C., 2010. The CHREST architecture of

cognition: The role of perception in general

intelligence, in: Procs 3rd Conf on Artificial General

Intelligence. Atlantis Press.

Gottifredi, S., Tucat, M., Corbatta, D., García, A.J., Simari,

G.R., 2008. A BDI architecture for high level robot

deliberation, in: XIV Congreso Argentino de Ciencias

de La Computación.

Heinze, C., Goss, S., Pearce, A., 1999. Plan recognition in

military simulation: Incorporating machine learning

with intelligent agents, in: Proceedings of IJCAI-99

Workshop on Team Behaviour and Plan Recognition.

pp. 53–64.

Kotseruba, I., Gonzalez, O.J.A., Tsotsos, J.K., 2016. A

Review of 40 Years of Cognitive Architecture

Research: Focus on Perception, Attention, Learning

and Applications. ArXiv Prepr. ArXiv161008602.

Langley, P., Choi, D., Trivedi, N., 2011. Icarus user’s

manual. Inst. Study Learn. Expert. 2164.

Langley, P., Laird, J.E., Rogers, S., 2009. Cognitive

architectures: Research issues and challenges. Cogn.

Syst. Res. 10, 141–160.

Ramamurthy, U., Baars, B.J., SK, D., Franklin, S., 2006.

Lida: A working model of cognition.

Sandsmark, M.T.H., Viktil, K.B.M., 2012. Jantu: A

Cognitive Agent Playing StarCraft: Brood War.

Institutt for datateknikk og informasjonsvitenskap.

Schaat, S., Jager, W., Dickert, S., 2017. Psychologically

Plausible Models in Agent-Based Simulations of

Sustainable Behavior, in: Agent-Based Modeling of

Sustainable Behaviors. Springer, pp. 1–25.

Vernon, D., Metta, G., Sandini, G., 2007. A survey of

artificial cognitive systems: Implications for the

autonomous development of mental capabilities in

computational agents. IEEE Trans. Evol. Comput. 11,

151–180.

Wendt, A., 2016. Experience-Based Decision-Making in a

Cognitive Architecture. TU Vienna, TU Vienna

University Library.

Wendt, A., Dönz, B., Mantler, S., Bruckner, D., 2012.

Evaluation of Database Technologies for Usage in

Dynamic Data Models. pp. 219–224.

Wendt, A., Gelbard, F., Fittner, M., Schaat, S., Jakubec, M.,

Brandstätter, C., Kollmann, S., 2015. Decision-making

in the cognitive architecture SiMA, in: Technologies

and Applications of Artificial Intelligence (TAAI), 2015

Conference On. IEEE, pp. 330–335.

Wendt, A., Sauter, T., 2016. Agent-Based cognitive

architecture framework implementation of complex

systems within a multi-agent framework, in: Emerging

Technologies and Factory Automation (ETFA), 2016

IEEE 21st International Conference On. IEEE, pp. 1–

4.

Zucker, G., Wendt, A., Siafara, L., Schaat, S., 2016. A

cognitive architecture for building automation, in:

Industrial Electronics Society, IECON 2016-42nd

Annual Conference of the IEEE. IEEE, pp. 6919–6924.

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

648

