
A New Approach to Visualise Accessibility Problems of Mobile Apps in
Source Code

Johannes Feiner1, Elmar Krainz1,2 and Keith Andrews3

1Institute of Internet Technologies & Applications, FH-JOANNEUM, Werk-VI-Straße 46b, 8605 Kapfenberg, Austria
2IIS, Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria

3 Institute of Interactive Systems and Data Science, Graz University of Technology, Inffeldgasse 16c, 8010 Graz, Austria

Keywords: Accessibility, Code Visualisation, Usability.

Abstract: A wide range of software development is moving to the direction and domain of mobile applications. Single
developer or small teams create apps for smartphones. Too often, they have not the capacity or know-how to
check for usability problems and do not care for accessibility. We propose a novel workflow to bring usability
issues into the development process: A quick accessibility evaluation (QAC) with 15 predefined metrics allow
to collect issues. These issues are further condensed into formalised (UsabML) and the issues are tagged with
the location in the source code. A dashboard view (RepoVis) showing the source code from a repository allows
to spot and interactively inspect code and related issues simultaneously.

1 INTRODUCTION

The aim of software engineers is to create high qua-
lity software products including readable, structured
source code and error free programs. From the user’s
perspective, the most important component is the per-
ceivable part – the user interface (UI).

The quality of the user interface is defined by usa-
bility attributes, like effectiveness, efficiency and sa-
tisfaction (ISO, 2000). But, many people cannot even
experience good or bad usability, in cases where the
software is not accessible at all.

1.1 Problem

The UN Convention on the Rights of Persons with Di-
sabilities (CRPD) (The United Nations, 2006) reveals
that about 760 million people, i.e. 10% of the world
population, are handicapped. Therefore, accessibility
(A11Y) is a significant issue on software user inter-
faces. The ISO Standard 9241-171:2008 (ISO, 2008)
defines accessibility as: interactive system usability of
a product, service, environment or facility by people
with the widest range of capabilities. This means the
ability for anyone to understand and operate a soft-
ware product.

Usability and accessibility are not built-in featu-
res. They require awareness of developers. To im-

prove usability and accessibility three steps are nee-
ded in the development process:

1. Finding errors in the user interface

2. Mapping error to code

3. Improving the code

1.2 Approach

The paper at hand shows a novel approach to combine
accessibility evaluation and reporting with the visua-
lisation of reported bugs along with the source code.
Following the recommendation for good research in
Software Engineering (Shaw, 2002) we set up the fol-
lowing research questions:

• RQ1 Which methods would help software develo-
pers to evaluate accessibility of mobile apps in a
quick and structured way?

• RQ2 How to visually present accessibility issues
of mobile android apps along with corresponding
source code?

To answers this questions we proceeded in follo-
wing way: Fist we analysed the cyclic work flows of
mobile application developers when they are impro-
ving apps; how do they extract relevant aspects from
usability reports. Then we condensed this informa-
tion gathering flow into a new workflow, which can

Feiner, J., Krainz, E. and Andrews, K.
A New Approach to Visualise Accessibility Problems of Mobile Apps in Source Code.
DOI: 10.5220/0006704405190526
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 519-526
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

519

better support improvements concerning accessibility.
Finally, some tools for software engineers were ad-
ded (compare Sections 3.1 Quick Accessibility Check
QAC, 3.2 Usability Markup Lanaguage UsabML and
Repository Visualisation 3.3 RepoVis) to enhance the
overall efficiency. The tools support comprehension
of existing A11Y problems and guide during the im-
plementation of usability improvements.

Our efforts resulted in an heuristic approach to
evaluate app accessibility with the newly designed
tool QAC. This includes several thoughtfully selected
predefined evaluation criteria and partial support by
existing tools. The reports are processed into a struc-
tured reporting format, compare previous research on
UsabML (Feiner et al., 2010), and the usability pro-
blems found are linked to code locations. Further-
more, the developers can take advantage of the new
tool RepoVis implemented by the authors to view
source code and accessibility issues side-by-side.

To validate the novel workflow of detecting acces-
sibility issues (RQ1) and reporting them back to de-
velopers in a visual way (RQ2) for fixing the flaws
we performed an experiment with two selected mo-
bile apps from the Google Play store.

1.3 Hypothesis

The main hypothesis we build upon is that an alter-
native – above all simpler – approach would improve
awareness and software quality in terms of accessibi-
lity. The main aspects of our new approach can be
summarised as follows:

• For quick, nevertheless useful results, a UX team
is not used in any case. Small developer teams or
single developers can perform a quick accessibi-
lity check (QAC) on their own.

• The integration of two domains, namely usability
and software engineering is relevant. This way
it is possible to connect user experience (UX),
accessibility (A11Y) and source code which rai-
ses acceptance of the workflows and tools enga-
ged.

• A dashboard overview supports faster comprehen-
sion of source code and related usability evalua-
tion results. Combined views are helpful, because
there is no need for retrieving information from
different tools and data-sources manually.

The remainder of this paper is structured in the follo-
wing way. In Section 2 alternative approaches are lis-
ted, in Section 3 the suggested workflow is described
in detail and in Section 4 the performed evaluations
of two Android apps from the Google Play store are
presented.

2 RELATED WORK

Accessibility is an important factor to provide servi-
ces and information to the vast majority of people.
For example the European Union enacted in 2016 the
directive 2016/2102 which ..aims to ensure that the
websites and mobile applications of public sector bo-
dies are made more accessible on the basis of com-
mon accessibility requirements... (European Union,
2016).

The definitions and the principles defined in the
accessibility standards provide the basis of accessi-
ble user interfaces. The Web Accessibility Initia-
tive (WAI) offers guidelines for developers about pro-
per implementation of websites and mobile appli-
cations. The Web Content Accessibility Guidelines
(WCAG 2.0) constitute a common standard, which
provides generic principles for accessible develop-
ment. WCAG 2.0 outlines four principles of acces-
sibility:

1. Perceivable: Information and user interface com-
ponents must be presentable to users in ways they
can perceive. For example one might provide an
alternative text to an image.

2. Operable: User interface components and naviga-
tion must be operable, which means, for example,
not limited to mouse usage.

3. Understandable: Information and the operation of
user interface must be understandable in terms of
readability or predictability of navigation.

4. Robustness: Content must be robust enough that
it can be interpreted reliably by a wide variety of
user agents, including assistive technologies.

Mobile operating systems like iOS and Android
have their own platform guidelines for developers.
Compare the design guidelines for Android (Google,
2017) and for iOS (Apple, 2012). They follow the
WAI principles and have many aspects in common,
but also some varieties in the implementation for the
platforms assistive technologies.

Other relevant rulesets are the Accessible Tool
Authoring Tool ATAG 2.0 (Treviranus et al.,
2015) and the User Agent Accessibility Guidelines
UAAG 2.0 (Patch et al., 2015a). The ATAG 2.0 pro-
vide guidance to make the software and services for
web content creation accessible. The accessibility of
browsers, media players and the interface to assistive
technologies is recommended by the UAAG 2.0. All
these guidelines are the foundation for development
and for the assessment of accessibility.

The evaluation can be done either with user tes-
ting or in a more formal way with experts using those
guidelines. The expert evaluation method is related to

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

520

the Heuristic Evaluation (Nielsen and Molich, 1990),
but contrary to the intuitive usability heuristics, using
the accessibility guidelines needs more background
know-how and much more efforts even for experts.

Inspired by the idea of Guerrilla HCI (Nielsen,
1994) to simplify the usability engineering process
and the WAI – Easy Checks (Henry, 2013), a method
for a first accessibility review, this paper proposes a
quick method to get an overview of the most signi-
ficant accessibility problems of a mobile application
(see Section 3).

The data acquisition during usability testing hap-
pens sometimes on paper (Vilbergsdóttir et al., 2006)
according given schemes and sometimes with sup-
port of various electronic tools (Hvannberg et al.,
2007; Andrews, 2008). The collected raw data is
further condensed into a written report. Compa-
rability (Molich et al., 2010) of evaluation results,
as well as reusability of reported data, is still un-
der research (Cheng, 2016). In most cases the re-
sults of usability evaluations are available to mana-
gers and software developers in printed formats or
as unstructured electronic documents such as PDF.
Other researchers suggest a standard method (ISO,
2006; Komiyama, 2008) for reporting usability test
findings. UsabML (Feiner et al., 2010; Feiner and
Andrews, 2012) introduces an XML structured appro-
ach to work with evaluation results. Through formali-
sation it is possible to programmatically process col-
lected data. For example, issues might be pushed into
bug tracking systems automatically.

A well-designed feedback loop is vital in modern
user centred design (UCD) to enable developers to re-
act on the results of an review. Usability defect repor-
ting should address the needs of developers (Yusop
et al., 2016).

Software engineers prefer the evaluation results
presented within their existing toolchains. That me-
ans, the acceptance of usability suggestions is better
when, for example, an accessibility issue is presen-
ted as bug in a bug tracker or with tools combining
and linking the different sources of code and evalua-
tion data. To fix bugs, code comprehension is vital.
For code comprehension (Hawes et al., 2015) of lar-
ger software systems various mappings could be used.
Novel approaches, such as statistical language mo-
dels (Murphy, 2016) should improve software com-
prehension furthermore. Among many different ways
for graphical representation, the SeeSoft (Eick et al.,
1992) software visualisation is special in displaying
all files at the same time by mapping the lines of
source code to coloured pixels according to selected
software metrics. Based on the SeeSoft idea, the aut-
hors introduce RepoVis, which tries to visualise the

Qac a11y check

Formalising to UsabML

RepoVis dashboard

Source
Code

Mobile App

Figure 1: The novel workflow of A11Y inspection, forma-
lising the results and combined issue code visualisation.

issues side-by-side to source code as discussed later
in the paper in Section 3.

3 A NOVEL WORKFLOW

The questions of effective usability evaluation and re-
porting of mobile smartphone apps is addressed by
the design of a novel workflow. This should ena-
ble developers of small development teams – in cases
where no usability evaluation experts are available –
to create software which takes accessibility into ac-
count.

The workflow is depicted in Figure 1. It explains
the stages from checking accessibility of an app up to
presenting results to developers.

3.1 Quick Accessibility Check - QAC

To integrate accessibility evaluation in the develop-
ment process one needs a method which is (a) appli-
cable to developers and testers without the deep back-
ground knowledge of usability and accessibility eva-
luation and (b) provides measurable result to rate and
compare the improvements in the user interface.

The quick accessibility check (QAC) uses 15 cri-
teria in 3 sections to measure and compare the acces-
sibility of an user interface. These heuristics are ba-
sed/are an intersection of the Material Accessibility
Design Guidelines (Google, 2017), the Web Content
Accessibility Guidelines (Caldwell et al., 2008) as the
most significant standard for accessibility evaluation

A New Approach to Visualise Accessibility Problems of Mobile Apps in Source Code

521

Table 1: Quick Accessibility Check (QAC) with 15 questi-
ons grouped into three sections.

QAC-Section No. Checking
Assistive Android 1 Screenreader
-”- 2 Tabbing
-”- 3 External Keyboard
A11Y Scanner 4 Touch Size
-”- 5 Contrast Images
-”- 6 Contrast Text
-”- 7 Missing Labels
-”- 8 Redundant Labels
-”- 9 Implementation
Manual Checks 10 Text: Clear & Concise
-”- 11 Evident Navigation
-”- 12 Font Size
-”- 13 Support for Zooming
-”- 14 Position of Elements
-”- 15 Colour-blindness

and W3C Mobile Accessibility for Mobile (Patch et al.,
2015b).

The first section Assistive Android gives feedback
about the support for assistive technologies like the
screen reader or an external keyboard. In a scale from
1 (best) to 5 (worst) these topics are evaluated with as-
sistive technology (e.g. Talkback on Android device)
enabled.

The second section A11Y Scanner covers au-
tomatic testable features like contrast of texts and
images, suitable labels and descriptions of non-
text elements and the minimum size of toucha-
ble elements. On the Android platform a handy
tool is the Accessibility Scanner which can be
found at https://play.google.com/store/apps/details?
id=com.google.android.apps.accessibility.auditor. It
analyses the active user interface at runtime and provi-
des a textual (see Listing 3.1) and visual (see Figure 2)
description of the findings. In the QAC for each error
criteria the total number of occurrence is reported.

1 ...
2 Touch Target
3 com.avjindersinghsekhon.minimaltodo:id
4 /userToDoEditText
5 Consider making this clickable item
6 larger. This item ’s height is 44dp.
7 Consider a minimum height of 48dp
8
9 Item label

10 com.avjindersinghsekhon.minimaltodo:id
11 /userToDoReminder
12 IconImageButton
13 This item may not have a label
14 readable by screen readers
15 ...
16 Image contrast

Figure 2: Tools can support the analysis of the UI accessi-
bility by highlighting problematic elements onscreen.

17 com.avjindersinghsekhon.minimaltodo:id
18 /makeToDoFloatingActionButton
19 Consider increasing the contrast ratio
20 of this image ’s foreground and
21 background.
22 ...
23 Item description
24 com.avjindersinghsekhon.minimaltodo:id
25 /userToDoEditText
26 The clickable item ’s speakable
27 text("Title")is identical to that of 1
28 other item(1)
29 ...

Listing 1: Automated reports by the Google Accessibility
Checker can provide hints about related source code.

The third and last section Manual Checks is a manual
examination of informal criteria like the position of
interactive elements, a useful navigation or clear and
understandable texts and descriptions. These ratings
are also in a scale form 1 to 5.

A complete list of all 15 heuristics is shown in Ta-
ble 1. The Quick Accessibility Check QAC allows
even accessibility amateurs to find and rate accessi-
bility issues in a replicable and comparable way.

3.2 UsabML

The QAC results are formalised into Usability Mar-
kup Language (UsabML) for further processing. This
step is especially important, as it results in an XML
document format for the data, which means the infor-
mation can processed by tools further on. The Usa-
bML format allows validation checks on the data, it
supports the rendering of results via various styles-
heets to differently styled HTML documents for target

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

522

groups such as managers or developers. Additionally,
scripts might process the data and create post issues
to bug trackers.

As tools provide some hints about the source of an
accessibility problem – compare the Google Accessi-
bility Checker discussed above – this information can
be part of an UsabML report. Optionally, usability
managers or software developers might map issues
with code locations.

Find in Listing 3.2 selected parts of the formalised
report in UsabML, including the mapping of an issue
to the related source file and line number.

<report id="rpt201334"
gen-timestamp="2017-10-22T11:35:40Z"
method="he">

<title>NextcloudApp Q-Eval</title>
...
<heuristic id="qac07">
<title>Missing Labels</title>
<description>

Provide labels describing the
purpose of an input field.

</description>
</heuristic>
...
<negative -finding

heuristic -id="heu12" rank="3"
is-main -negative="true" id="neg3">

<title>Button too small ...</title>
<description>...></description>
<found -by evaluator -id="eval_ek"/>
<severity evaluator -id="eval_jf">

<value>3</value>
</severity>
<document type="image">

<description> The size should ...
</description>
<key>krainz33</key>
<filename>krainz33.png</filename>

</document>
<code -reference
project -id=" nextcloudapp"
version -id="commit -eef54326rfe8"
class -id="main.xml"
package -id="layouts"
method -id="main" line -number="24">

</code -reference>
</negative -finding>
...

</report

Listing 2: Formalised findings in UsabML.

One useful usage of the accessibility findings in the
structured and formalised UsabML format is to ren-
der them with source code on demand. The idea is to
allow developers to work in an environment and with
tools (such as git) they are accustomed to.

Usabiliy - INFOSCode- - INFOS

Repo GIT-Visualisation

Files & Directories
Source
Code

Menu

* …

* …

* …

Timeline

Figure 3: Visualising files of a project, source code and re-
lated accessibility issues side-by-side.

3.3 RepoVis

The web-based tool RepoVis consists of a backend
which connects to existing git repositories and a fron-
tend for rendering source code onscreen.

The visualisation allows to view all files within a
repository at once to provide a dashboard-like over-
view. The layout of this frontend is shown in Figure 3,
where separate – but connected – areas for the git re-
pository overview, the source code of a single file, and
the related issues are depicted.

The files are rendered as rectangular boxes with
the pixels inside coloured according given metrics.
For example, the pixels inside could show the author
who last changed and committed single lines of the
file. When drilling down, when inspecting single fi-
les, the source code related to a file is presented. In
the same way an usability – in this case an accessibi-
lity – issue will be shown to the developer for selected
files.

Developer can highlight on the dashboard all the
files with connected accessibility issues. This way of
presenting the current source code (or historical code
from former commits) and related accessibility issues
side-by-side should be an huge advantage for soft-
ware engineers. An advantage in terms of speed for
finding problematic code and in terms of code com-
prehension. For example, areas within the code base
with hot spots of multiple issues can be detected more
easily.

A New Approach to Visualise Accessibility Problems of Mobile Apps in Source Code

523

4 VALIDATION

To validate the approach we selected two popular
(more than 10.000 installs) open source mobile apps,
which on the one hand are examples where accessi-
bility plays an important role and on the other hand
apps where the source code is public available.

1. The Nextcloud Client App supports access
to cloud documents with mobiles. Available at
https://play.google.com/store/apps/details?id=com.
nextcloud.client; find the source at https://
github.com/nextcloud/ android; 100.000 installs.

2. The Minimal ToDo App allows to ma-
nage personal task lists. Available at
https://play.google.com/store/apps/details?id=com.
avjindersinghsekhon.minimaltodo; find the
source code at https://github.com/avjinder/
Minimal-Todo; 10.000 installs.

The evaluation steps follow the flow layout explained
in Section 3 consisting of following steps:

• QAC Evaluation according the quick accessibility
check criteria (again, compare Table 1 with the 15
A11Y metrics) and with tool support (in the sce-
nario presented the Google Accessibility Scanner
was used).

• UsabML Formalisation is done on the QAC re-
sults of Step 1. It outputs a single UsabML file,
a structured report in XML format. Mapping is-
sues to related lines of code is possible without
knowing the ins and outs of a project, because
the Google scanner already provides hints regar-
ding the origin of accessibility problems within
the source code.

• RepoVis Visualisation renders the connected git
repository and uses the output of Step 2, the Usa-
bML file. The connections specified in UsabML
are extracted to present source and issues side-by-
side.

The experts reviewing the two mobile apps rated for
the first section of the QAC AT Assistive technolo-
gies Android each topic (Screenreader, Tabbing, ex-
ternal Keyboard) from 1 (best) – 5 (worse). Then the
Accessibility Scanner output (number of issues found
for Touch Size, Contrast Images, Contrast Text, Mis-
sing Labels, Redundant Labels and Implementation)
were added. Finally, the experts rated the apps ac-
cording the items 10 to 15 from the third section Ma-
nual Checks. There, for Clear/Concise Text, Evident
Navigation, Font-size, Support for Zooming, Position
of Elements and Colour-blindness their rating ranged
from 1 (best) to 5 (worse). A summary of the results
is shown in Table 2.

Table 2: Quick Accessibility Check (QAC) results summa-
rised per section with notes about main reason for low ra-
tings.

Ratings in
section:

App 1 App 2 Selected rea-
sons for low
ratings:

Techno-
logies
Android

3,00 2,33 Screenreader
support mis-
sing.

No of
Accessibi-
lity Scanner
Issues

4 6 Small touch si-
zes, low con-
trast, missing la-
bels.

Manual
Checks

1,67 1,83 Positioning of
elements and
lack of concise
text

The format of the scanner and the condensed in-
formation in UsabML has been discussed in Section 3
and shown in Listing 3.2.

For the visualisation the repositories of the given
apps where cloned from github to the local file sys-
tems and configured in the RepoVis system. The Usa-
bML reports were provided by adding proper named
xml file into the file system of the RepoVis backend
server.

In Figure 4 the dashboard for an app is shown.
Developers can view the source code and the related
accessibility issues at once.

5 CONCLUSIONS

The contribution of this paper is a novel workflow
with strong focus on quick accessibility checking
(QAC) supporting the goal of increased willingness
among software teams to perform evaluations. In
a first step only 15 selected metrics deliver rele-
vant findings about A11Y problems in mobile ap-
plications. A formalisation step results in xml ba-
sed data (UsabML) which allows reuse and further
(semi-)automatic processing. Finally, we contribute
an integrated interactive visualisation (RepoVis) of
source code augmented with the accessibility pro-
blems found.

First results with QAC in combination with Re-
poVis assure the authors that many further impro-
vements for developers concerning accessible mobile
applications are possible. The novel workflow presen-
ted will be a starting point to automate several steps
of the process and integrate various representations of
accessibility issues (for example with advanced visu-
alisations).

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

524

Figure 4: Visualising code and related accessibility issues side-by-side.

In upcoming research we plan to address issues, such
as:

• Extending the target domain to usability in gene-
ral. Not only accessibility issues, but other kinds
of usability issues could be integrated.

• Including more tools to automate parts of the eva-
luation.

• Support for mapping issues and bugs found to the
location in the source code. In many cases this
mapping is not trivial and a semi-automated or ot-
herwise tool-supported approach would be help-
ful.

• Extend the presented solution to support the iOS
platform.

• Add tools to improve the QAC checking and map-
ping steps by auto-creating the suggested structu-
red reporting format UsabML.

To conclude, we hope that in the future the compu-
ter science community will put an even stronger fo-
cus on the user experience and accessibility of mobile
applications. This is necessary to support people with
special needs, who rely on accessibility to use smartp-
hone apps.

REFERENCES

Andrews, K. (2008). Evaluation comes in many gui-
ses. CHI 2008 Workshop on BEyond time
and errors: novel evaLuation methods for In-
formation Visualization (BELIV’08). http://
www.dis.uniroma1.it/beliv08/pospap/andrews.pdf.
Retrieved 2017-12-22.

Apple (2012). Accessibility programming guide for
ios. https://developer.apple.com/library/content/
documentation/UserExperience/Conceptual/iPhone
Accessibility/Accessibility on iPhone/Accessibility
on iPhone.html. Retrieved 2017-12-22.

Caldwell, B., Reid, L. G., Cooper, M., and Van-
derheiden, G. (2008). Web content accessibility
guidelines (WCAG) 2.0. W3C recommendation,
W3C. http://www.w3.org/TR/2008/REC-WCAG20-
20081211/. Retrieved 2017-12-22.

Cheng, L. C. (2016). The mobile app usability inspection
(MAUi) framework as a guide for minimal viable pro-
duct (mvp) testing in lean development cycle. In Proc.
2nd International Conference in HCI and UX on Indo-
nesia 2016, CHIuXiD 2016, pages 1–11.

Eick, S. G., Steffen, J. L., and Sumner, E. E. J. (1992). See-
soft — a tool for visualizing line oriented software sta-
tistics. IEEE Trans. Softw. Eng., 18(11):957–968.

European Union (2016). Directive (eu) 2016/2102 of the
european parliament and of the council of 26 octo-
ber 2016 on the accessibility of the websites and mo-
bile applications of public sector bodies. http://eur-

A New Approach to Visualise Accessibility Problems of Mobile Apps in Source Code

525

lex.europa.eu/eli/dir/2016/2102/oj. Retrieved 2017-
12-22.

Feiner, J. and Andrews, K. (2012). Usability reporting with
UsabML. In Winckler, M., Forbrig, P., and Bern-
haupt, R., editors, Proc. 4th International Conference
on Human-Centered Software Engineering, volume
7623 of HCSE 2012, pages 342–351. Lecture Notes
in Computer Science, Springer Berlin / Heidelberg.

Feiner, J., Andrews, K., and Krajnc, E. (2010). UsabML
– the usability report markup language: Formalising
the exchange of usability findings. In Proc. 2nd ACM
SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS 2010, pages 297–302. ACM.

Google (2017). Accessibility – usability – material design
guidelines. https://material.io/guidelines/usability/
accessibility.html. Retrieved 2017-12-22.

Hawes, N., Marshall, S., and Anslow, C. (2015). Code-
surveyor: Mapping large-scale software to aid in code
comprehension. In 3rd Working Conference on Soft-
ware Visualization, VISSOFT 2015, pages 96–105.

Henry, S. L. (2013). Easy checks – a first review
of web accessibility. https://www.w3.org/WAI/eval/
preliminary.html. Retrieved 2017-12-22.

Hvannberg, E. T., Law, E. L.-C., and Lérusdóttir,
M. K. (2007). Heuristic evaluation: Compa-
ring ways of finding and reporting usability pro-
blems. Interacting with Computers, 19(2):225–240.
http://kth.diva-portal.org/smash/get/diva2:527483/
FULLTEXT01. Retrieved 2017-12-22.

ISO (2000). ISO/DIS 9241-11 ergonomics of human-
system interaction – part 11: Usability: Definitions
and concepts. Standard, International Organization
for Standardization. https://www.iso.org/standard/
63500.html. Retrieved 2017-12-22.

ISO (2006). SO/IEC 25062:2006 software engineering –
software product quality requirements and evaluation
(SQuaRE) – common industry format (CIF) for usabi-
lity test reports. International Organization for Stan-
dardization. http://www.iso.org/iso/iso catalogue/
catalogue tc/catalogue detail.htm?csnumber=43046.
Retrieved 2017-12-22.

ISO (2008). ISO/DIS 9241-171: 2008 ergonomics
of human-system interaction – part 171: Gui-
dance on software accessibility. Technical report,
International Organization for Standardization.
http://www.iso.org/iso/iso catalogue/catalogue ics/
catalogue detail ics.htm?csnumber=39080. Retrieved
2017-12-22.

Komiyama, T. (2008). Usability evaluation based on
international standards for software quality evalua-
tion. Technical Journal 2, NEC. http://www.nec.
co.jp/techrep/en/journal/g08/n02/080207.pdf. Retrie-
ved 2017-12-22.

Molich, R., Chattratichart, J., Hinkle, V., Jensen, J. J.,
Kirakowski, J., Sauro, J., Sharon, T., and Traynor,
B. (2010). Rent a car in just 0, 60, 240 or 1,217
seconds? — comparative usability measurement,
cue-8. Journal of Usability Studies, 6(1):8–24. http://
www.upassoc.org/upa publications/jus/2010november/

JUS Molich November 2010.pdf. Retrieved 2017-
12-22.

Murphy, G. C. (2016). Technical perspective: Software is
natural. Commun. ACM, 59(5):121–121.

Nielsen, J. (1994). Guerrilla hci – using discount usa-
bility engineering to penetrate the intimidation bar-
rier. http://www.nngroup.com/articles/guerrilla-hci/.
Retrieved 2017-12-22.

Nielsen, J. and Molich, R. (1990). Heuristic evaluation of
user interfaces. In Proc. Conference on Human Fac-
tors in Computing Systems, CHI ’90, pages 249–256.
ACM.

Patch, K., Allan, J., Lowney, G., and Spellman, J. F.
(2015a). User agent accessibility guidelines (UAAG)
2.0. W3C note, W3C. http://www.w3.org/ TR/ 2015/
NOTE-UAAG20-20151215/. Retrieved 2017-12-22.

Patch, K., Spellman, J., and Wahlbin, K. (2015b). Mo-
bile accessibility: How wcag 2.0 and other w3c/wai
guidelines apply to mobile. Technical report,
W3C. https://www.w3.org/TR/mobile-accessibility-
mapping/. Retrieved 2017-12-22.

Shaw, M. (2002). What makes good research in software
engineering? International Journal on Software Tools
for Technology Transfer, 4(1):1–7.

The United Nations (2006). Convention on the rights of per-
sons with disabilities. Treaty Series, 2515:3. https://
www.un.org/development/desa/disabilities/convention-
on-the-rights-of-persons-with-disabilities/convention-
on-the-rights-of-persons-with-disabilities-2.html.
Retrieved 2017-12-22.

Treviranus, J., Richards, J., and Spellman, J. F. (2015).
Authoring tool accessibility guidelines (ATAG) 2.0.
W3C recommendation, W3C. http://www.w3.org/
TR/2015/REC-ATAG20-20150924/. Retrieved 2017-
12-22.

Vilbergsdóttir, S. G., Hvannberg, E. T., and Law, E.
L.-C. (2006). Classification of usability problems
(cup) scheme: Augmentation and exploitation. In
Proc. 4th Nordic Conference on Human-Computer
Interaction: Changing Rules (NordiCHI2006), pages
281–290. http://diuf.unifr.ch/people/pallottv/docs/
NordiCHI-2006/LongPapers/p281-vilbergsdottir.pdf.
Retrieved 2017-12-22.

Yusop, N. S. M., Grundy, J., and Vasa, R. (2016). Reporting
usability defects: Do reporters report what software
developers need? In Proc. 20th International Confe-
rence on Evaluation and Assessment in Software En-
gineering, EASE ’16, pages 38:1–38:10. ACM.

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

526

