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Abstract: Topological Functioning Modelling (TFM) is based on analysis of exhaustive verbal descriptions of the 

domain functionality. Manual acquisition of knowledge about the domain from text in natural language 

requires a lot of resources. Natural Language Processing (NLP) tools provide automatic analysis of text in 

natural language and may fasten and make cheaper this process. First, the knowledge, its expressing elements 

of the English language, and processing tasks that are required for construction of the topological functioning 

model are identified. The overview of the support of these tasks by the main NLP pipelines is based on the 

available documentation without performing practical experiments. The results showed that among the 

selected six NLP pipelines the largest support comes from the Stanford CoreNLP toolkit, FreeLing, and 

NLTK toolkit. They allow analysing not only the words and sentences, but also dependencies in word groups 

and between sentences. The obtained results can be used for academics and practitioners that perform research 

on NLP for composition of domain (business, system, software) models.  

1 INTRODUCTION 

Model Driven Architecture (MDA) (Miller and 

Mukerji, 2001) proposed by OMG (Object 

Management Group) gave a ground for new software 

development principles, where models of the 

software are at the core of the development process. 

MDA suggests using three models: a computation 

independent model (CIM), a platform independent 

model (PIM) and a platform specific model (PSM). 

Commonly, a language for MDA models is the UML 

(Unified Modelling Language), sometimes BPMN 

(Business Process Model and Notation), and rare 

SBVR (Semantic Business Vocabulary and Rules). 

BPMN and SBVR are used for specification of the 

CIM, while UML for the PIM and PSM. 

In our approach, we suggest using a Topological 

Functioning Model (TFM) as the CIM. The TFM 

elaborated by Janis Osis at Riga Technical 

University, Latvia, in 1969, specifies a system from 

three viewpoints – functional, behavioural and 

structural. This model can serve as a root model for 

further system and software domain analysis and 

transformations to design models and code (Osis and 

Asnina, 2011b). 

There are two approaches for composition of the  

TFM, namely, TFM4MDA (Topological Functioning 

Model for Model Driven Architecture) and IDM 

(Integrated Domain Modelling) presented in (Slihte, 

Osis and Donins, 2011). Rules of composition and 

derivation processes from the textual system 

description within TFM4MDA are provided by 

examples and described in detail in (Asnina, 2006; 

Osis, Asnina and Grave, 2007, 2008). Since, 

TFM4MDA does not have software tool support, 

results of text processing are kept in tables. 

Additionally, the TFM can be manually created in the 

TFM Editor or can also be generated automatically 

from the business use case descriptions in the IDM 

toolset (Osis and Slihte, 2010; Šlihte and Osis, 2014). 

So, TFM4MDA proposes manual processing of the 

unstructured, but processed text, while IDM – 

automated processing of use case specifications in the 

form of semi-structured text. In this case, results of 

text processing are kept in XMI (XML Metadata 

Interchange) files using XML (eXtensible Markup 

Language) structures. 

At the present, we decided to use a knowledge 

base for keeping results of text processing to gain 

from its inferring mechanism and flexibility. The 

knowledge frame based approach (Nazaruks and 

Osis, 2017) is at its very beginning. It assumes that 
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knowledge on domain will be kept in the knowledge 

frame system. In practice, preparation of the text and 

manual knowledge acquisition from it is too resource-

consuming (Elstermann and Heuser, 2016). 

Therefore, it is better either to skip the step of 

preparation of the textual description and start from 

human analysis of the available information, either to 

automate or semi-automate this process. We plan to 

automate the process of knowledge extraction from 

textual descriptions partially or completely 

depending on technologies available at the present.  

The goal of this research is to understand what 

possibilities Natural Language Processing (NLP) 

tools have at the present that could support the 

automated knowledge acquisition for construction of 

the TFM from data kept in the knowledge frame 

system. 

The paper is organized as follows. Section 2 

presents overview of related work in the field. Section 

3 describes the main elements of the TFM, the 

process of its manual composition and characteristics 

of its validity. Section 4 presents tasks that are to be 

supported or assisted by the NLP tools and the 

overview of the selected NLP tools. Section 5 

concludes the paper. 

2 RELATED WORK 

Knowledge extraction from different types of media 

is quite important since it may reduce time for 

analysis of large amount of information. Very 

interesting approach is presented in (Nakamura et al., 

1996), where authors suggest using knowledge 

extraction from diagrams and its integration with 

patterns of textual explanations. Nevertheless, the 

idea has been proposed by Nakamura et al. in 1996, 

it is useful enough also in nowadays (Leopold, 

Mendling and Polyvyanyy, 2014), since automated 

creation of explanations for large diagrams would be 

very helpful in business and system analysis. It can be 

said that several ways of evolution of this idea relate 

to knowledge extraction from factual data, diagrams, 

data warehouses and to data mining (Cannataro, 

Guzzo and Pugliese, 2002). 

Creation of models and UML diagrams from 

textual documents is presented in several researches. 

For example, use case diagram creation from textual 

requirements in Arabic using Stanford Tagger/Parser 

(Jabbarin and Arman, 2014), and creation of UML 

Activity Diagram via identification of simple verbal 

sentences from user requirements in Arabic make a 

use of Stanford and MADA+TOKAN tagger (Nassar 

and Khamayseh, 2015). Two research projects 

suggest creating UML class diagrams from textual 

requirements in English using the proposed Relative 

Extraction Methodology (Krishnan and Samuel, 

2010), and from use case descriptions (Elbendak, 

Vickers and Rossiter, 2011). But they do not deal with 

possible ambiguities of the natural language (NL). 

Analysis of textual user requirements in natural 

language and requirements engineering diagrams can 

be used to create the Use Case Path model, the Hybrid 

Activity Diagrams model and the Domain model 

(Ilieva and Ormandjieva, 2006). As Ilieva and 

Ormandjieva (2006) mention the standard way for 

automatic model creation from text is transformation 

of text in natural language to the one in formal natural 

language then to the intermediate model and then to 

the target requirements engineering model. For text 

analysis the authors apply syntax analysis by MBT 

tagger, semantics analysis to discover roles of words 

in the sentence (subject, predicate and object) and 

connections among them and then create a semantic 

network for text model. At the last step, the authors 

transform this semantic network to one of the 

mentioned models using patterns. NL analysis can be 

used for automated composition of conceptual 

diagrams (Bhala, Vidya Sagar and Abirami, 2014). 

The authors also noted a need for human 

participation, as well as several issues of NL itself, 

i.e., sentence structures may have different forms that 

are not completely predictable, syntactical 

correctness of sentences, as well as ambiguity in 

determining attributes as aggregations and in 

generalization.  

The overview of existing solutions in the field of 

UML model creation from textual requirements and 

business process model creation from textual 

documents (Osman and Zalhan, 2016) showed that 

existing tools allow creating Class diagrams, Object 

diagrams, Use Case diagrams, and several of them 

provide composition of Sequence, Collaboration and 

Activity diagrams. All the solutions have certain 

limitations: some require user intervention, some 

cannot perform analysis of irrelevant classes, some 

require structuring text in a certain form before 

processing, and some cannot correctly determine 

several structural relationships between classes. The 

tools used are Stanford Parser and lexical database 

WordNet 2.1, FrameNet and VerbNet, and NLP 

libraries that belong to NLTk framework. The only 

approach that allows complete derivation of the 

business process model mentioned by the authors is 

presented by Friedrich, Mendling and Puhlmann in 

(Friedrich, Mendling and Puhlmann, 2011).  

Some approaches use ontologies predefined by 

experts in the field and self-developed knowledge 
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acquisition rules in order to extract knowledge on 

necessary properties or elements and their values 

from text documents (Amardeilh, Laublet and Minel, 

2005; Jones et al., 2014). 

3 TOPOLOGICAL 

FUNCTIONING MODELLING 

3.1 Topological Functioning Model 

The TFM is a formal mathematical model that allows 

modelling and analysing functionality of the system 

(Osis and Asnina, 2011b). The system could be a 

business, software, biological system, mechanical 

system, etc. The TFM represents modelled 

functionality as a digraph (𝑋, Θ), where X is a set of 

inner functional characteristics (called functional 

features) of the system, and Θ is a topology set on 

these characteristics in a form of a set of cause-and-

effect relations. TFM models can be compared for 

similarities using the continuous mapping mechanism 

(Asnina and Osis, 2010). Since 1990s the TFM is 

being elaborated for software development.  

The TFM is characterized by the topological and 

functioning properties (Osis and Asnina, 2011a). The 

topological properties are connectedness, 

neighbourhood, closure and continuous mapping. 

The functioning properties are cause-and-effect 

relations, cycle structure, inputs and outputs. The 

composition of the TFM is presented by Osis and 

Asnina (2011b).  

The main TFM element is a functional feature that 

represents system’s functional characteristic, e.g., a 

business process, a task, an action, or an activity (Osis 

and Asnina, 2011a). It can be specified by a unique 

tuple (1). 

FF = <A, R, O, PrCond, PostCond, Pr, Ex, S> (1) 

Where (Osis and Asnina, 2011b): 

 A is object’s action,  

 R is a set of results of the object’s action (it is 

an optional element),  

 O is an object that gets the result of the action 

or a set of objects that are used in this action,  

 PrCond is a set of preconditions or atomic 

business rules,  

 PostCond is a set of post-conditions or atomic 

business rules,  

 Pr is a set of providers of the feature, i.e. 

entities (systems or sub-systems) which 

provide or suggest an action with a set of 

certain objects,  

 Ex is a set of executors (direct performers) of 

the functional feature, i.e. a set of entities 

(systems or sub-systems) which enact a 

concrete action. 

 S is a variable Subordination that holds 

Boolean value of belonging of the functional 

feature either to the system or to the external 

environment. 

The cause-and-effect relations between functional 

features define the cause from which the triggering of 

the effect occurred. The formal definition of the 

cause-and-effect relations and their combinations 

(Donins, 2012a; Asnina and Ovchinnikova, 2015) 

states that a cause-and-effect relation Tid is a binary 

relationship that links a cause functional feature to an 

effect functional feature as it is stated in (2).  

Tid = <Id, Xc, Xe, Lout, Lin> (2) 

Where (Donins, 2012a): 

 Id is a unique identifier of the cause-and-effect 

relation; 

 Xc is a cause functional feature that may 

generate the effect functional feature Xe after 

termination; 

 Xe is an effect functional feature; 

 Lout is a set of logical relationships between 

cause-and-effect relations on outgoing arcs of 

the cause functional feature Xc (optional); 

 Lin is a set of logical relationships between 

cause-and-effect relations on incoming arcs of 

the effect functional feature Xe (optional). 

In fact, this relation indicates control flow 

transition in the system. The cause-and-effect 

relations (and their combinations) may use logical 

negation (NOT) and may be joined by the logical 

operators: conjunction (AND), disjunction (OR), or 

exclusive disjunction (XOR). The logic of the 

combination of cause-and-effect relations denotes 

system’s behaviour and execution (e.g., decision 

making, parallel or sequential actions). The formal 

definition of a logical relationship (3) states that it is 

put on set T of cause-and-effect relations belonging 

to this logical relationship and Rt specifies the type of 

it by a logical operator NOT, AND, OR, or XOR 

(Donins, 2012a). 

Lid = <Id, T, Rt> (3) 

3.2 Construction Guidelines 

Manual construction of the TFM consists of the 

following steps (Asnina and Osis, 2011): 

 Definition of domain functional characteristics: 

o List of domain objects and their properties; 

o List of external systems; 
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o List of subsystems/actors; 

o List of functional features (with the structure 

equal to (1)). 

 Introduction of topology: 

o List of cause-and-effect relations (with the 

structure equal to (2) and (3)); 

 Separation of the TFM of the domain: 

o Topological functioning model that must 

satisfy all topological and functioning 

properties. 

The following running example will be used to 

illustrate some key points of the discussion. Assume 

that the following text in the formal style that 

describes the desired functionality of some book 

returning machine in the library is presented:  

“When the client appears, he can return the 

book to the book returning machine. The client puts 

the book into the special tray and enters his data of 

the registration. Then, the machine checks the 

registration and scans the image of a book. The 

machine searches for the loaned book in a reader 

account. If it is found, the machine checks the end 

date of a book loan and evaluates the condition of a 

book. If the end date is not exceeded and the condition 

is good, then the machine sends the book to the 

storage. Otherwise, if the end date is exceeded or the 

condition is not good, the machine calculates, writes 

out and imposes the fine to the client. And only then 

the machine sends the book to the book storage. The 

client receives the imposed fine. After sending the 

book to the storage, the machine waits for a new 

request.” 

In the text, domain objects and their properties 

are expressed as a noun together with its direct object 

that is not expressed as a numeral or a pronoun. For 

example, they can be things, phenomena, products, 

results of actions, documents, catalogues, human role, 

services, organizations etc. For each noun, synonyms 

and homonyms must be analysed as well as their 

correct sense in each case of a use, e.g., a “train” in 

one case is a locomotive together with a certain 

number of carriages, while in other case it is a single 

locomotive (Asnina and Osis, 2011). 

It must be able to determine which of domain 

objects are external systems or subsystems/actors. It 

is necessary to analyse the meaning of nouns, i.e. do 

they indicate roles, work positions, organizational 

units such as departments and business centres, 

organizations, and names of subsystems. A company 

that uses by-products of functionality of the 

organization can also be mentioned as an example. 

“Those objects, which are not subsystems of the 

system under consideration and whose functionality 

is not directly subordinated to the system, are external 

systems” (Asnina and Osis, 2011). 

Nouns in the running example (the underlined 

words) as well as their meaning and purpose in the 

domain are illustrated in Table 1. 

Table 1: Nouns and their purpose in the domain. 

Noun Purpose 

Client Object, actor (executor) 

Book Object 

Machine System, actor (provider, executor; 

(noun phrase) 

Tray Object, Element of the machine 

Data Properties of the registration  

(must be refined; noun phrase) 

Registration Object (result of the process) 

Image Property of the book (noun phrase) 

Reader Object (noun phrase) 

Account Object, Property of the reader (noun 

phrase) 

End date Property of the loan (noun phrase) 

Loan Object (result of the process) 

Condition Property of the Book (noun phrase) 

Storage Object, Element of the machine  

Fine Object 

Request Object 

Discovering of functional features relates to 

determination of “a business function” (Asnina and 

Osis, 2011). A list of functional features must be 

defined accordingly to the verbs (actions A), their 

preconditions (PreCond) and postconditions 

(PostCond). Preconditions are a set of conditions that 

allows triggering the action. Postconditions are a set 

of conditions that are set after a functional feature was 

executed. A business rule can be either a condition or 

a functional feature.  

A list of domain object identified in the previous 

step contains objects that are used in the context of 

this action (O), objects that are the results of this 

action (R), objects that are marked as external 

systems or subsystems/actors that either provide (Pr) 

or execute (Ex) this concrete action. Together the 

action, results and the object with preposition form a 

description (name) of the functional feature. 

In the running example, the verbs (in the active 

voice) are denoted by bold. Adding “-ing” to them 

and joining objects we can form the part of the 

specification of functional features (Table 2). 

Conditions highlighted in text in italic are enumerated 

in Table 3.  

Identification of the list of cause-and-effect 

relations among functional features is based on the 

fact that “a cause-and-effect relation between two 
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Table 2: Actions, objects and results. 

Id Action Result Object Providers Executors Verb 

1 Appearing [of] [a] Client  Client appear 

2 Returning  [a] Book Machine Client return 

3.1 Putting  [a] Book Machine, 

Tray 

Client put 

3.2 Entering [the] data [of] [a] Registration Machine Client enter 

4 Checking [the] Registration [of] [a] Client Machine Machine check 

5 Scanning [the] image [of] [a] Book Machine Machine scan 

6 Searching for [the] Book [in] [a] Reader Account Machine Machine search 

7 Checking [the] end date [of] [a] Loan Machine Machine check 

8 Evaluating [the] condition [of] [a] Book Machine Machine evaluate 

9 Calculating [the] Fine [to] [a] Client Machine Machine calculate 

10 Writing out [the] Fine [to] [a] Client Machine Machine write out 

11 Imposing [the] Fine [to] [a] Client Machine Machine impose 

12 Sending [the] Book [to] [a] Storage Machine Machine send 

13 Receiving  [a] Fine  Client receive 

14 Waiting for  [a] Request Machine Machine wait for 

Table 3: Conditions. 

Condition Postcondition 

of 

Precondition 

for 

Explanation 

If the book is found 6 7 IF part 

If the end date is not exceeded AND the condition is good 7, 8 12 IF part 

If the end date is exceeded OR the condition is not good 7, 8 9  IF part (that begins the 

chain of 9, 10, 11) 

Table 4: Cause-and-effect relations. 

Id Cause Effect Explanation 

1-2 1 2 Chronological sequence indicated in the description “When <clause1>, <clause 2>” 

2-3.1 2 3.1 Chronological sequence implicitly indicated in the description. 

2-3.2 2 3.2 Chronological sequence implicitly indicated in the description. 

3.1-4 3.1 4 Chronological sequence indicated in the description “<Sentence1>. Then <sentence 2>” 

3.2-4 3.2 4 Chronological sequence indicated in the description “<Sentence1>. Then <sentence 2>” 

4-5 4 5 Chronological sequence indicated in the description “<verb phrase 1> and <verb phrase 

2>”, where “and” meaning is “if <action 1> is successful, then <action 2>” 

5-6 5 6 Chronological sequence implicitly indicated in the description. 

6-7 6 7 Chronological sequence indicated in the text as precondition: “If <condition>, <clause>” 

6-8 6 8 Chronological sequence indicated in the description as precondition:  

“If <condition>, “<verb phrase 1> and <verb phrase 2>” 

7-9 7 9 Chronological sequence indicated in the text with the precondition: 

 “If <condition>, <clause>” 

8-9 8 9 Chronological sequence indicated in the text with the precondition: 

 “If <condition>, <clause>” 

9-10 9 10 Chronological sequence indicated in the description as a sequence of actions: 

 “<verb phrase 1>, <verb phrase 2>, and <verb phrase 3>” 

9-12 9 12 Chronological sequence indicated in the text with the precondition: 

 “If <condition>, <clause>” 

10-11 10 11 Chronological sequence indicated in the description as a sequence of actions: 

  “<verb phrase 1>, <verb phrase 2>, and <verb phrase 3> 

11-12 11 12 Chronological sequence indicated in the text with the phrase: “And only then <clause>” 

11-13 11 13 Chronological sequence implicitly indicated in the description. 

12-14 12 14 Chronological sequence indicated in the description “After <clause1>, <clause 2>” 

14-4 14 4 Chronological sequence implicitly indicated in the description. 
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functional features of the system exists if the 

appearance of one feature is caused by the appearance 

of the other feature without participation of any third 

(intermediary) feature” (Asnina and Osis, 2011). The 

connection between a cause-and-effect is represented 

as causal implication, where a logical sequence can 

serve as a form of expression of it. A cause 

chronologically precedes and triggers an effect. Most 

of causal implications involve multiple factors. In 

order to identify the cause-and-effect relation the 

following advices can be mentioned (Asnina and 

Osis, 2011): 

 Words and phrases that can signal relations, 

e.g., accordingly, because, effect, in order that, 

since, cause, for, therefore, as a result, if…then, 

why, consequently, due to, etc. 

 Causative verbs, e.g., have, get, let, allow, re- 

quire and so on. 

 Some suffixes that indicate changes, causes and 

effects: “-ate” can mean to become, to cause 

(e.g., to update), “-ation” – the result of -ing 

(e.g., registration is the result of registering 

process), “-ize” – to make, a cause to be (e.g., 

finalize), etc. 

Table 5: Logical relations: CER denotes cause-and-effect relations, LO denotes a logical operation on the set of cause-and-

effect relations. 

CER LO Explanation 

2-3.1, 2-3.2 AND LO is indicated in the description “<verb phrase 1> and <verb phrase 2>” 

3.1-4, 3.2-4, 14-4 AND LO is implicit and is inferred using logical speculations. 

6-7, 6-8 AND LO is indicated in the description under the same precondition “If the book is found” 

7-9, 8-9 OR LO is indicated in the precondition “If the end date is exceeded OR the condition is not 

good”. 

9-10, 9-12 XOR LO is indicated as two text blocks under mutually exclusive preconditions: 

1) If the end date is not exceeded AND the condition is good, and 

2) If the end date is exceeded OR the condition is not good”  

11-12, 9-12 XOR LO is inferred using logical analysis of chains of cause-and-effect relations: getting the 

same state from two mutually exclusive paths. 

11-13, 11-12 AND LO is implicit. 

 

 

Figure 1: The topological space for the domain with the book returning machine.  
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In the running example, the chronological and 

conditional sequences are got using text analysis and 

inferring based on the experience (Table 5). The 

composed topological space is illustrated in Figure 1. 

If we decide to get the TFM of the book returning 

machine, then we should join neighbourhoods of 

functional features, where a provider is Machine. In 

this example, the TFM is equal to the constructed 

topological space.  

The topological cycles are identified as closed 

paths in the graph, and they are 4-5-6-7-9-10-11-12-

14-4, 4-5-6-7-8-10-11-12-14-4, 4-5-6-7-9-12-14-4, 

and 4-5-6-8-9-12-14-4. The order of cycles must be 

defined by the expert. 

Analysing nouns, we can find that words 

“registration” and “loan” indicate the processes that 

are not mentioned in the description, but it must be 

done before. 

4 NEEDED CHARACTERISTICS 

OF NLP TOOLS 

4.1 NLP Application for Constructing 
the TFM: A Vision 

In order to define what characteristics of the NLP 

tools are needed, let us first consider the scheme of 

the knowledge frame system and required knowledge. 

According to the initial scheme of the knowledge 

frame system (Nazaruks and Osis, 2017), the lists of 

elements (Section 3.2) should be kept in the instances 

of the following frame classes:  

 manually filled in: FunctionalFeature and 

Properties, 

 manually filled in with some generable values 

of slots: Object and TopologicalCycle, 

 generated: CauseAndEffectRelation and 

TopologicalOperations, and identifiers of all 

instances of all frame classes. 

The frame class CauseAndEffectRelation has slot 

values that are generated based on the facts that the 

cause is specified by its precondition, while the effect 

is specified by its postcondition (Donins, 2012b). 

Instances of the frame class TopologicalOperation 

have the name that must be set “as a union of values 

of slots ‘action’ and ‘result’ of FunctionalFeature, the 

slot ‘owner’ gets its value based on the value of slot 

‘object’ in the frame FunctionalFeature, and slot 

‘returnType’ by a type of the value of the slot ‘result’” 

(Nazaruks and Osis, 2017). 

In instances of the frame class Object the only 

generated values are those of slot 

topologicalOperation, and in instances of the 

TopologicalCycle – values of slot functionalFeatures 

that holds a set of references to functional features 

that are involved in a cycle (closed path). 

In this research the focus is put on knowledge that 

is to be added manually, i.e., values for slots of frame 

classes Object, Property, and FunctionalFeature. The 

frame TopologicalCycle is skipped since it requires 

manual human participation only in determination of 

the order of cycles. 

In the IDM (Slihte, 2015), use case scenario text 

processing is performed by The Stanford Parser for 

identifying the executors (Ex) and the description of 

the functional feature that is a union of O, A and R in 

accordance with the following sentence parsing rules: 

 Sentences of use case steps must be in simple 

form to answer a question “Who does what?”; 

 Identify coordinating conjunctions to split a 

sentence into several clauses, and, thus, several 

functional features; 

 Identify the verb phrase (VP) that is considered 

as a union of action A, object O and result R; 

 Identify the noun phrase (NP) that can be either 

object O, result R or an executor Ex; 

 Preconditions are taken directly from the 

corresponding preceding events; 

 Postconditions are next functional features in 

the scenario or sequential events. 

In case of formal but unstructured text we cannot 

use the same principles for discovering pre- and 

postconditions, while others are suitable. Therefore, 

NLP tools must be able to perform all four NLP tasks: 

“tokenization, part-of-speech (POS) tagging, 

chunking, and Name Entity Recognition 

(NER)/Classification” (Pinto, Oliveira and Oliveira 

Alves, 2016) as well as semantic analysis of noun and 

verb phrases. Besides that, the tagged text and parsed 

trees must be semantically analysed to identify causal 

dependencies. In step of NER/Classification noun and 

verb ontology banks must be used. The general 

scheme of textual description processing should be as 

in Figure 2. 

4.2 NLP Pipelines for Assistance in the 
Topological Functioning Modelling  

There are a lot of NLP tools (Pinto, Oliveira and 

Oliveira Alves, 2016) that allow processing text as in 

a formal as in an informal style (such as used in 

forums, blogs, and chats). Our research is oriented on 

finding tools that work with the formal style, since 

processing is needed for formal documentation. 

In our research we want to focus on non-

commercial pipeline solutions that do not require 
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Textual description in formal style

Tokenization of sentences

POS tagging

Chunking

NER/Classification

Semantical analysis of clauses and 

coordinating conjunctions, 

prepositions, adverbs

Semantical analysis of words and 

phrases that signal relations

Semantical analysis of verbs in VP: 

forms, tenses and suffixes

List of Objects and their Properties

List of Functional Features
 

Figure 2: The general scheme of textual description 

processing for construction of the TFM. 

complex installation and that are not complex to 

understand. The language of processed text is 

English. The list of pipeline software solutions 

includes Apache OpenNLP, FreeLing, GATE, 

LingPipe, Natural Language Tool Kit (NLTK), and 

StanfordNLP (Rodrigues and Teixeira, 2015). 

LingPipe has a free licence and a commercial one.  

The Stanford CoreNLP toolkit (Manning et al., 

2014) contains components that deal with 

tokenization, sentence splitting, POS tagging, 

morphological analysis (identification of base forms), 

NER, syntactical parsing, coreference resolution and 

other annotations such as gender and sentiment 

analysis. It can be accessed from many programming 

languages, e.g. Java, Python, Ruby, and .NET C#/F#. 

The NER component recognizes names (PERSON, 

LOCATION, ORGANIZATION, MISC – 

miscellaneous) and numerical (MONEY, NUMBER, 

DATE, TIME, DURATION, SET) entities. Phrases 

can be parsed using both constituent and dependency 

representations based on a probabilistic parser that is 

more accurate according to the parsers that relate to 

some predefined structures. Discovering basic 

dependencies can help in further identification of 

actions and corresponding objects, results, modes 

(that can serve for identification of causal 

dependencies), executors and providers. Besides that, 

the Standford CoreNLP implements mention 

detection and pronominal and nominal coreference 

resolution that can help in dealing with pronouns and 

noun phrases that denote concrete phenomena.  

Apache OpenNLP (Apache OpenNLP 

Development Community, 2017) is a machine 

learning based toolkit. It provides Java library for 

such tasks as tokenization, sentence segmentation, 

POS tagging, NER, chunking, parsing and 

coreference resolution. OpenNLP includes 

components that allow training and evaluating 

models. The components are available via their 

Application Programming Interfaces (APIs). NER 

can find named entities and numbers using a model of 

entity types for a language. OpenNLP has several pre-

trained models for English, i.e. for dates, locations, 

money, organizations, percentages, persons, and 

time. OpenNLP can categorize document contents 

into predefined categories. The POS tagger marks 

tokens with their word type and the context using a 

probability model. The POS tagger may be trained on 

annotated training sentences and can find base forms 

of words. Opposite to the Stanford CoreNLP, in 

chunking OpenNLP provides only separation of 

syntactically correlated groups of words (noun 

phrases and verb phrases), but it does not specify their 

internal and external dependencies. At the present, the 

parser that is intended for discovering dependencies 

is developed only for demonstration and testing. 

Coreference resolution is also limited to noun phrase 

mentions. The main advantage of OpenNLP is 

possibility to train models. 

The third pipeline is FreeLing (Carreras et al., 

2004; Padró et al., 2010; Padró and Stanilovsky, 

2012). FreeLing is a C++ library for multi-language 

NLP tasks that supports customisation. The supported 

tasks are tokenization, sentence splitting, 

morphological analysis, NER, POS tagging, Word 

Sense Disambiguation, Semantic Role Labelling, 

dependency parsing, shallow parsing, WordNet-

based sense annotations, and coreference resolution. 

NER allows recognizing and classifying dates, 

numbers, physical magnitudes, currency, ratios. The 

morphological analysis supports number, quantity 

and date recognition from word groups, 

customization of the behaviour of the analysis chain 

triggered by a regular expression, aggregation of 

multiple words in a single word object, NER with the 

precision about 85% for the “basic” module and over 

90% for the “bio” module. FreeLing supports analysis 

of alternatives for words, searching all senses for a 

word or performing word-sense-disambiguation. The 
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Named Entity Classification module differs from 

NER with predefined four classes: Person, 

Geographical location, Organization, and Others. 

Besides that, it allows defining the context features 

that extend the predefined classes. Chunking is 

performed by the Chart Parser Module. Dependency 

parsing is either based on rules defined in the file, or 

uses a statistical dependency parsing module. 

Coreference resolution allows mention detection and 

feature extraction. The advanced Semantic Graph 

Extractor Module supports building a semantic graph 

that encodes events, relations among events and the 

actors participating in those events. This module 

could be useful for discovering causal dependencies 

of TFM functional features.  

GATE is a toolkit that includes “a desktop client 

for developers, a workflow-based web application, a 

Java library, an architecture and a process” (The 

University of Sheffield, 2018). The Information 

Extraction System supports the following tasks: 

tokenisation; sentence splitter; morphological 

analysis (Lemmatiser for determination of base forms 

of words, Gazetteer for identification of entity names 

(such as currency, days) in the text based on lists); 

POS tagger; NER performed by the Semantic Tagger 

that supports such entity types as Person (and gender), 

Location and its sub-types, Organization and its sub-

types, Money, Percent, Date in the form of date, time 

and dateTime, Address, Identifier and Unknown; 

coreference resolution by OrthoMatcher between 

named entities, and pronominal coreference in noun 

phrases. In GATE, chunking is supported by several 

predefined rules and can be customized by a 

developer.  

LingPipe (Carpenter and Breck, 2011; Alias-i, no 

date) is a Java-based toolkit for NLP processing using 

computational linguistics. The main tasks are NER 

and Classification, POS tagging and chunking, and 

Chinese Word Segmentation. Besides that, it supports 

sentence splitting, spelling correction, sentiment 

analysis, singular value decomposition and word 

sense disambiguation.  

The last one, the NLTK framework (Bird, Loper 

and Klein, 2009; NLTK Project, 2017), is dedicated 

for programs on Python and provides easy-to-use 

interfaces for multiple corpora and lexical resources 

such as WordNet. At the beginning, the NLTK was 

dedicated to processing textual documents in the 

formal style, but now it can use also corpora for 

different genres. The NLTK supports a usage of 

users’ corpora and corpora in other but English 

languages. A use of different corpora supports 

semantic analysis of the type “is-a-part-of”, 

discovering synonyms and homonyms. The NLTK 

supports the tasks of tokenization, POS tagging, 

chunking, and NER. For example, tagging of verbs 

can help in analysis of their forms: Are they, for 

example, in past tense or they have the past participle 

form? In order to rise the precision of tagging, it is 

possible to combine the taggers provided. 

The NLTK implements Named Entity 

Classification via decision trees, naive Bayes 

classifiers, and probabilistic models. Chunking 

relates as to noun phrases as to verb phrases and 

supports a use of regular expressions for 

determination of word groups and their hierarchy as 

well as for word groups that should be excluded from 

this process.  

The NER includes recognition of the following 

entity types: ORGANIZATION, PERSON, 

LOCATION, DATE, TIME, MONEY, PERCENT 

FACILITY, and GPE (for geo-political entities). The 

interesting function suggested in the NLTK is 

Relation Extraction that allows extracting relations 

among named entities. The NLTK supports also 

analysis of phrase structure grammars, dependencies 

and dependency grammars. It could be useful for 

discovering the structure of functional characteristics 

by analysing the structure of a sentence and causal 

dependencies between sentences or clauses. 

Table 6: NLP tools for knowledge extraction activities for the topological functioning modelling: T – tokenization, POS – 

POS tagging, CH – chunking, NER – NER/Classification, and assistance in A-CL – analysis of dependencies between 

clauses/sentences, A-NP – analysis of dependencies in complex noun phrases, A-PR – analysis of dependencies in predicates, 

A-VP – analysis of verbs in verb phrases. 

NLP tools 
Activity 

T POS CH NER A-CL A-NP A-PR A-VP 

Stanford CoreNLP toolkit v v v v v v v v 

Apache OpenNLP v v v v v    

FreeLing v v v v v v v v 

GATE v v v v  v   

LingPipe v v v v     

NLTK framework v v v v v v v v 
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However, the accuracy of this analysis can be 

decreased because of syntactic ambiguity of 

sentences in NL. 

The support of the defined tasks of the topological 

functioning modelling by the considered NLP tools is 

summarized in Table 6. The largest support of the 

required tasks comes from the Stanford CoreNLP 

toolkit, FreeLing and NLTK framework. 

5 CONCLUSIONS 

The topological functioning modelling is based on 

knowledge extraction from multiple verbal 

descriptions of the functions, behaviour, phenomena 

and structure of the domain. In case of introducing the 

frame system as a core storage for those knowledge, 

extraction of it is likely to be automated to be more 

valuable for software developers or business/system 

analytics.  

The NLP tools support automated knowledge 

extraction from formal and informal text. The 

precision of the extraction may differ, but some tools 

support training a model for NL text processing. 

We have defined the tasks for text processing in 

order to get knowledge necessary for the topological 

functioning modelling. They are tokenization, POS 

tagging, chunking, NER/Classification, and 

assistance in analysis of dependencies between 

sentences, in complex noun phrases and verb phrases, 

in predicates, and analysis of verb forms and tenses. 

The most difficult tasks relate to analysis of 

dependencies among sentences, verb phrases and 

predicates. Some dependencies are not explicitly 

indicated in the text, thus inferring is required. 

All the tasks in some degree are supported by the 

Stanford CoreNLP toolkit, FreeLing and NLTK 

framework.  

We plan to perform research on opportunities 

provided by these toolkits in more detail. The future 

research direction relates to practical experiments 

with the three pipelines in order to evaluate the 

easiness of implementation of knowledge extraction 

as well as precision of the discovered knowledge, 

extension of tool functions and to understand their 

performance issues. 

REFERENCES 

Alias-I, no date. LingPipe Home, LingPipe. Available at: 

http://alias-i.com/lingpipe/index.html (Accessed: 10 

January 2018). 

Amardeilh, F., Laublet, P. and Minel, J.-L., 2005. 

Document annotation and ontology population from 

linguistic extractions, in Proceedings of the 3rd 

international conference on Knowledge capture  - K-

CAP ’05. New York, New York, USA: ACM Press, pp. 

161–168. doi: 10.1145/1088622.1088651. 

Apache OpenNLP Development Community, 2017. 

Apache OpenNLP Developer Documentation, Version 

1.8.4. The Apache Software Foundation. Available at: 

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.

html (Accessed: 10 January 2018). 

Asnina, E., 2006. The Computation Independent 

Viewpoint: a Formal Method of Topological 

Functioning Model Constructing, Applied computer 

systems, 26, pp. 21–32. 

Asnina, E. and Osis, J., 2010. Computation Independent 

Models: Bridging Problem and Solution Domains, in 

Proceedings of the 2nd International Workshop on 

Model-Driven Architecture and Modeling Theory-

Driven Development. Lisbon: SciTePress - Science and 

and Technology Publications, pp. 23–32. doi: 

10.5220/0003043200230032. 

Asnina, E. and Osis, J., 2011. Topological Functioning 

Model as a CIM-Business Model, in Model-Driven 

Domain Analysis and Software Development. Hershey, 

PA: IGI Global, pp. 40–64. doi: 10.4018/978-1-61692-

874-2.ch003. 

Asnina, E. and Ovchinnikova, V., 2015. Specification of 

decision-making and control flow branching in 

Topological Functioning Models of systems, in ENASE 

2015 - Proceedings of the 10th International 

Conference on Evaluation of Novel Approaches to 

Software Engineering. 

Bhala, V., Vidya Sagar, R. and Abirami, S., 2014. 

Conceptual modeling of natural language functional 

requirements, The Journal of Systems & Software, 88, 

pp. 25–41. doi: 10.1016/j.jss.2013.08.036. 

Bird, S., Loper, E. and Klein, E., 2009. Natural Language 

Processing with Python. O’Reilly Media Inc. 

Cannataro, M., Guzzo, A. and Pugliese, A., 2002. 

Knowledge management and XML: derivation of 

synthetic views over semi-structured data, ACM 

SIGAPP Applied Computing Review. ACM, 10(1), p. 

33. doi: 10.1145/568235.568242. 

Carpenter, B. and Breck, B., 2011. NLP with LingPipe. 

Draft 0.5. Available at: http://alias-i.com/lingpipe-

book/index.html (Accessed: 10 January 2018). 

Carreras, X., Chao, I., Padró, L. and Padró, M., 2004. 

FreeLing: An Open-Source Suite of Language 

Analyzers, in Proceedings of the 4th International 

Conference on Language Resources and Evaluation 

(LREC’04). 

Donins, U., 2012a. Semantics of Logical Relations in 

Topological Functioning Model, in Proceedings of the 

7th International Conference on Evaluation of Novel 

Approaches to Software Engineering, Wrocław, 

Poland, 29-30 June, 2012. SciTePress, pp. 217–223. 

Donins, U., 2012b. Topological Unified Modeling 

Language: Development and Application. Riga 

Technical University. 

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

510



Elbendak, M., Vickers, P. and Rossiter, N., 2011. Parsed 

use case descriptions as a basis for object-oriented class 

model generation, Journal of Systems and Software, 

84(7), pp. 1209–1223. doi: 10.1016/j.jss.2011.02.025. 

Elstermann, M. and Heuser, T., 2016. Automatic Tool 

Support Possibilities for the Text-Based S-BPM 

Process Modelling Methodology, in Proceedings of the 

8th International Conference on Subject-oriented 

Business Process Management - S-BPM ’16. New 

York, New York, USA: ACM Press, pp. 1–8. doi: 

10.1145/2882879.2882882. 

Friedrich, F., Mendling, J. and Puhlmann, F., 2011. Process 

Model Generation from Natural Language Text, in 

Proceedings of the 23rd International Conference on 

Advanced Information Systems Engineering (CAiSE 

2011), pp. 482–496. doi: 10.1007/978-3-642-21640-

4_36. 

Ilieva, M. G. and Ormandjieva, O., 2006. Models Derived 

from Automatically Analyzed Textual User 

Requirements, in Fourth International Conference on 

Software Engineering Research, Management and 

Applications (SERA’06). IEEE, pp. 13–21. doi: 

10.1109/SERA.2006.51. 

Jabbarin, S. and Arman, N., 2014. Constructing use case 

models from Arabic user requirements in a semi-

automated approach, in 2014 World Congress on 

Computer Applications and Information Systems, 

WCCAIS 2014. Hammamet: IEEE, pp. 1–4. doi: 

10.1109/WCCAIS.2014.6916558. 

Jones, D. E., Igo, S., Hurdle, J. and Facelli, J. C., 2014. 

Automatic Extraction of Nanoparticle Properties Using 

Natural Language Processing: NanoSifter an 

Application to Acquire PAMAM Dendrimer 

Properties, PLoS ONE. Edited by V. Ceña, 9(1), p. 

e83932. doi: 10.1371/journal.pone.0083932. 

Krishnan, H. and Samuel, P., 2010. Relative Extraction 

Methodology for class diagram generation using 

dependency graph, in 2010 INTERNATIONAL 

CONFERENCE ON COMMUNICATION CONTROL 

AND COMPUTING TECHNOLOGIES. IEEE, pp. 

815–820. doi: 10.1109/ICCCCT.2010.5670730. 

Leopold, H., Mendling, J. and Polyvyanyy, A., 2014. 

Supporting Process Model Validation through Natural 

Language Generation, IEEE Transactions on Software 

Engineering, 40(8), pp. 818–840. doi: 

10.1109/TSE.2014.2327044. 

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., 

Bethard, S. J. and Mcclosky, D., 2014. The Stanford 

CoreNLP Natural Language Processing Toolkit, in 

Proceedings of the 52nd Annual Meeting of the 

Association for Computational Linguistics: System 

Demonstrations, pp. 55–60. 

Miller, J. and Mukerji, J., 2001. Model Driven Architecture 

( MDA ), Architecture Board ORMSC. Available at: 

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01. 

Nakamura, Y., Takahashi, M., Onda, M. and Ohta, Y., 

1996. Knowledge extraction from diagram and text for 

media integration, in Proceedings of the Third IEEE 

International Conference on Multimedia Computing 

and Systems. IEEE Comput. Soc. Press, pp. 488–492. 

doi: 10.1109/MMCS.1996.535897. 

Nassar, I. N. and Khamayseh, F. T., 2015. Constructing 

Activity Diagrams from Arabic User Requirements 

using Natural Language Processing Tool, in 2015 6th 

International Conference on Information and 

Communication Systems (ICICS). Amman: IEEE, pp. 

50–54. doi: 10.1109/IACS.2015.7103200. 

Nazaruks, V. and Osis, J., 2017. Joint Usage of Frames and 

the Topological Functioning Model for Domain 

Knowledge Presentation and Analysis, in Proceedings 

of the 12th International Conference on Evaluation of 

Novel Approaches to Software Engineering - Volume 1: 

MDI4SE. Porto, Portugal: SCITEPRESS - Science and 

Technology Publications, pp. 379–390. doi: 

10.5220/0006388903790390. 

NLTK Project, 2017. Natural Language Toolkit — NLTK 

3.2.5 documentation. Available at: 

http://www.nltk.org/ (Accessed: 10 January 2018). 

Osis, J. and Asnina, E., 2011a. Is Modeling a Treatment for 

the Weakness of Software Engineering?, in Model-

Driven Domain Analysis and Software Development. 

Hershey, PA: IGI Global, pp. 1–14. doi: 10.4018/978-

1-61692-874-2.ch001. 

Osis, J. and Asnina, E., 2011b. Topological Modeling for 

Model-Driven Domain Analysis and Software 

Development : Functions and Architectures, in Model-

Driven Domain Analysis and Software Development: 

Architectures and Functions. Hershey, PA: IGI Global, 

pp. 15–39. doi: 10.4018/978-1-61692-874-2.ch002. 

Osis, J., Asnina, E. and Grave, A., 2007. MDA oriented 

computation independent modeling of the problem 

domain, in Proceedings of the 2nd International 

Conference on Evaluation of Novel Approaches to 

Software Engineering - ENASE 2007. Barcelona: 

INSTICC Press, pp. 66–71. 

Osis, J., Asnina, E. and Grave, A., 2008. Formal Problem 

Domain Modeling within MDA, in Filipe, J., Shishkov, 

B., Helfert, M., and Maciaszek, L. A. (eds) Software 

and Data Technologies: Second International 

Conference, ICSOFT/ENASE 2007, Barcelona, Spain, 

July 22-25, 2007, Revised Selected Papers. Berlin, 

Heidelberg: Springer Berlin Heidelberg, pp. 387–398. 

doi: 10.1007/978-3-540-88655-6_29. 

Osis, J. and Slihte, A., 2010. Transforming Textual Use 

Cases to a Computation Independent Model, in Osis, J. 

and Nikiforova, O. (eds) Model-Driven Architecture 

and Modeling-Driven Software Development: ENASE 

2010, 2ndMDA&MTDD Whs. SciTePress, pp. 33–42. 

Osman, C.-C. and Zalhan, P.-G., 2016. From Natural 

Language Text to Visual Models: A survey of Issues 

and Approaches, Informatica Economica, 20(4), pp. 

44–61. doi: 10.12948/issn14531305/20.4.2016.01. 

Padró, L., Collado, M., Reese, S., Lloberes, M. and 

Castellón, I., 2010. FreeLing 2.1: Five years of open-

source language processing tools, Proceedings of 7th 

Language Resources and Evaluation Conference 

(LREC 2010), ELRA La Valletta, Malta. May, 2010. 

Padró, L. and Stanilovsky, E., 2012. FreeLing 3.0: Towards 

Wider Multilinguality FreeLing project developer, in 

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

511



Proceedings of the Language Resources and 

Evaluation Conference (LREC 2012) ELRA. . Istanbul, 

Turkey: European Language Resources Association 

(ELRA). 

Pinto, A., Oliveira, H. G. and Oliveira Alves, A., 2016. 

Comparing the Performance of Different NLP Toolkits 

in Formal and Social Media Text *, 5th Symposium on 

Languages, Applications and Technologies 

(SLATE’16). Open Access Series in Informatics., p. 3:1-

3:16; Article No.3; doi: 10.4230/OASIcs. 

SLATE.2016.3. 

Rodrigues, M. and Teixeira, A., 2015. Advanced 

Applications of Natural Language Processing for 

Performing Information Extraction. Cham: Springer 

International Publishing (SpringerBriefs in Electrical 

and Computer Engineering). doi: 10.1007/978-3-319-

15563-0. 

Slihte, A., 2015. The Integrated Domain Modeling: an 

Approach & Toolset for Acquiring a Topological 

Functioning Model. Riga Technical University. 

Slihte, A., Osis, J. and Donins, U., 2011. Knowledge 

Integration for Domain Modeling, in Osis, J. and 

Nikiforova, O. (eds) Model-Driven Architecture and 

Modeling-Driven Software Development: ENASE 

2011, 3rd Whs. MDA&MDSD. SciTePress, pp. 46–56. 

Šlihte, A. and Osis, J., 2014. The Integrated Domain 

Modeling: A Case Study, in  Databases and 

Information Systems: Proceedings of the 11th 

International Baltic Conference (DB&IS 2014). 

Tallinn: Tallinn University of Technology Press, pp. 

465–470. 

The University of Sheffield, 2018. GATE: a full-lifecycle 

open source solution for text processing. Available at: 

https://gate.ac.uk/overview.html (Accessed: 10 January 

2018). 

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

512


