
Determination of Natural Language Processing Tasks

and Tools for Topological Functioning Modelling

Erika Nazaruka and Jānis Osis
Department of Applied Computer Science, Riga Technical University, Sētas iela 1, LV-1048, Riga, Latvia

Keywords: Natural Language Processing Tools, Topological Functioning Model, Computation Independent Model,

Domain Modelling.

Abstract: Topological Functioning Modelling (TFM) is based on analysis of exhaustive verbal descriptions of the

domain functionality. Manual acquisition of knowledge about the domain from text in natural language

requires a lot of resources. Natural Language Processing (NLP) tools provide automatic analysis of text in

natural language and may fasten and make cheaper this process. First, the knowledge, its expressing elements

of the English language, and processing tasks that are required for construction of the topological functioning

model are identified. The overview of the support of these tasks by the main NLP pipelines is based on the

available documentation without performing practical experiments. The results showed that among the

selected six NLP pipelines the largest support comes from the Stanford CoreNLP toolkit, FreeLing, and

NLTK toolkit. They allow analysing not only the words and sentences, but also dependencies in word groups

and between sentences. The obtained results can be used for academics and practitioners that perform research

on NLP for composition of domain (business, system, software) models.

1 INTRODUCTION

Model Driven Architecture (MDA) (Miller and

Mukerji, 2001) proposed by OMG (Object

Management Group) gave a ground for new software

development principles, where models of the

software are at the core of the development process.

MDA suggests using three models: a computation

independent model (CIM), a platform independent

model (PIM) and a platform specific model (PSM).

Commonly, a language for MDA models is the UML

(Unified Modelling Language), sometimes BPMN

(Business Process Model and Notation), and rare

SBVR (Semantic Business Vocabulary and Rules).

BPMN and SBVR are used for specification of the

CIM, while UML for the PIM and PSM.

In our approach, we suggest using a Topological

Functioning Model (TFM) as the CIM. The TFM

elaborated by Janis Osis at Riga Technical

University, Latvia, in 1969, specifies a system from

three viewpoints – functional, behavioural and

structural. This model can serve as a root model for

further system and software domain analysis and

transformations to design models and code (Osis and

Asnina, 2011b).

There are two approaches for composition of the

TFM, namely, TFM4MDA (Topological Functioning

Model for Model Driven Architecture) and IDM

(Integrated Domain Modelling) presented in (Slihte,

Osis and Donins, 2011). Rules of composition and

derivation processes from the textual system

description within TFM4MDA are provided by

examples and described in detail in (Asnina, 2006;

Osis, Asnina and Grave, 2007, 2008). Since,

TFM4MDA does not have software tool support,

results of text processing are kept in tables.

Additionally, the TFM can be manually created in the

TFM Editor or can also be generated automatically

from the business use case descriptions in the IDM

toolset (Osis and Slihte, 2010; Šlihte and Osis, 2014).

So, TFM4MDA proposes manual processing of the

unstructured, but processed text, while IDM –

automated processing of use case specifications in the

form of semi-structured text. In this case, results of

text processing are kept in XMI (XML Metadata

Interchange) files using XML (eXtensible Markup

Language) structures.

At the present, we decided to use a knowledge

base for keeping results of text processing to gain

from its inferring mechanism and flexibility. The

knowledge frame based approach (Nazaruks and

Osis, 2017) is at its very beginning. It assumes that

Nazaruka, E. and Osis, J.
Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling.
DOI: 10.5220/0006817205010512
In Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), pages 501-512
ISBN: 978-989-758-300-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

501

knowledge on domain will be kept in the knowledge

frame system. In practice, preparation of the text and

manual knowledge acquisition from it is too resource-

consuming (Elstermann and Heuser, 2016).

Therefore, it is better either to skip the step of

preparation of the textual description and start from

human analysis of the available information, either to

automate or semi-automate this process. We plan to

automate the process of knowledge extraction from

textual descriptions partially or completely

depending on technologies available at the present.

The goal of this research is to understand what

possibilities Natural Language Processing (NLP)

tools have at the present that could support the

automated knowledge acquisition for construction of

the TFM from data kept in the knowledge frame

system.

The paper is organized as follows. Section 2

presents overview of related work in the field. Section

3 describes the main elements of the TFM, the

process of its manual composition and characteristics

of its validity. Section 4 presents tasks that are to be

supported or assisted by the NLP tools and the

overview of the selected NLP tools. Section 5

concludes the paper.

2 RELATED WORK

Knowledge extraction from different types of media

is quite important since it may reduce time for

analysis of large amount of information. Very

interesting approach is presented in (Nakamura et al.,

1996), where authors suggest using knowledge

extraction from diagrams and its integration with

patterns of textual explanations. Nevertheless, the

idea has been proposed by Nakamura et al. in 1996,

it is useful enough also in nowadays (Leopold,

Mendling and Polyvyanyy, 2014), since automated

creation of explanations for large diagrams would be

very helpful in business and system analysis. It can be

said that several ways of evolution of this idea relate

to knowledge extraction from factual data, diagrams,

data warehouses and to data mining (Cannataro,

Guzzo and Pugliese, 2002).

Creation of models and UML diagrams from

textual documents is presented in several researches.

For example, use case diagram creation from textual

requirements in Arabic using Stanford Tagger/Parser

(Jabbarin and Arman, 2014), and creation of UML

Activity Diagram via identification of simple verbal

sentences from user requirements in Arabic make a

use of Stanford and MADA+TOKAN tagger (Nassar

and Khamayseh, 2015). Two research projects

suggest creating UML class diagrams from textual

requirements in English using the proposed Relative

Extraction Methodology (Krishnan and Samuel,

2010), and from use case descriptions (Elbendak,

Vickers and Rossiter, 2011). But they do not deal with

possible ambiguities of the natural language (NL).

Analysis of textual user requirements in natural

language and requirements engineering diagrams can

be used to create the Use Case Path model, the Hybrid

Activity Diagrams model and the Domain model

(Ilieva and Ormandjieva, 2006). As Ilieva and

Ormandjieva (2006) mention the standard way for

automatic model creation from text is transformation

of text in natural language to the one in formal natural

language then to the intermediate model and then to

the target requirements engineering model. For text

analysis the authors apply syntax analysis by MBT

tagger, semantics analysis to discover roles of words

in the sentence (subject, predicate and object) and

connections among them and then create a semantic

network for text model. At the last step, the authors

transform this semantic network to one of the

mentioned models using patterns. NL analysis can be

used for automated composition of conceptual

diagrams (Bhala, Vidya Sagar and Abirami, 2014).

The authors also noted a need for human

participation, as well as several issues of NL itself,

i.e., sentence structures may have different forms that

are not completely predictable, syntactical

correctness of sentences, as well as ambiguity in

determining attributes as aggregations and in

generalization.

The overview of existing solutions in the field of

UML model creation from textual requirements and

business process model creation from textual

documents (Osman and Zalhan, 2016) showed that

existing tools allow creating Class diagrams, Object

diagrams, Use Case diagrams, and several of them

provide composition of Sequence, Collaboration and

Activity diagrams. All the solutions have certain

limitations: some require user intervention, some

cannot perform analysis of irrelevant classes, some

require structuring text in a certain form before

processing, and some cannot correctly determine

several structural relationships between classes. The

tools used are Stanford Parser and lexical database

WordNet 2.1, FrameNet and VerbNet, and NLP

libraries that belong to NLTk framework. The only

approach that allows complete derivation of the

business process model mentioned by the authors is

presented by Friedrich, Mendling and Puhlmann in

(Friedrich, Mendling and Puhlmann, 2011).

Some approaches use ontologies predefined by

experts in the field and self-developed knowledge

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

502

acquisition rules in order to extract knowledge on

necessary properties or elements and their values

from text documents (Amardeilh, Laublet and Minel,

2005; Jones et al., 2014).

3 TOPOLOGICAL

FUNCTIONING MODELLING

3.1 Topological Functioning Model

The TFM is a formal mathematical model that allows

modelling and analysing functionality of the system

(Osis and Asnina, 2011b). The system could be a

business, software, biological system, mechanical

system, etc. The TFM represents modelled

functionality as a digraph (𝑋, Θ), where X is a set of

inner functional characteristics (called functional

features) of the system, and Θ is a topology set on

these characteristics in a form of a set of cause-and-

effect relations. TFM models can be compared for

similarities using the continuous mapping mechanism

(Asnina and Osis, 2010). Since 1990s the TFM is

being elaborated for software development.

The TFM is characterized by the topological and

functioning properties (Osis and Asnina, 2011a). The

topological properties are connectedness,

neighbourhood, closure and continuous mapping.

The functioning properties are cause-and-effect

relations, cycle structure, inputs and outputs. The

composition of the TFM is presented by Osis and

Asnina (2011b).

The main TFM element is a functional feature that

represents system’s functional characteristic, e.g., a

business process, a task, an action, or an activity (Osis

and Asnina, 2011a). It can be specified by a unique

tuple (1).

FF = <A, R, O, PrCond, PostCond, Pr, Ex, S> (1)

Where (Osis and Asnina, 2011b):

 A is object’s action,

 R is a set of results of the object’s action (it is

an optional element),

 O is an object that gets the result of the action

or a set of objects that are used in this action,

 PrCond is a set of preconditions or atomic

business rules,

 PostCond is a set of post-conditions or atomic

business rules,

 Pr is a set of providers of the feature, i.e.

entities (systems or sub-systems) which

provide or suggest an action with a set of

certain objects,

 Ex is a set of executors (direct performers) of

the functional feature, i.e. a set of entities

(systems or sub-systems) which enact a

concrete action.

 S is a variable Subordination that holds

Boolean value of belonging of the functional

feature either to the system or to the external

environment.

The cause-and-effect relations between functional

features define the cause from which the triggering of

the effect occurred. The formal definition of the

cause-and-effect relations and their combinations

(Donins, 2012a; Asnina and Ovchinnikova, 2015)

states that a cause-and-effect relation Tid is a binary

relationship that links a cause functional feature to an

effect functional feature as it is stated in (2).

Tid = <Id, Xc, Xe, Lout, Lin> (2)

Where (Donins, 2012a):

 Id is a unique identifier of the cause-and-effect

relation;

 Xc is a cause functional feature that may

generate the effect functional feature Xe after

termination;

 Xe is an effect functional feature;

 Lout is a set of logical relationships between

cause-and-effect relations on outgoing arcs of

the cause functional feature Xc (optional);

 Lin is a set of logical relationships between

cause-and-effect relations on incoming arcs of

the effect functional feature Xe (optional).

In fact, this relation indicates control flow

transition in the system. The cause-and-effect

relations (and their combinations) may use logical

negation (NOT) and may be joined by the logical

operators: conjunction (AND), disjunction (OR), or

exclusive disjunction (XOR). The logic of the

combination of cause-and-effect relations denotes

system’s behaviour and execution (e.g., decision

making, parallel or sequential actions). The formal

definition of a logical relationship (3) states that it is

put on set T of cause-and-effect relations belonging

to this logical relationship and Rt specifies the type of

it by a logical operator NOT, AND, OR, or XOR

(Donins, 2012a).

Lid = <Id, T, Rt> (3)

3.2 Construction Guidelines

Manual construction of the TFM consists of the

following steps (Asnina and Osis, 2011):

 Definition of domain functional characteristics:

o List of domain objects and their properties;

o List of external systems;

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

503

o List of subsystems/actors;

o List of functional features (with the structure

equal to (1)).

 Introduction of topology:

o List of cause-and-effect relations (with the

structure equal to (2) and (3));

 Separation of the TFM of the domain:

o Topological functioning model that must

satisfy all topological and functioning

properties.

The following running example will be used to

illustrate some key points of the discussion. Assume

that the following text in the formal style that

describes the desired functionality of some book

returning machine in the library is presented:

“When the client appears, he can return the

book to the book returning machine. The client puts

the book into the special tray and enters his data of

the registration. Then, the machine checks the

registration and scans the image of a book. The

machine searches for the loaned book in a reader

account. If it is found, the machine checks the end

date of a book loan and evaluates the condition of a

book. If the end date is not exceeded and the condition

is good, then the machine sends the book to the

storage. Otherwise, if the end date is exceeded or the

condition is not good, the machine calculates, writes

out and imposes the fine to the client. And only then

the machine sends the book to the book storage. The

client receives the imposed fine. After sending the

book to the storage, the machine waits for a new

request.”

In the text, domain objects and their properties

are expressed as a noun together with its direct object

that is not expressed as a numeral or a pronoun. For

example, they can be things, phenomena, products,

results of actions, documents, catalogues, human role,

services, organizations etc. For each noun, synonyms

and homonyms must be analysed as well as their

correct sense in each case of a use, e.g., a “train” in

one case is a locomotive together with a certain

number of carriages, while in other case it is a single

locomotive (Asnina and Osis, 2011).

It must be able to determine which of domain

objects are external systems or subsystems/actors. It

is necessary to analyse the meaning of nouns, i.e. do

they indicate roles, work positions, organizational

units such as departments and business centres,

organizations, and names of subsystems. A company

that uses by-products of functionality of the

organization can also be mentioned as an example.

“Those objects, which are not subsystems of the

system under consideration and whose functionality

is not directly subordinated to the system, are external

systems” (Asnina and Osis, 2011).

Nouns in the running example (the underlined

words) as well as their meaning and purpose in the

domain are illustrated in Table 1.

Table 1: Nouns and their purpose in the domain.

Noun Purpose

Client Object, actor (executor)

Book Object

Machine System, actor (provider, executor;

(noun phrase)

Tray Object, Element of the machine

Data Properties of the registration

(must be refined; noun phrase)

Registration Object (result of the process)

Image Property of the book (noun phrase)

Reader Object (noun phrase)

Account Object, Property of the reader (noun

phrase)

End date Property of the loan (noun phrase)

Loan Object (result of the process)

Condition Property of the Book (noun phrase)

Storage Object, Element of the machine

Fine Object

Request Object

Discovering of functional features relates to

determination of “a business function” (Asnina and

Osis, 2011). A list of functional features must be

defined accordingly to the verbs (actions A), their

preconditions (PreCond) and postconditions

(PostCond). Preconditions are a set of conditions that

allows triggering the action. Postconditions are a set

of conditions that are set after a functional feature was

executed. A business rule can be either a condition or

a functional feature.

A list of domain object identified in the previous

step contains objects that are used in the context of

this action (O), objects that are the results of this

action (R), objects that are marked as external

systems or subsystems/actors that either provide (Pr)

or execute (Ex) this concrete action. Together the

action, results and the object with preposition form a

description (name) of the functional feature.

In the running example, the verbs (in the active

voice) are denoted by bold. Adding “-ing” to them

and joining objects we can form the part of the

specification of functional features (Table 2).

Conditions highlighted in text in italic are enumerated

in Table 3.

Identification of the list of cause-and-effect

relations among functional features is based on the

fact that “a cause-and-effect relation between two

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

504

Table 2: Actions, objects and results.

Id Action Result Object Providers Executors Verb

1 Appearing [of] [a] Client Client appear

2 Returning [a] Book Machine Client return

3.1 Putting [a] Book Machine,

Tray

Client put

3.2 Entering [the] data [of] [a] Registration Machine Client enter

4 Checking [the] Registration [of] [a] Client Machine Machine check

5 Scanning [the] image [of] [a] Book Machine Machine scan

6 Searching for [the] Book [in] [a] Reader Account Machine Machine search

7 Checking [the] end date [of] [a] Loan Machine Machine check

8 Evaluating [the] condition [of] [a] Book Machine Machine evaluate

9 Calculating [the] Fine [to] [a] Client Machine Machine calculate

10 Writing out [the] Fine [to] [a] Client Machine Machine write out

11 Imposing [the] Fine [to] [a] Client Machine Machine impose

12 Sending [the] Book [to] [a] Storage Machine Machine send

13 Receiving [a] Fine Client receive

14 Waiting for [a] Request Machine Machine wait for

Table 3: Conditions.

Condition Postcondition

of

Precondition

for

Explanation

If the book is found 6 7 IF part

If the end date is not exceeded AND the condition is good 7, 8 12 IF part

If the end date is exceeded OR the condition is not good 7, 8 9 IF part (that begins the

chain of 9, 10, 11)

Table 4: Cause-and-effect relations.

Id Cause Effect Explanation

1-2 1 2 Chronological sequence indicated in the description “When <clause1>, <clause 2>”

2-3.1 2 3.1 Chronological sequence implicitly indicated in the description.

2-3.2 2 3.2 Chronological sequence implicitly indicated in the description.

3.1-4 3.1 4 Chronological sequence indicated in the description “<Sentence1>. Then <sentence 2>”

3.2-4 3.2 4 Chronological sequence indicated in the description “<Sentence1>. Then <sentence 2>”

4-5 4 5 Chronological sequence indicated in the description “<verb phrase 1> and <verb phrase

2>”, where “and” meaning is “if <action 1> is successful, then <action 2>”

5-6 5 6 Chronological sequence implicitly indicated in the description.

6-7 6 7 Chronological sequence indicated in the text as precondition: “If <condition>, <clause>”

6-8 6 8 Chronological sequence indicated in the description as precondition:

“If <condition>, “<verb phrase 1> and <verb phrase 2>”

7-9 7 9 Chronological sequence indicated in the text with the precondition:

 “If <condition>, <clause>”

8-9 8 9 Chronological sequence indicated in the text with the precondition:

 “If <condition>, <clause>”

9-10 9 10 Chronological sequence indicated in the description as a sequence of actions:

 “<verb phrase 1>, <verb phrase 2>, and <verb phrase 3>”

9-12 9 12 Chronological sequence indicated in the text with the precondition:

 “If <condition>, <clause>”

10-11 10 11 Chronological sequence indicated in the description as a sequence of actions:

 “<verb phrase 1>, <verb phrase 2>, and <verb phrase 3>

11-12 11 12 Chronological sequence indicated in the text with the phrase: “And only then <clause>”

11-13 11 13 Chronological sequence implicitly indicated in the description.

12-14 12 14 Chronological sequence indicated in the description “After <clause1>, <clause 2>”

14-4 14 4 Chronological sequence implicitly indicated in the description.

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

505

functional features of the system exists if the

appearance of one feature is caused by the appearance

of the other feature without participation of any third

(intermediary) feature” (Asnina and Osis, 2011). The

connection between a cause-and-effect is represented

as causal implication, where a logical sequence can

serve as a form of expression of it. A cause

chronologically precedes and triggers an effect. Most

of causal implications involve multiple factors. In

order to identify the cause-and-effect relation the

following advices can be mentioned (Asnina and

Osis, 2011):

 Words and phrases that can signal relations,

e.g., accordingly, because, effect, in order that,

since, cause, for, therefore, as a result, if…then,

why, consequently, due to, etc.

 Causative verbs, e.g., have, get, let, allow, re-

quire and so on.

 Some suffixes that indicate changes, causes and

effects: “-ate” can mean to become, to cause

(e.g., to update), “-ation” – the result of -ing

(e.g., registration is the result of registering

process), “-ize” – to make, a cause to be (e.g.,

finalize), etc.

Table 5: Logical relations: CER denotes cause-and-effect relations, LO denotes a logical operation on the set of cause-and-

effect relations.

CER LO Explanation

2-3.1, 2-3.2 AND LO is indicated in the description “<verb phrase 1> and <verb phrase 2>”

3.1-4, 3.2-4, 14-4 AND LO is implicit and is inferred using logical speculations.

6-7, 6-8 AND LO is indicated in the description under the same precondition “If the book is found”

7-9, 8-9 OR LO is indicated in the precondition “If the end date is exceeded OR the condition is not

good”.

9-10, 9-12 XOR LO is indicated as two text blocks under mutually exclusive preconditions:

1) If the end date is not exceeded AND the condition is good, and

2) If the end date is exceeded OR the condition is not good”

11-12, 9-12 XOR LO is inferred using logical analysis of chains of cause-and-effect relations: getting the

same state from two mutually exclusive paths.

11-13, 11-12 AND LO is implicit.

Figure 1: The topological space for the domain with the book returning machine.

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

506

In the running example, the chronological and

conditional sequences are got using text analysis and

inferring based on the experience (Table 5). The

composed topological space is illustrated in Figure 1.

If we decide to get the TFM of the book returning

machine, then we should join neighbourhoods of

functional features, where a provider is Machine. In

this example, the TFM is equal to the constructed

topological space.

The topological cycles are identified as closed

paths in the graph, and they are 4-5-6-7-9-10-11-12-

14-4, 4-5-6-7-8-10-11-12-14-4, 4-5-6-7-9-12-14-4,

and 4-5-6-8-9-12-14-4. The order of cycles must be

defined by the expert.

Analysing nouns, we can find that words

“registration” and “loan” indicate the processes that

are not mentioned in the description, but it must be

done before.

4 NEEDED CHARACTERISTICS

OF NLP TOOLS

4.1 NLP Application for Constructing
the TFM: A Vision

In order to define what characteristics of the NLP

tools are needed, let us first consider the scheme of

the knowledge frame system and required knowledge.

According to the initial scheme of the knowledge

frame system (Nazaruks and Osis, 2017), the lists of

elements (Section 3.2) should be kept in the instances

of the following frame classes:

 manually filled in: FunctionalFeature and

Properties,

 manually filled in with some generable values

of slots: Object and TopologicalCycle,

 generated: CauseAndEffectRelation and

TopologicalOperations, and identifiers of all

instances of all frame classes.

The frame class CauseAndEffectRelation has slot

values that are generated based on the facts that the

cause is specified by its precondition, while the effect

is specified by its postcondition (Donins, 2012b).

Instances of the frame class TopologicalOperation

have the name that must be set “as a union of values

of slots ‘action’ and ‘result’ of FunctionalFeature, the

slot ‘owner’ gets its value based on the value of slot

‘object’ in the frame FunctionalFeature, and slot

‘returnType’ by a type of the value of the slot ‘result’”

(Nazaruks and Osis, 2017).

In instances of the frame class Object the only

generated values are those of slot

topologicalOperation, and in instances of the

TopologicalCycle – values of slot functionalFeatures

that holds a set of references to functional features

that are involved in a cycle (closed path).

In this research the focus is put on knowledge that

is to be added manually, i.e., values for slots of frame

classes Object, Property, and FunctionalFeature. The

frame TopologicalCycle is skipped since it requires

manual human participation only in determination of

the order of cycles.

In the IDM (Slihte, 2015), use case scenario text

processing is performed by The Stanford Parser for

identifying the executors (Ex) and the description of

the functional feature that is a union of O, A and R in

accordance with the following sentence parsing rules:

 Sentences of use case steps must be in simple

form to answer a question “Who does what?”;

 Identify coordinating conjunctions to split a

sentence into several clauses, and, thus, several

functional features;

 Identify the verb phrase (VP) that is considered

as a union of action A, object O and result R;

 Identify the noun phrase (NP) that can be either

object O, result R or an executor Ex;

 Preconditions are taken directly from the

corresponding preceding events;

 Postconditions are next functional features in

the scenario or sequential events.

In case of formal but unstructured text we cannot

use the same principles for discovering pre- and

postconditions, while others are suitable. Therefore,

NLP tools must be able to perform all four NLP tasks:

“tokenization, part-of-speech (POS) tagging,

chunking, and Name Entity Recognition

(NER)/Classification” (Pinto, Oliveira and Oliveira

Alves, 2016) as well as semantic analysis of noun and

verb phrases. Besides that, the tagged text and parsed

trees must be semantically analysed to identify causal

dependencies. In step of NER/Classification noun and

verb ontology banks must be used. The general

scheme of textual description processing should be as

in Figure 2.

4.2 NLP Pipelines for Assistance in the
Topological Functioning Modelling

There are a lot of NLP tools (Pinto, Oliveira and

Oliveira Alves, 2016) that allow processing text as in

a formal as in an informal style (such as used in

forums, blogs, and chats). Our research is oriented on

finding tools that work with the formal style, since

processing is needed for formal documentation.

In our research we want to focus on non-

commercial pipeline solutions that do not require

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

507

Textual description in formal style

Tokenization of sentences

POS tagging

Chunking

NER/Classification

Semantical analysis of clauses and

coordinating conjunctions,

prepositions, adverbs

Semantical analysis of words and

phrases that signal relations

Semantical analysis of verbs in VP:

forms, tenses and suffixes

List of Objects and their Properties

List of Functional Features

Figure 2: The general scheme of textual description

processing for construction of the TFM.

complex installation and that are not complex to

understand. The language of processed text is

English. The list of pipeline software solutions

includes Apache OpenNLP, FreeLing, GATE,

LingPipe, Natural Language Tool Kit (NLTK), and

StanfordNLP (Rodrigues and Teixeira, 2015).

LingPipe has a free licence and a commercial one.

The Stanford CoreNLP toolkit (Manning et al.,

2014) contains components that deal with

tokenization, sentence splitting, POS tagging,

morphological analysis (identification of base forms),

NER, syntactical parsing, coreference resolution and

other annotations such as gender and sentiment

analysis. It can be accessed from many programming

languages, e.g. Java, Python, Ruby, and .NET C#/F#.

The NER component recognizes names (PERSON,

LOCATION, ORGANIZATION, MISC –

miscellaneous) and numerical (MONEY, NUMBER,

DATE, TIME, DURATION, SET) entities. Phrases

can be parsed using both constituent and dependency

representations based on a probabilistic parser that is

more accurate according to the parsers that relate to

some predefined structures. Discovering basic

dependencies can help in further identification of

actions and corresponding objects, results, modes

(that can serve for identification of causal

dependencies), executors and providers. Besides that,

the Standford CoreNLP implements mention

detection and pronominal and nominal coreference

resolution that can help in dealing with pronouns and

noun phrases that denote concrete phenomena.

Apache OpenNLP (Apache OpenNLP

Development Community, 2017) is a machine

learning based toolkit. It provides Java library for

such tasks as tokenization, sentence segmentation,

POS tagging, NER, chunking, parsing and

coreference resolution. OpenNLP includes

components that allow training and evaluating

models. The components are available via their

Application Programming Interfaces (APIs). NER

can find named entities and numbers using a model of

entity types for a language. OpenNLP has several pre-

trained models for English, i.e. for dates, locations,

money, organizations, percentages, persons, and

time. OpenNLP can categorize document contents

into predefined categories. The POS tagger marks

tokens with their word type and the context using a

probability model. The POS tagger may be trained on

annotated training sentences and can find base forms

of words. Opposite to the Stanford CoreNLP, in

chunking OpenNLP provides only separation of

syntactically correlated groups of words (noun

phrases and verb phrases), but it does not specify their

internal and external dependencies. At the present, the

parser that is intended for discovering dependencies

is developed only for demonstration and testing.

Coreference resolution is also limited to noun phrase

mentions. The main advantage of OpenNLP is

possibility to train models.

The third pipeline is FreeLing (Carreras et al.,

2004; Padró et al., 2010; Padró and Stanilovsky,

2012). FreeLing is a C++ library for multi-language

NLP tasks that supports customisation. The supported

tasks are tokenization, sentence splitting,

morphological analysis, NER, POS tagging, Word

Sense Disambiguation, Semantic Role Labelling,

dependency parsing, shallow parsing, WordNet-

based sense annotations, and coreference resolution.

NER allows recognizing and classifying dates,

numbers, physical magnitudes, currency, ratios. The

morphological analysis supports number, quantity

and date recognition from word groups,

customization of the behaviour of the analysis chain

triggered by a regular expression, aggregation of

multiple words in a single word object, NER with the

precision about 85% for the “basic” module and over

90% for the “bio” module. FreeLing supports analysis

of alternatives for words, searching all senses for a

word or performing word-sense-disambiguation. The

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

508

Named Entity Classification module differs from

NER with predefined four classes: Person,

Geographical location, Organization, and Others.

Besides that, it allows defining the context features

that extend the predefined classes. Chunking is

performed by the Chart Parser Module. Dependency

parsing is either based on rules defined in the file, or

uses a statistical dependency parsing module.

Coreference resolution allows mention detection and

feature extraction. The advanced Semantic Graph

Extractor Module supports building a semantic graph

that encodes events, relations among events and the

actors participating in those events. This module

could be useful for discovering causal dependencies

of TFM functional features.

GATE is a toolkit that includes “a desktop client

for developers, a workflow-based web application, a

Java library, an architecture and a process” (The

University of Sheffield, 2018). The Information

Extraction System supports the following tasks:

tokenisation; sentence splitter; morphological

analysis (Lemmatiser for determination of base forms

of words, Gazetteer for identification of entity names

(such as currency, days) in the text based on lists);

POS tagger; NER performed by the Semantic Tagger

that supports such entity types as Person (and gender),

Location and its sub-types, Organization and its sub-

types, Money, Percent, Date in the form of date, time

and dateTime, Address, Identifier and Unknown;

coreference resolution by OrthoMatcher between

named entities, and pronominal coreference in noun

phrases. In GATE, chunking is supported by several

predefined rules and can be customized by a

developer.

LingPipe (Carpenter and Breck, 2011; Alias-i, no

date) is a Java-based toolkit for NLP processing using

computational linguistics. The main tasks are NER

and Classification, POS tagging and chunking, and

Chinese Word Segmentation. Besides that, it supports

sentence splitting, spelling correction, sentiment

analysis, singular value decomposition and word

sense disambiguation.

The last one, the NLTK framework (Bird, Loper

and Klein, 2009; NLTK Project, 2017), is dedicated

for programs on Python and provides easy-to-use

interfaces for multiple corpora and lexical resources

such as WordNet. At the beginning, the NLTK was

dedicated to processing textual documents in the

formal style, but now it can use also corpora for

different genres. The NLTK supports a usage of

users’ corpora and corpora in other but English

languages. A use of different corpora supports

semantic analysis of the type “is-a-part-of”,

discovering synonyms and homonyms. The NLTK

supports the tasks of tokenization, POS tagging,

chunking, and NER. For example, tagging of verbs

can help in analysis of their forms: Are they, for

example, in past tense or they have the past participle

form? In order to rise the precision of tagging, it is

possible to combine the taggers provided.

The NLTK implements Named Entity

Classification via decision trees, naive Bayes

classifiers, and probabilistic models. Chunking

relates as to noun phrases as to verb phrases and

supports a use of regular expressions for

determination of word groups and their hierarchy as

well as for word groups that should be excluded from

this process.

The NER includes recognition of the following

entity types: ORGANIZATION, PERSON,

LOCATION, DATE, TIME, MONEY, PERCENT

FACILITY, and GPE (for geo-political entities). The

interesting function suggested in the NLTK is

Relation Extraction that allows extracting relations

among named entities. The NLTK supports also

analysis of phrase structure grammars, dependencies

and dependency grammars. It could be useful for

discovering the structure of functional characteristics

by analysing the structure of a sentence and causal

dependencies between sentences or clauses.

Table 6: NLP tools for knowledge extraction activities for the topological functioning modelling: T – tokenization, POS –

POS tagging, CH – chunking, NER – NER/Classification, and assistance in A-CL – analysis of dependencies between

clauses/sentences, A-NP – analysis of dependencies in complex noun phrases, A-PR – analysis of dependencies in predicates,

A-VP – analysis of verbs in verb phrases.

NLP tools
Activity

T POS CH NER A-CL A-NP A-PR A-VP

Stanford CoreNLP toolkit v v v v v v v v

Apache OpenNLP v v v v v

FreeLing v v v v v v v v

GATE v v v v v

LingPipe v v v v

NLTK framework v v v v v v v v

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

509

However, the accuracy of this analysis can be

decreased because of syntactic ambiguity of

sentences in NL.

The support of the defined tasks of the topological

functioning modelling by the considered NLP tools is

summarized in Table 6. The largest support of the

required tasks comes from the Stanford CoreNLP

toolkit, FreeLing and NLTK framework.

5 CONCLUSIONS

The topological functioning modelling is based on

knowledge extraction from multiple verbal

descriptions of the functions, behaviour, phenomena

and structure of the domain. In case of introducing the

frame system as a core storage for those knowledge,

extraction of it is likely to be automated to be more

valuable for software developers or business/system

analytics.

The NLP tools support automated knowledge

extraction from formal and informal text. The

precision of the extraction may differ, but some tools

support training a model for NL text processing.

We have defined the tasks for text processing in

order to get knowledge necessary for the topological

functioning modelling. They are tokenization, POS

tagging, chunking, NER/Classification, and

assistance in analysis of dependencies between

sentences, in complex noun phrases and verb phrases,

in predicates, and analysis of verb forms and tenses.

The most difficult tasks relate to analysis of

dependencies among sentences, verb phrases and

predicates. Some dependencies are not explicitly

indicated in the text, thus inferring is required.

All the tasks in some degree are supported by the

Stanford CoreNLP toolkit, FreeLing and NLTK

framework.

We plan to perform research on opportunities

provided by these toolkits in more detail. The future

research direction relates to practical experiments

with the three pipelines in order to evaluate the

easiness of implementation of knowledge extraction

as well as precision of the discovered knowledge,

extension of tool functions and to understand their

performance issues.

REFERENCES

Alias-I, no date. LingPipe Home, LingPipe. Available at:

http://alias-i.com/lingpipe/index.html (Accessed: 10

January 2018).

Amardeilh, F., Laublet, P. and Minel, J.-L., 2005.

Document annotation and ontology population from

linguistic extractions, in Proceedings of the 3rd

international conference on Knowledge capture - K-

CAP ’05. New York, New York, USA: ACM Press, pp.

161–168. doi: 10.1145/1088622.1088651.

Apache OpenNLP Development Community, 2017.

Apache OpenNLP Developer Documentation, Version

1.8.4. The Apache Software Foundation. Available at:

https://opennlp.apache.org/docs/1.8.4/manual/opennlp.

html (Accessed: 10 January 2018).

Asnina, E., 2006. The Computation Independent

Viewpoint: a Formal Method of Topological

Functioning Model Constructing, Applied computer

systems, 26, pp. 21–32.

Asnina, E. and Osis, J., 2010. Computation Independent

Models: Bridging Problem and Solution Domains, in

Proceedings of the 2nd International Workshop on

Model-Driven Architecture and Modeling Theory-

Driven Development. Lisbon: SciTePress - Science and

and Technology Publications, pp. 23–32. doi:

10.5220/0003043200230032.

Asnina, E. and Osis, J., 2011. Topological Functioning

Model as a CIM-Business Model, in Model-Driven

Domain Analysis and Software Development. Hershey,

PA: IGI Global, pp. 40–64. doi: 10.4018/978-1-61692-

874-2.ch003.

Asnina, E. and Ovchinnikova, V., 2015. Specification of

decision-making and control flow branching in

Topological Functioning Models of systems, in ENASE

2015 - Proceedings of the 10th International

Conference on Evaluation of Novel Approaches to

Software Engineering.

Bhala, V., Vidya Sagar, R. and Abirami, S., 2014.

Conceptual modeling of natural language functional

requirements, The Journal of Systems & Software, 88,

pp. 25–41. doi: 10.1016/j.jss.2013.08.036.

Bird, S., Loper, E. and Klein, E., 2009. Natural Language

Processing with Python. O’Reilly Media Inc.

Cannataro, M., Guzzo, A. and Pugliese, A., 2002.

Knowledge management and XML: derivation of

synthetic views over semi-structured data, ACM

SIGAPP Applied Computing Review. ACM, 10(1), p.

33. doi: 10.1145/568235.568242.

Carpenter, B. and Breck, B., 2011. NLP with LingPipe.

Draft 0.5. Available at: http://alias-i.com/lingpipe-

book/index.html (Accessed: 10 January 2018).

Carreras, X., Chao, I., Padró, L. and Padró, M., 2004.

FreeLing: An Open-Source Suite of Language

Analyzers, in Proceedings of the 4th International

Conference on Language Resources and Evaluation

(LREC’04).

Donins, U., 2012a. Semantics of Logical Relations in

Topological Functioning Model, in Proceedings of the

7th International Conference on Evaluation of Novel

Approaches to Software Engineering, Wrocław,

Poland, 29-30 June, 2012. SciTePress, pp. 217–223.

Donins, U., 2012b. Topological Unified Modeling

Language: Development and Application. Riga

Technical University.

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

510

Elbendak, M., Vickers, P. and Rossiter, N., 2011. Parsed

use case descriptions as a basis for object-oriented class

model generation, Journal of Systems and Software,

84(7), pp. 1209–1223. doi: 10.1016/j.jss.2011.02.025.

Elstermann, M. and Heuser, T., 2016. Automatic Tool

Support Possibilities for the Text-Based S-BPM

Process Modelling Methodology, in Proceedings of the

8th International Conference on Subject-oriented

Business Process Management - S-BPM ’16. New

York, New York, USA: ACM Press, pp. 1–8. doi:

10.1145/2882879.2882882.

Friedrich, F., Mendling, J. and Puhlmann, F., 2011. Process

Model Generation from Natural Language Text, in

Proceedings of the 23rd International Conference on

Advanced Information Systems Engineering (CAiSE

2011), pp. 482–496. doi: 10.1007/978-3-642-21640-

4_36.

Ilieva, M. G. and Ormandjieva, O., 2006. Models Derived

from Automatically Analyzed Textual User

Requirements, in Fourth International Conference on

Software Engineering Research, Management and

Applications (SERA’06). IEEE, pp. 13–21. doi:

10.1109/SERA.2006.51.

Jabbarin, S. and Arman, N., 2014. Constructing use case

models from Arabic user requirements in a semi-

automated approach, in 2014 World Congress on

Computer Applications and Information Systems,

WCCAIS 2014. Hammamet: IEEE, pp. 1–4. doi:

10.1109/WCCAIS.2014.6916558.

Jones, D. E., Igo, S., Hurdle, J. and Facelli, J. C., 2014.

Automatic Extraction of Nanoparticle Properties Using

Natural Language Processing: NanoSifter an

Application to Acquire PAMAM Dendrimer

Properties, PLoS ONE. Edited by V. Ceña, 9(1), p.

e83932. doi: 10.1371/journal.pone.0083932.

Krishnan, H. and Samuel, P., 2010. Relative Extraction

Methodology for class diagram generation using

dependency graph, in 2010 INTERNATIONAL

CONFERENCE ON COMMUNICATION CONTROL

AND COMPUTING TECHNOLOGIES. IEEE, pp.

815–820. doi: 10.1109/ICCCCT.2010.5670730.

Leopold, H., Mendling, J. and Polyvyanyy, A., 2014.

Supporting Process Model Validation through Natural

Language Generation, IEEE Transactions on Software

Engineering, 40(8), pp. 818–840. doi:

10.1109/TSE.2014.2327044.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,

Bethard, S. J. and Mcclosky, D., 2014. The Stanford

CoreNLP Natural Language Processing Toolkit, in

Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics: System

Demonstrations, pp. 55–60.

Miller, J. and Mukerji, J., 2001. Model Driven Architecture

(MDA), Architecture Board ORMSC. Available at:

http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01.

Nakamura, Y., Takahashi, M., Onda, M. and Ohta, Y.,

1996. Knowledge extraction from diagram and text for

media integration, in Proceedings of the Third IEEE

International Conference on Multimedia Computing

and Systems. IEEE Comput. Soc. Press, pp. 488–492.

doi: 10.1109/MMCS.1996.535897.

Nassar, I. N. and Khamayseh, F. T., 2015. Constructing

Activity Diagrams from Arabic User Requirements

using Natural Language Processing Tool, in 2015 6th

International Conference on Information and

Communication Systems (ICICS). Amman: IEEE, pp.

50–54. doi: 10.1109/IACS.2015.7103200.

Nazaruks, V. and Osis, J., 2017. Joint Usage of Frames and

the Topological Functioning Model for Domain

Knowledge Presentation and Analysis, in Proceedings

of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering - Volume 1:

MDI4SE. Porto, Portugal: SCITEPRESS - Science and

Technology Publications, pp. 379–390. doi:

10.5220/0006388903790390.

NLTK Project, 2017. Natural Language Toolkit — NLTK

3.2.5 documentation. Available at:

http://www.nltk.org/ (Accessed: 10 January 2018).

Osis, J. and Asnina, E., 2011a. Is Modeling a Treatment for

the Weakness of Software Engineering?, in Model-

Driven Domain Analysis and Software Development.

Hershey, PA: IGI Global, pp. 1–14. doi: 10.4018/978-

1-61692-874-2.ch001.

Osis, J. and Asnina, E., 2011b. Topological Modeling for

Model-Driven Domain Analysis and Software

Development : Functions and Architectures, in Model-

Driven Domain Analysis and Software Development:

Architectures and Functions. Hershey, PA: IGI Global,

pp. 15–39. doi: 10.4018/978-1-61692-874-2.ch002.

Osis, J., Asnina, E. and Grave, A., 2007. MDA oriented

computation independent modeling of the problem

domain, in Proceedings of the 2nd International

Conference on Evaluation of Novel Approaches to

Software Engineering - ENASE 2007. Barcelona:

INSTICC Press, pp. 66–71.

Osis, J., Asnina, E. and Grave, A., 2008. Formal Problem

Domain Modeling within MDA, in Filipe, J., Shishkov,

B., Helfert, M., and Maciaszek, L. A. (eds) Software

and Data Technologies: Second International

Conference, ICSOFT/ENASE 2007, Barcelona, Spain,

July 22-25, 2007, Revised Selected Papers. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 387–398.

doi: 10.1007/978-3-540-88655-6_29.

Osis, J. and Slihte, A., 2010. Transforming Textual Use

Cases to a Computation Independent Model, in Osis, J.

and Nikiforova, O. (eds) Model-Driven Architecture

and Modeling-Driven Software Development: ENASE

2010, 2ndMDA&MTDD Whs. SciTePress, pp. 33–42.

Osman, C.-C. and Zalhan, P.-G., 2016. From Natural

Language Text to Visual Models: A survey of Issues

and Approaches, Informatica Economica, 20(4), pp.

44–61. doi: 10.12948/issn14531305/20.4.2016.01.

Padró, L., Collado, M., Reese, S., Lloberes, M. and

Castellón, I., 2010. FreeLing 2.1: Five years of open-

source language processing tools, Proceedings of 7th

Language Resources and Evaluation Conference

(LREC 2010), ELRA La Valletta, Malta. May, 2010.

Padró, L. and Stanilovsky, E., 2012. FreeLing 3.0: Towards

Wider Multilinguality FreeLing project developer, in

Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling

511

Proceedings of the Language Resources and

Evaluation Conference (LREC 2012) ELRA. . Istanbul,

Turkey: European Language Resources Association

(ELRA).

Pinto, A., Oliveira, H. G. and Oliveira Alves, A., 2016.

Comparing the Performance of Different NLP Toolkits

in Formal and Social Media Text *, 5th Symposium on

Languages, Applications and Technologies

(SLATE’16). Open Access Series in Informatics., p. 3:1-

3:16; Article No.3; doi: 10.4230/OASIcs.

SLATE.2016.3.

Rodrigues, M. and Teixeira, A., 2015. Advanced

Applications of Natural Language Processing for

Performing Information Extraction. Cham: Springer

International Publishing (SpringerBriefs in Electrical

and Computer Engineering). doi: 10.1007/978-3-319-

15563-0.

Slihte, A., 2015. The Integrated Domain Modeling: an

Approach & Toolset for Acquiring a Topological

Functioning Model. Riga Technical University.

Slihte, A., Osis, J. and Donins, U., 2011. Knowledge

Integration for Domain Modeling, in Osis, J. and

Nikiforova, O. (eds) Model-Driven Architecture and

Modeling-Driven Software Development: ENASE

2011, 3rd Whs. MDA&MDSD. SciTePress, pp. 46–56.

Šlihte, A. and Osis, J., 2014. The Integrated Domain

Modeling: A Case Study, in Databases and

Information Systems: Proceedings of the 11th

International Baltic Conference (DB&IS 2014).

Tallinn: Tallinn University of Technology Press, pp.

465–470.

The University of Sheffield, 2018. GATE: a full-lifecycle

open source solution for text processing. Available at:

https://gate.ac.uk/overview.html (Accessed: 10 January

2018).

MDI4SE 2018 - Special Session on Model-Driven Innovations for Software Engineering

512

