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Abstract: A Newton-like algorithm and some line search strategies for solving discrete-time algebraic Riccati equations
are discussed. Algorithmic and implementation details incorporated in the developed solver are described.
Some numerical results of an extensive performance investigation on a large collection of examples are sum-
marized. These results often show significantly improved accuracy, measured in terms of normalized and
relative residuals, in comparison with the state-of-the-art MATLAB function. The new solver is strongly
recommended for improving the solutions computed by other solvers.

1 INTRODUCTION The solutions of a DARE are the matricés= X7
for which R (X) = 0. Usually, what is needed is
Many procedures for control systems analysis and de-a stabilizing solution Xs, for which the matrix pair
sign require the solution of algebraic Riccati equa- (A — copBK(Xs)),E) is stable (in a discrete-time
tions (AREs). Such equations appear in various do- sense), where ol(Xs)) is the gain matrix of the op-
mains and practical applications, including model re- timal regulator or estimator, given by
duction, optimal filtering, guidance, (robust) control, PN T
robotics, etc. Discrete-time AREs (DARES) are im- K(X) :==R(X)"L(X)", 3)
portant since many measured systems are modeled byyiih x replaced byXs. For the dynamic system
difference equations. LeA, E € RN, Be R”X_m, EXc1 = A%+ Bug, k= 0,1,..., X(0) = Xo, the op-
andQ andR be symmetric matrices of suitable dimen- ima| control trajectory is given by the state feedback
sions. In a compact notation, the gen.erallzed DARES, |aw e = —0K (Xs)Xc. By a proper selection dp, S,
with unknownX = XT € R™", are defined by andR, the closed-loop dynamics can be modified to
0 = Q+ op(A) "Xop(A) — opE) "X opE) achieve a fast transient response, disturbance rejec-
A —1 T . tion, etc. Note that for a filtering problerB, should
—OLEORX) LX) =2 RA(X), (1) be replaced by the transpose@fand the computed

whereo = £1, E andR(X) are nonsingular, and K(X) is the transpose of the filter gain matrix. When
R(X) := R+0BTXB Y is not a solution of (1), the® (Y) differs from the
. _ zero matrix; R (Y) is called theresidualof (1) inY.
L(X) = S+op@) XB, @ The Frobenius norm R(Y), |R(Y)[[F, is ameasure
with S of suitable size. The operator dp{ repre- of the error inY with respect to the solutioX.
sents eitheM or MT, corresponding to a control or a There is an impressive literature concerning the-

filtering problem, respectivelyA andE are the state  ory and numerical solution of AREs and their practi-

and descriptor matrices, respectively, of a linear time- cal applications. Several monographs, e.g., (Ander-
invariant dynamic system, and, in a control settiBg, son and Moore, 1971; Bini et al., 2012; Lancaster
is the input matrix. The use of the sign througho and Rodman, 1995; Mehrmann, 1991; Sima, 1996)
offers a greater generality. In practice, oft@nand address various theoretical and practical results. Ex-
Sare expressed &' QC andS=C'S respectively, istence and uniqueness results for ARE solutions are
whereC € RP*" is the output matrix of the system, dealt with, for instance, in (Lancaster and Rodman,
andC, Q, andSare given. 1980; Lancaster et al., 1986; Lancaster et al., 1987).
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Many “direct” or iterative algorithms have been pro- 2 CONCEPTUAL ALGORITHM

posed for solving AREs. The first class includes

the (generalized) Schur techniques, e.g., (Arnold and The followingAssumptionsare made:

Laub, 1984; Kenney et al., 1989; Laub, 1979; Pap- e :

pas et al., 1980; Van Dooren, 1981), or structure- 1 Matr?xE ITQ' nonsingular. . .

exploiting (QR-like) methods, e.g., (Bunse-Gerstner 2. Matrix pair(op(E) ~*op(A), op€) *B) is stabi-

and Mehrmann, 1986; Sima and Benner, 2015; Ben-  lizable.

ner et al., 2016). (These techniques are actually also 3. Matrix R= R" is non-negative definiteR> 0).

iterative, but they are applied to a matrix or matrix 4. A stabilizing solutionXs exists and it is unique

pencil defined by the given matrices of an ARE.) The ™ dR(X) i itive d Sfinit A% 0 que,

second class has several categories, including sign andR(Xs) is positive definite R(Xs) > 0).

function techniques, e.g., (Balzer, 1980; Byers, 1987; Note that Assumption 1 is not actually used by the

Gardiner and Laub, 1986: Roberts, 1980; Sima and developed solver, contrary to other solvers (including

Benner, 2008), Newton techniques, e.g., (Anderson, MATLAB function dar e).

1978: Arnold and Laub, 1984; Guo and Laub, 2000; The algorithmic variants considered in the se-

Hammarling, 1982), doubling algorithms, e.g., (Chu quel for DAREs are extensions of Newton’s method,

et al., 2005; Guo et al., 2006; Guo et al., 2007; Guo, Which employ aline searchprocedure attempting to

2016), or recursive algorithms (Lanzon et al., 2008). reduce the residual along the Newton direction.
Newton’s method for solving AREs has been The conceptual algorithm can be stated as fol-

considered by many authors, for instance, (Klein- lows (Benner, 1998):

man, 1968; Hewer, 1971; Arnold and Laub, 1984; Algorithm NDARE: Modified Newton method for

Mehrmann, 1991; Lancaster and Rodman, 1995; pARE

Sima, 1996; Benner, 1997; Benner, 1998; Benner . .- .

and Byers, 1998). Moreover, the matrix sign func- Input: Th? coefflc_lentTatTnceE, A B QR ands

: _ . and an initial matrixXp = X .

tion method for AREs, see (Byers, 1987; Gardiner Output: The approximate solutioXy of DARE (1)

and Laub, 1986) and the references therein, is actu- ' '

ally a specialization of Newton’s method for comput- FORk=0,1,... kmax, DO

ing the square root of the identity matrix of order.2 1. Compute R (X). If convergence or non-
Newton’s method is best used for iterative im- convergence is detected, retotpand/or a warn-

provement of a solution, or as a defect correction ing or error indicator value.

method (Mehrmann and Tan, 1988), delivering the 2. ComputeK, := K(X) in (3) and ophy), where

maximal possible accuracy when starting fromagood A, = op(A) — 0BK.

approximate solution. Moreover, it may be preferred 3. Solve the discrete-time generalized Stein equation

in implementing certain fault-tolerant or slowly vary- T T

ing systems, which require online controller updat-  OP®«) Nkop(Ax) — 0pE) 'Ncop(E) = —R(X«)

ing (Ciubotaru and Staroswiecki, 2009); then, the pre- (4)
viously computed ARE solution can be used for ini- for Ng. _ _ _ o
tialization. Some robotics applications can also ben- 4. Find a step siz& which approximately minimizes
efit from using iterative ARE solvers. For this rea- |R.(X+tN) [|8, with respect td.

son, such algorithms are used in a hew open-source - UpdateX1 = Xk + tN.
C++ library for robotics, optimal and model predic- END
tive control (Giftthaler et al., 2018), for solving both
continuous-time AREs (CARESs) and DAREs.

This paper summarizes the main theoretical facts equation hag = I,
about Newton s method for D.ARES' as well as |mplg— Standard Newton algorithm is obtained by taking
mentation issues and numerical results obtained usmgtk — 1in Step 4 at each iteration. When the initial ma-
the_newly devel_oped solver. There are several contri- trix Xo is far from a Riccati equétion solution, New-
butions comparing t_o (Benner, 1998;_Benner and _By- ton’s method with line search often outperforms the
ers, 1998) concerning, e.g., generality and function- standard Newton's method
ality, line search strategies, or stopping criteria. The If the assumptions abO\./e hold aig is stabiliz-

paper complements our previous studies on the nu-; - - :
: . ) . g, then the iterates of the Algorithm NDARE with
merical solution of CAREs by Newton’s method with o — 1 andt, — 1 have the following properties (Ben-

ggig;aarch reported in (Sima and Benner, 2014; Sima, ner, 1997):

Equation (4) is also called discrete-time generalized
Lyapunov equation. The usual, standard Lyapunov

(a) All matricesX are stabilizing.
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(B) X<+ <Ky S K< -0 <Xy
(C) limg 00 Xk = Xs.
(d) There is a constayt> 0 such that

X1 = Xsll < VI — X%, k> 1.

(5)

sometimes no longer be computed in Step 2, and
Ac= 0p(A) — GX0p(A), with Gy := G(X).

To obtainA andQ in (6), the Cholesky factor of
R Rc, can be used R> 0, whereR=: R R;, with R
upper triangular. Defining = BR;! andS= SR 1,

Note that the global quadratic convergence for- the relations (6) are equivalent to

mula (5) does not hold fdec= 0, involving the iterates
Xo andXj.

A=A-oopBS), §=Q-0%5, (8)

Weaker results are available for the modified New- SO just two triangular systems need to be solved,
ton algorithm. One such result (Benner, 1997) states @hd two matrix products are computed for obtaining

that if Xy is stabilizing, therNx computed by Algo-
rithm NDARE is a descent direction fdyR (X«)||2
from X, unlessXy = Xs.

A andQ, after factoringR. Symmetry is exploited
for getting Q via a BLAS (Dongarra et al., 1990)
symm operation. Similarly, iR(Xx) > 0, then the

Cholesky factor oR(X), R:(X), can be used. Defin-
ing Dy := D(X) := BR:(X) %, thenGy = DDy, and
Ac= op(A) — oDD} X op(A) . The use oDy instead
of ék is convenient whemn is sufficiently smaller

Algorithm NDARE was implemented in a For- thann (m<n/4). If Gcis to be preferred (since
tran 77 subroutineS@2CD, following the SLICOT ~ M > Nn/4), but the norm ofGo is too large, then, if
Library (Benner et al., 1999: Benner and Sima, possmle, the facthk is used m_the iterative process
2003; Benner et al., 2010; Van Huffel et al., 2004) instead ofGy, in order to potentially improve the nu-
implementation and documentation standards (Seem.er]cal behavior, even if the efficiency somewhat di-
http://www.slicot.org). The same routine also solves Minishes. o » , T
CAREs. A first version o832CD and preliminary WhenRis not positive definite, then eithefDU
results on random examples and SLICOT CAREX orLDLT factorization (Golub and Van Loan, 1996) of
benchmark collection (Abels and Benner, 1999a) RcanTbe emTponed'for.compgnmgandQ. Similarly,
have been presented in (Sima and Benner, 2006). Thé/PU '/LDL" factorization ofR(X) can be used for
implemented solver deals with generalized DAREs OPtainingGy, whenR(X) is indefinite.
without inverting the matrixg, which is very im- . .
portant for numerical reasons, sin€ might be ~ 3:2 UsingSMatrix
ill-conditioned with respect to inversion. Standard o N )
DARESs are solved with the maximal possible effi- WhenS+# 0, butR s ill-conditioned with respect to
ciency. Moreover, both control and filter DAREs inversion, the use of formulas (6) will potentially in-
can be solved by the same routine, using an option troduce large errors from the beginning of the iterative
(“mode”) parameter, which specifies the op operator. Process, which will be propagated during the entire
The matricesA andE are not transposed. process. This might involve a degradation of its be-
The essential computational procedures involved havior, resulting in slower convergence, and/or an in-

in Algorithm NDARE are detailed below. accurate computed solution. UsiBgluring the itera-
tive process could avoid such degradation. Therefore,

an option of the solver allows to avoid the transforma-
tions (6), and involvéin all subsequent calculations.
In this case, other formulas are needed, siBgean-
not be used. Specifically, define

Hi:= op(A) TXB+S.  Fc=HR:(X) ", (9)
with F'ic(xk) introduced above; for having it is as-
sumed here thaR(Xy) > 0. (Hk is a convenient no-
tation for L(Xx).) Then, the residuaR (Xx) and the
matrix Ax can be computed using

R(X) = Q+ op®A) " X0p@A)
—0pE) "XOopE) — oFkF{, (10)
A« = Op(A) —oDyF/, (11)
whereDy has been defined above.

3 ALGORITHMIC DETAILS

3.1 RemovingS Matrix

If Ris nonsingular, DAREs can be put in a simpler
form, which is more convenient for Newton algo-
rithms. Specifically, setting

A=A—-copBRS"), O=Q-0SRIS", (6)
after redefiningA and Q as A and O, respectively,
equation (1) reduces to

0 = op(®)"Xop(A) — opE) "X op(E)
_—00p(@) TXG(X)X0op(A) +Q =1 R (X).(7)
whereG(X) := BR(X)~1BT, and the second term re-
duces toX in the standard cas& (= In). The trans-

formations in (6) eliminate the matr&from the for-
mulas to be used. In this case, the makix may
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If, however,R(Xy) is indefinite, then the needed
formulas follow directly from (1)—(3), namely,

R(X%) = Q+op@) T Xop®)
—0pE) "XOpPE) — oHKK«, (12)
A = O0p(A) —OoBK, (13)

involving theUDUT or LDLT factorization ofR(X).
Moreover, symmetry of the matrix produklKy is

3.4 Finding the Step Size

The optimal step sizk is given by

tic = argmin]| R (X + tNo) |12 (14)
Since solving (14) for a DARE is expensive, it was
suggested in (Benner, 1997; Benner, 1998) to use an
approximate valug, to be found numerically as the

taken into account. (The solver computes either the argument of the minimal value in [0,2] of a polyno-

upper or lower triangle oR (Xx).)

The implementation is optimized by using com-
mon subexpressions when computitiy(Xx) and
op(Ax), taking also into account the ratio between
andm. Various formulas for efficient implementation
of Newton’s method for AREs are proven in (Sima,
2014).
3.3 Initialization and Main Options
The iteration is started by an initial (stabilizing) ma-
trix Xp, which may not be given on input, if the zero
matrix can be used. KXo is not stabilizing, and find-
ing Xs is not required, Algorithm NDARE could con-
verge to another DARE solution.

Since the solution computed by a Newton algo-
rithm generally depends on initialization, another op-
tion specifies if the stabilizing solutioKs is to be

mial of order 4. Indeed,
R (X +tNe) = (1-1)R(X) —t*V,  (15)

where Vi = op(A) TN«GNcop(Ax). The prob-
lem (14) is replaced by the minimization of the ap-
proximate quartic polynomial (Benner, 1997)

fi(t) = trace R (X +tNk)?)
ag(1—1)2— 2B (1 — )2+ yit?, (16)

where oy = trace R (X«)?), Bk = tracd R (X«)Vk),
Yk = traceV;?).

To solve this problem, a cubic polynomial (the
derivative of fy(t)) is set up, whose roots in [0,2], if
any, are candidates for the solution of the approximate
minimum residual problem. The roots of this cubic
polynomial are computed by solving an equivalent 4-
by-4 standard or generalized eigenproblem, following

~
~

found. This is assumed to be the case in the sequel (J0nsson and Vavasis, 2004).

The initial matrixXg must then be stabilizing, and a

warning is issued if this property does not hold; more-

over, if the compute is not stabilizing, an error is
issued.

Actually, the truefi(t) for DAREs is a rational
function, and the above formulas are obtained by
replacing its denominator by the second order Tay-
lor series approximant at= 0. The approximation

Another option specifies whether to use standard IS useful whent is small enough. For instance, if

Newton’s method, or one of the modified Newton’s

t < 1/||éka|\, where]|| - || is any submultiplicative

method variations, discussed in a paragraph below,N0rm, themR(X 1) := R-+BT (Xc+tNy)B is nonsin-

which employ a line search strategy.
Optionally, the matricegy and E (if E is gen-

eral) are scaled for solving the Stein equations, and

gular, if R(Xx) is nonsingular. Sincg is chosen from
the interval [0,2], the condition above is satisfied if
|GkNk|| < 1/2. It can be shown (Benner, 1997) that if

their solutions are suitably updated. Note that the %« iS Stabilizing, then eithel is a descent direction

LAPACK subroutinesDGEES and DGGES (Anderson

for | R (X) ||, or X« = Xs. But the stabilizing prop-

et al., 1999), which are called by the standard and €'ty is not guaranteed, at least fioe [0,2]. When

generalized Stein solvers, respectively, to compute the | GkN«|| is large (usually, at the beginning of the iter-
real Schur(-triangular) form, do not scale the coeffi- ative Newton process), the step sizgsould be too
cient matrices. Just column and row permutations are Small, and the progress of the iteration could be too
performed, to separate isolated eigenvalues. For someSIOW-
examples, and no scaling, the convergence was not
achieved in a reasonable number of iterations. More- 3.5
over, sometimes scaling allows to compute more ac-
curate solutions and/or use less iterations, comparingThe algorithm computes the initial residual matrix
to the case with no scaling. R (Xo) and the matrix ofo) , whereAq := op(A) —

A maximum allowed number of iteration steps, 0GoXo0p(A). If no initial matrix Xo is given, then
kmax, is specified on input, and the number of itera- Xo =0, R (Xo) = Q and opfo) = Ain (6).
tion steps performeds, is returned on exit. At the beginning of the iteratiok, 0 < k < Kmax,

the algorithm decides to terminate or continue the

Iterative Process
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computations, based on the current normalized resid-
ual ry (and possible on relative residualXy)), de-
fined below. If mir{rg,re(Xc)) > T, a standard (if
E = I,)) or generalized Stein equation (4) is solved for
Nk (the Newton direction).

The basic stopping criterion for the iterative pro-
cess is stated in terms of®rmalized residualr, :=
r(Xx), and a tolerance. If

M= [|R (X [[F/ max(L | XlF) < T,

the iterative process is successfully terminated.df

0, a default tolerance is used, defined in terms of the
Frobenius norms of the given matrices, and relative
machine precisiorgy. Specifically;t is computed by
the formula

min{emvn([|Alr (|AlF -+ [|Doll2 | AllF)
+EIE +11QllF), vVEm/10°}. (18)

(The factor]| Do||2 is replaced by, if R(Xo) is indef-
inite.) The second operand of min in (18) was intro-
duced to prevent deciding convergence too early for
systems with very large norms féy; E, Dg (or Go),
and/orQ.

For systems with very large norms of the ma-
trices A, E, Do (or Gp), and/orQ, and small norm
of the solutionX, the termination criterion involv-
ing (18) might not be satisfied in a reasonable num-
ber of iterations (or never, due to accumulated round-
ing errors), while an acceptable approximate solu-
tion might be much earlier available. Therefore, the
MATLAB-style relative residual ry(Xx), which in-
cludes the Frobenius norms of the four matrix terms
of (1) in the denominator of its formula, is also tested
at iterations 16+ 5qg, g =0,1,..., and it might pro-
duce the termination of the iterative process, instead
of the criterion based on the normalized residual. The
relative residual is not tested at each iteration in or-
der to reduce the computation costs, and to increas
the chances of termination via the normalized resid-
ual test.

Another test is to check if updatin is meaning-
ful. The updating is done if||Nk||[F > em | XllF. If
this is the case, sé§.1 = Xk +tNk, and compute the
updated matrices 0p¢1) and® (Xi1). Otherwise,
the iterative process is terminated and a warning value
is set, since no further significant, but only marginal
improvements can be expected, eventually after many
additional iterations. Although the computation of the
residual® (X« +tkNk) can be efficiently performed by
updating the residuat (Xx), the original data is used,
since the updating formula (15) could suffer from se-
vere numerical cancellation, and hence it could com-
promise the accuracy of the intermediate results.

17)

T
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Often, but mainly in the first iterations, the com-
puted optimal step are too small, and the resid-
ual decreases too slowly. This is callsthgnation
and remedies are used to escape stagnation, as de-
scribed below. The chosen strategy was taiget 1
when stagnation is detected, but also whegr 0.5,

evt < 1 < 1, and|| R (X + N || < 10, if this hap-
pens during the first 10 iterations. The rationale of this
strategy is that if the residual is small enough after the
first few iterations, the use of a standard Newton step
could reduce the residual faster than a Newton algo-
rithm with small step sizes.

In order to detect stagnation, the last computed
ks residuals are stored in an arrBgS. If || R (X¢+
tNk)lF > Ts[| R (X—kg ) IF > O, thentc = 1 is used
instead. The implementation uses= 0.9 and sets
ks = 2, but values as large as 10 can be used by chang-
ing this parameter. The firkg entries of arrayRES are
reset to O whenever a standard Newton step is applied.

3.6 Line Search Strategies

Other three line search stategies may be chosen be-
sides thepure line search strategyvhich uses a solu-
tion tx of the approximate quartic polynomial (16) at
each iteratiork. Specifically, in thecombined strat-
egy, line search is employed in the beginning of the it-
erative process, but the algorithm switches to the stan-
dard method when the normalized residual is smaller
than a specified (or default) tolerance. The rationale
for this strategy is that when the normalized resid-
ual is small enough, line search cannot offer sensi-
ble improvements, and the standard algorithm con-
verges with a fast rate, usually quadratrically as to be
expected from the local convergence theory of New-
ton’s method. In addition, in such an instangeawyill

be close to 1, and typically there will be no difference
between the values ¢fR (X«)||r computed foty and

for 1. Therefore, the calculations for findirig are
avoided.

In the hybrid strategy both standard Newton step
and the step corresponding to the approximate line
search procedure are computed, and that step which
gives the smallest residual is selected at each iteration.
Finally, thebacktracking strategyproposed in (Ben-
ner, 1997), is a special hybrid strategy in which the se-
lected step is only taken provided there is a sufficient
residual decrease. Otherwise, the step size is reduced
until a sufficient decrease is eventually obtained. If
this is not the case, or stagnation is detected, then a
standard Newton step is used. This approach can in-
crease the speed of the iterative process.
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3.7 Memory Storage Issues ating system (64 bit), Intel Visual Fortran Composer

XE 2015 and MATLAB 8.6.0.267246 (R2015b). A
The arrays holding the data matrickendE are un- MATLAB executable MEX-function has been built
changed on exit, except wh&34 0, but it should and ~ using MATLAB-provided optimized LAPACK and
could be removed from DARE using (6). In this spe- BLAS subroutines.

cial caseAis returned. Arraystores matrixQ on en- Besides tests with randomly generated matrices,
try and the computed solutioks on exit. Ifm<n/4  the results for which are not reported here, other
and the Cholesky factdt;(Xs) can be computed, then  tests have been conducted for linear systems from the
the arrayB, storingB on input, returns the final matrix ~ COMPLib collection (Leibfritz and Lipinski, 2004).
D(Xs). Otherwise, arraj is unchanged on exit. Sim-  Preliminary results have been presented in (Sima,
ilarly, the arrayR, storingR on input, may return ei-  2013a; Sima, 2013b). (The second reference sum-
ther the Cholesky factor, if it can be computed, or the marizes the results obtained using Newton’s method
factors of theJDUT or LDL factorization ofR(Xs), for solving AREs for examples from the SLICOT

if R(Xs) is found to be numerically indefinite. In the benchmark collections for CAREs (Abels and Ben-
last case, the interchanges performed forutiau ' ner, 1999a) and DARES (Abels and Benner, 1999b).)
or LDLT factorization are stored in an auxiliary inte- The COMPLib collection contains 124 standard
ger array. The finally computed normalized residual . ous-time examples (with — I), with sev-

is also returned. Moreover, approximate closed-loop eral variations, giving a total of 168 p'roblems. For

system poles, as well as mik{, 50 )+1 values of the testing purposes, these examples have been consid-

re5|dualsl, normallze'd residuals, and Newton steps ar€arad in this paper as being of discrete-time type. The
returned in the working array.

ither th | anal both. of performance index matric&d andR have been cho-
Either the upper, or lower triangles, not both, of o 55 jdentity matrices of suitable sizes. The ma-
the symmetric matrice®, R, X, and, if used,Gk

d1to b q hat if the | anal trix S was always zero. All but 16 problems (for
need to be stored. (Note that if the ower triangle systems of order larger than 2000, with matrices in
of R should be used, the Cholesky factorization is

) T with R, | . | h sparse format) have been tried. However, 63 prob-
R=:ReR¢, with Re lower triangular, but the compu-  jomg did not satisfy the needed conditions for the
tations are similar. The same is true f(X).) existence of a stabilizing solution, and could not be

When possible, pairs of symmetric matrices are g eq phy the MATLAB functiondar e, which gave
stored economically, to reduce the workspace require-ha error message “There is no finite stabilizing so-

ments, but preserving the two-dimensional array in- | tion”. These examples have been omitted. In ad-

dexing, for efficiency. Specifically, the upper (O iion “other five examples, namely WEC1, WEC2,
lower) triangle ofXy and the lower (uppe.r) tr!angle WEC3, HF2DCD4, and HF2DCD6, have been ex-

of R (X) are concatenated along the main diagonals ¢,;4ed. For these examples, the solution computed by
in a two-dimensionah(n+ 1) array, and similarly for 45 ¢ had a very large Frobenius norm (of ordetd0

Gy and a copy of the matri®, if Gy is used. ArrayQ ¢, \WEC examples, 1489 and 161 for the two HF2D
itself is also used for temporarily storing the residual o2 mples), and relatively large normalized residuals,
matrix Q{(Xk), as V\_/eII as the intermediate matricgs of order 104 or larger for WEC1-WEC3, 10 and

and the final solution. 1075, for HF2D.CD4 and HF2DCDS, respectively.

The optimal size of the needed real working array  g,ch matrices proved to offer a poor initialization for
can be queried, by setting its length+td.. Then, the Newton’s method.

solver returns immediately, with the first entry of that
array set to the optimal size, which could be used in
the next solver call.

In a series of test¥p was set to a zero matrix, &
was found to be stable; otherwise, an initialization of
the Newton solver with a matrix computed using the
stabilization algorithm in (Armstrong and Rublein,
1976) was tried, and when this algorithm failed to de-
4 NUMERICAL RESULTS liver a stabilizingXo matrix, the solution provided by

dare was used. A zero initialization could be tried
This section presents some results of an extensivefor 7 stable examples, namely AC5, REA4, BDT1,
performance investigation of the new solver based CSE1, TMD, FS, and ROCS5, but the Newton solver
on Newton’s method. The numerical results have failed for CSE1 withXg = 0, since a singular Stein
been obtained on an Intel Core i7-3820QM portable equation was found. The stabilization algorithm was
computer at 2.7 GHz, with 16 GB RAM, with the tried on 82 unstable systems, and succeeded for 55 ex-
relative machine precisioay ~ 2.22 x 10716, us- amples, hence it failed for 27 examples. Both stan-
ing Windows 7 Professional (Service Pack 1) oper- dard and modified Newton’s method, with or without

71



ICINCO 2018 - 15th International Conference on Informatics in Control, Automation and Robotics

balancing the coefficient matrices of the Stein equa-
tions, were tried.

Tests withXy computed by the stabilization algo- wer
rithm also for stable systems, or wiyp returned by 0wl
MATLAB dar e for all examples, have also been suc-
cessfully performed. The last set of tests shows the
performance of the Newton solver in refining a solu-
tion computed by another solver.

A brief selection of results is presented below. For
standard Newton’s method witthar e initialization, 109}
nonzero differences in the normalized residuals for
default ancky tolerance values were encountered for T 0 2 % 40 s s 0 8 %0
16 COMPLib examples, and they were of the same Example #
order as, or lower order of magnitude than the resid- Figure 1: Normalized residuals for examples from the
uals themselves. The number of iterations for the tol- COMPEIb collection (taken as discrete-time systems), us-

. . ing MATLAB function dar e and standard Newton solver,
eranceey increased by 1 (for six examples), 2 (for with default tolerance andar e initialization.
two examples), 3 (for three examples), but also by 10
(for DLR1), 24 (for HE6 and HE7), and by 39 and 48 10° Normajized residuals for dare and flewton solver,
(for NN11, and AGS, respectively). This shows that
with dar e initialization, it is preferable to use the de-
fault tolerance, since a too small value, suctegs 1090}
will eventually reduce the residuals only marginally,
but possibly after many more iterations. Actually, for
HE®6, HE7, NN11, and AGS, the normalized residuals
slightly increased for a tolerance setsig. The solu-
tion computed bydare had a very large Frobenius

Normalized residuals for dare and Newton solver
T T T T T T T T

Newton
dare

1015 |

1020+

Normalized residuals

1025+

Newton
dare

105

10715 |+

1020+

Normalized residuals

105+

norm, of order 1&° or larger, for HE6, HE7, AGS, o
NN11, and DLR1, but also for PAS, and of orde10 |
and ld for HF2D_IS7 and HF2DCD5, respectively. 107, 1‘0 26 3‘0 4‘0 5‘0 éo 7‘0 8‘0 %

Example #

Figure 1 displays the normalized residuals for
examples from the COMEDb collection, using
MATLAB function dare and the standard Newton

Figure 2: Normalized residuals for examples from the
COMPLib collection, using MATLAB functiondar e and
Newton solver with line search, default tolerance dade

solver, with default tolerance andr e initialization. initialization.

With few exceptions, the Newton solver is either

comparable withdar e or it improved the normalized 10 ——Qaresyle residuals for darp and Newton solver
residuals, sometimes by several orders of magnitude. H

However, for four examples (HF2I57, HF2D.CD5, w0t

HF2D17, and HF2D18, numbered as 59, 61, 69, and
70, respectively, in Fig. 1), clearly worse results have w2k
been obtained. Line search succeeded to get smaller
normalized residuals for these examples, as can be % .|
seen in Fig. 2. ﬂ

Figure 3 plots the MATLAB-style relative residu- 05|
als for examples from the COM§ collection, using
MATLAB function dar e and Newton solver with line Lot e
search, with default tolerance adar e initialization. e S
The Newton solver returned comparable or (much) _. . .
smaller residuals except for three examples, namely, (F:'glfwrgsib “gareiﬁgnftﬁgr:gsﬁ X%lifgrfjﬁgt?gﬂje; gc:;:(;he
HF2D.1S7, HF2D17, and HF2D18 (numbered as 59, Newton solver with line search, default tolerance dade
69, and 70, respectively). For the last two examples, initialization.
the standard method gave smaller residuals than the
line search method. computations with standard Newton method ended
Similarly, Fig. 4 shows the corresponding elapsed before finishing the first iteration, and just six exam-
CPU times for the two solvers. For 18 examples, the ples (AGS, PAS, NN11, HF2DS7, HF2D.CD5, and

dare-style residuals
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CPU times for dare and Newton solver Improvement of dare-style residuals
T T T T T T T T T T T T

Newton
dare

H
S
o

w
=]

CPU times (sec)
=
o
o
Number of examples
IS
&

,_.
S

10°

0 1‘0 2‘0 3‘0 A‘O 5‘0 E;O 7‘0 5;0 90
Example # i

Figure 4: Elapsed CPU time for examples from the Figure 6: Bar graph showing the improvement of the

COMPLib collection, using MATLAB functiondar e and MATLAB-style residuals for examples from the COMM®

standard Newton solver, with default tolerance aiade collection, using Newton solver with line search, default
initialization. tolerance andar e initialization. The height of the i-th ver-
tical bar indicates the number of examples for which the
(‘iare CF"U time‘dividet‘i by Neyvton SQIver CF‘Z’U limf} improvement was betWeen |'l and | Orders Of magnitude.

50

45

and 1, corresponding to improvements till one order
of magnitude, between one and two orders of magni-
tude, and so on.

CPU time ratio
Now W b
al o (5 o
T T T

N
=]
T

5 CONCLUSIONS

N
o
T

=
5]
T

Basic facts and improved procedures and algorithms
v v for solving discrete-time algebraic Riccati equations
o 10 20 3 4 5 6 70 8 9 using standard or modified Newton's method, with
_ \ "\ : several line search strategies, have been presented.
Figure 5: Ratios of the elapsed CPU time needed by Nymerical results obtained on a comprehensive set
(I;/IATLAB function dare a_nc_i _standgrd Newton solver, with of examples from the COMEb collection, taken
efault tolerance andhr e initialization, for examples from i f .

the COMPAib collection. as dl_screte-tlme systems, have been sunjm_arlzed f?md

they illustrate the performance and capabilities of this

) ) solver. The possibility to offer, in few iterations, a

HF2D17) needed more than one iteration, namely, 8, requction by one or more orders of magnitude of the
11, 11, 50, 50, and 2 iterations, respectively. For the normalized and MATLAB-style residuals of the solu-
same examples, the modified Newton method neededijons computed by MATLAB functiordar e, makes

2, 11, 11, 11, 0, and 1 iterations, and it was by Newton solver an attractive support tool for solving
three and two orders of magnitude more accurate for paREs.

HF2D_IS7 and HF2DCD5, respectively, and compa-
rable for all other examples. Since very few iterations
are most often needed, the CPU time for the New-
ton solver is a small fraction of that for the MATLAB
solverdar e. Figure 5 plots the ratios of the elapsed

CPU time needed by MATLAB functiodar e and the This work was partially supported by the Institu-
standard Newton solver. tional research programme PN 1819 “Advanced IT re-

. . sources to support digital transformation processes in
The bar graph from Fig. 6 shows the improvement i, " .o 5y 'and society — RESINFO-TD” (2018),
obtained using the Newton solver with line search, de- roiect PN 1819-01-01. “New research in complex
fault tolerance andar e initialization. The height of 2 sjtems modellin and(; timization with a IicatIiC())ns
thei-th vertical bar indicates the number of examples y 9 X PP

for which the improvement was betwelenl andi or- n mdustr_y,_ business and cloud computing’, funded
. . . by the Ministry of Research and Innovation, Roma-
ders of magnitude, in comparisondar e. The num-

ber of examples in the six bins are 48, 19, 7, 2, 5, nia.

o
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