
On the Effectiveness of Generic Malware Models

Naman Bagga, Fabio Di Troia and Mark Stamp
Department of Computer Science, San Jose State University, San Jose, California, U.S.A.

Keywords: Malware, Support Vector Machine, k-nearest Neighbor, Chi-squared Test, Random Forest.

Abstract: Malware detection based on machine learning typically involves training and testing models for each malware
family under consideration. While such an approach can generally achieve good accuracy, it requires many
classification steps, resulting in a slow, inefficient, and potentially impractical process. In contrast, classifying
samples as malware or benign based on more generic “families” would be far more efficient. However, ex-
tracting common features from extremely general malware families will likely result in a model that is too
generic to be useful. In this research, we perform controlled experiments to determine the tradeoff between
generality and accuracy—over a variety of machine learning techniques—based on n-gram features.

1 INTRODUCTION

Malware is defined as software that is intended to da-
mage computer systems without the knowledge of the
owner (Norton, 2018). According to Symantec (Sy-
mantec, 2017), more than 357 million new malware
variants were found in 2016. Malware detection is
clearly an important research topic

Signature-based malware detection is effective in
many cases, but fails to detect advanced forms, such
as metamorphic malware. Machine learning techni-
ques including hidden Markov models (HMM), sup-
port vector machines (SVM), k-Nearest Neighbors (k-
NN), and random forests have been used to effectively
detect metamorphic malware, and other challenging
classes of malware (Stamp, 2017). Such models are
often trained using static features, such as opcode se-
quences and byte n-grams.

Previous research has shown that a variety of
techniques based on byte n-grams can achieve rela-
tively high accuracies for the detection problem (Li-
angboonprakong and Sornil, 2013; Reddy and Pujari,
2006; Shabtai et al., 2009; Tabish et al., 2009). Ho-
wever, a recent study based on n-gram analysis rejects
this view and argues that n-grams promote a gross le-
vel of overfitting (Raff et al., 2016).

In this research, we consider a somewhat similar
problem as in (Raff et al., 2016), but we take a much
different tack. Our goal here is to perform carefully
controlled experiments that are designed to expose the
relationship between the level of generality of the trai-
ning data and the accuracy of the resulting model. In-
tuitively, we expect that as the training data becomes

more generic, the models will become less accurate,
and our results do indeed support this intuition. We
believe that the results that we provide in this paper
cast the work presented in (Raff et al., 2016) in a much
different light, namely, that the inability to construct a
strong model based on the extremely diverse and ge-
neric data follows immediately from the generality of
the data itself, rather than being an inherent weakness
of a particular feature, such as n-grams.

The remainder of the paper is organized as fol-
lows. In Section 2, we cover relevant background to-
pics, including an overview of selected examples of
related work. This background section also includes a
brief overview of the classification techniques used in
this paper, namely, support vector machines, a statisti-
cal χ2 score, k-nearest neighbors, and random forests.
Our experiments and results are covered in detail in
Section 3. The paper concludes with Section 4, where
we also discuss future work.

2 BACKGROUND

In this section we discuss selected examples of related
work. Then we also provide a high-level introduction
to each of the various machine learning techniques
employed in the research presented in this paper..

2.1 Related Work

Wong and Stamp (Wong and Stamp, 2006) show that
hidden Markov model (HMM) analysis applied to op-

442
Bagga, N., Troia, F. and Stamp, M.
On the Effectiveness of Generic Malware Models.
DOI: 10.5220/0006921504420450
In Proceedings of the 15th International Joint Conference on e-Business and Telecommunications (ICETE 2018) - Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, pages 442-450
ISBN: 978-989-758-319-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



codes can effectively distinguish some examples of
highly metamorphic malware. The authors trained a
model for each of three different metamorphic mal-
ware families and they were able to successfully dis-
tinguish each family. This malware detection scheme
outperformed commercial anti-virus products. These
results are not particularly surprising, considering that
most commercial products rely on signature based de-
tection methods. This work makes a reasonable case
for the use of opcodes as a feature for malware de-
tection.

Singh et al. (Singh et al., 2016) applied three diffe-
rent techniques to obtain malware scores, namely, an
HMM score, a distance based on principles from sim-
ple substitution cipher cryptanalysis, and an straight-
forward opcode graph score. These three scores were
combined using an SVM to construct a classifier that
was shown to be stronger and more robust than any
of the component scores. This research demonstra-
tes the strength of an SVM, particularly when used to
combine multiple scores into a single classifier.

Reddy and Pujari (Reddy and Pujari, 2006) use
a feature selection method that ranks n-grams based
on frequency and entropy. Their experiments show
that performing a class-wise feature selection impro-
ves the efficiency of the models. This process invol-
ves extracting the k most frequent n-grams from the
benign and malware sets and using a union of the two
sets as features. We follow a similar approach in our
n-gram analysis considered here.

Raff et al. (Raff et al., 2016) experimented with
n-grams and elastic-net regularized logistic regres-
sion. These experiments were conducted using a large
dataset containing over 200,000 malware samples.
The detection results obtained from these experiments
were poor and, as mentioned above, the authors claim
that n-grams are not suitable for malware detection.
Unfortunately, the authors’ data was obtained from an
undisclosed “industry partner” and is not available for
independent verification of the results.

In this research, we determine the accuracy of n-
gram based malware models as a function of the ge-
nerality of the training data. We see that the more ge-
neric the training dataset, the less distinguishing and
weaker is the resulting model. While this is true in
general, we do observe some differences in various
machine learning techniques, indicating that some ap-
proaches are more robust than others in this respect.

2.2 Classification Techniques

In this section we briefly discuss each of the classifi-
cation techniques used in this paper. Specifically, we
consider support vector machines (SMV), a straight-

forward χ2 statistic, k-nearest neighbors, and random
forests. Then in Section 3, each of these techniques
will be used to distinguish between malware and be-
nign samples, based on n-gram frequencies.

2.2.1 Support Vector Machines

SVMs are supervised learning algorithm for binary
classification. An SVM is trained on a labeled da-
taset and the resulting model can be used to classify
samples. Conceptually, the main ideas behind SVMs
are the following (Stamp, 2017).

• Separating hyperplane — A hyperplane is con-
structed based on the two classes in the training
data. Ideally, this hyperplane separates the trai-
ning data into its two classes.

• Maximize the margin — The separating hyperplane
is chosen such that the margin between the two
classes of data is maximized. Intuitively, this gi-
ves us the maximum margin for error (relative to
the training data) when using the model to classify
samples.

• Kernel trick — We transform the input data to a
higher dimension feature space using a nonlinear
kernel function. By doing so, we greatly incre-
ase the chance of finding a separating hyperplane.
The “trick” here is that in spite of the nonlinear
kernel function that we have embedded in the pro-
cess, training and scoring are highly efficient ope-
rations. However, choosing the kernel function is
more art than science. Popular kernel functions
include polynomial learning machines, Gaussian
radial-basis functions (RBF), and two-layer per-
ceptrons.

2.3 Chi-squared Test

The chi-squared test (Plackett, 1983) is a simple and
effective statistical technique that can be applied to
categorical data to determine whether an observed
frequency distribution differs from a specified fre-
quency distribution. This statistical technique was
first described by Pearson (Pearson, 1900) in 1900.

Mathematically, the χ2 statistic is essentially a
normalized sum of square deviation between the ex-
pected and observed distributions. This statistic is
computed as

χ2 =
n

∑
i=1

(Oi−Ei)
2

Ei

On the Effectiveness of Generic Malware Models

443



where

χ2 = cumulative chi-squared statistic
n = number of dimensions or features

Oi = observed value of the ith feature

Ei = expected value of the ith feature

2.4 k-Nearest Neighbors

The k-nearest neighbor (k-NN) algorithm is among
the simplest machine learning algorithms (Stamp,
2017). The k-NN algorithm is a supervised learning
technique and hence requires labeled training data.
In k-NN, we classify a sample based on a majority
vote of the k nearest samples in the training set. Se-
veral variations of k-NN are possible, including weig-
hting the training samples based on their relative fre-
quencies and weighting the “votes” based on their dis-
tance from the sample we are attempting to classify.
One significant advantage of k-NN is that it requires
no explicit training phase.

2.5 Random Forests

Random forests are a generalization of a very simple
concept, namely, decision trees (Stamp, 2017). In a
process know as “bagging,” random forests construct
multiple decision trees based on subsets of the trai-
ning data as well as subsets of the available features.
A majority vote of the resulting component decision
trees is used to determine the classification of a gi-
ven sample. Bagging reduces the tendency of deci-
sion trees to overfit the training data.

3 EXPERIMENTS AND RESULTS

In this section, we discuss the experiments we have
performed and the results obtained. As mentioned
above, the techniques used are SVM, a χ2 test, k-NN,
and random forests, all of which are based on n-gram
features. Our primary goal is to carefully analyze the
strength of each of these various models as we add
more malware families into the training set.

3.1 Experimental Design

In all of our experiments, we use the relative frequen-
cies of n-grams as our features, and we conduct expe-
riment based on 2-grams, 3-grams, and 4-grams. The
malware and benign datasets used in our experiments
are discussed in Section 3.2, below.

For all of our n-gram experiments, the feature vec-
tor is based on byte n-gram frequencies. The total
possible number of byte n-grams is 256n = 28n, which
would be challenging to deal with, even for n = 2,
and completely impractical for n > 2. Consequently,
we use a simple feature selection mechanism to re-
duce the size of the feature vector—the approach em-
ployed here is essentially the same as that in (Reddy
and Pujari, 2006). Specifically, for each n-gram expe-
riment, we select the 10 most frequent n-grams pre-
sent in the malware set and we select the 10 most fre-
quent n-grams present in the benign set, and we form
the union of these two sets, giving us a feature vector
having a maximum length of 20.

For all of our experiments, we use five-fold cross
validation. That is, the malware dataset is partitioned
into five equal parts, and each of these parts serves
as the test set in one experiment, with the four remai-
ning parts used for training. In experiments where we
combine multiple malware families, care is taken to
ensure that each of the five folds (i.e., subsets) con-
tains a balanced number of samples from each family.
Note that cross validation serves to smooth out any
bias in the dataset, while also maximizing the number
of experimental results for the given amount of data
available.

In most of our experiments, we train a model, then
classify samples using the resulting model. To mea-
sure the success of such experiments, we use the con-
cept of balanced accuracy, which is computed as

balanced accuracy =
1
2

(
TP

TP+FN
+

TN
TN+FP

)

where
TP = true positives
TN = true negative
FP = false positive
FN = false negative.

Note that the balanced accuracy calculation weig-
hts all classification errors the same, regardless of any
imbalance that might exist between the sizes of the
positive and negative sets. This is particularly signifi-
cant in our experiments, since the size of the benign
dataset varies depending on how many malware fa-
milies we combine in one experiment. Because of
this variabillity, a straightforward accuracy calcula-
tion, which is of the form

accuracy =
TP+TN

TP+FN+TN+FP
,

would, in effect, weight false positive cases less as
more families are considered. Thus, for our experi-
ments, the balanced accuracy provides a more con-
sistent view of the success of our classifiers than the
usual (i.e., unbalanced) accuracy calculation.

BASS 2018 - International Workshop on Behavioral Analysis for System Security

444



The χ2 experiments discussed below are based
on a scoring function rather than a classifier. Con-
sequently, for these experiments, we computer re-
ceiver operating characteristic (ROC) curves and use
the area under the curve (AUC) as our measure of
success. An ROC curve is constructed by plotting the
true positive rate (TPR) versus the false positive rate
(FPR) as the threshold varies through the range of va-
lues. The TPR is given by

TPR =
TP
P

=
TP

TP+FN

while the FPR is computed as

FPR =
FP
N

=
FP

FP+TN
.

The area under the ROC curve (AUC) ranges
from 0 to 1. An AUC of 1.0 indicates perfect sepa-
ration, i.e., there exists a threshold for which no false
positives and no false negatives occur, while an AUC
of 0.5 indicates that the binary classifier is no better
than flipping a fair coin. Also, note that if the AUC
is, say, x < 0.5, then by simply reversing the sense of
the classifier, we obtain an AUC of 1−x > 0.5. In ge-
neral, the AUC gives the probability that a randomly
selected match case scores higher than a randomly se-
lected non-match case (Bradley, 1997; Stamp, 2017).

3.2 Dataset

The following eight families form the malware dataset
used in this research.

Gatak is a trojan that collects information about an
infected computer and sends it to a potential at-
tacker. This trojan hides itself as part of a key
generator application or an update for a legitimate
application (Trojan:Win32/Gatak, 2018).

Kelihos is a family of trojans that send out spam
email with links to installers of malware. This
malware is a botnet that communicates with re-
mote servers to send spam emails and capture sen-
sitive information (Win32/Kelihos, 2018).

Lollipop is an adware program that displays ads as
the user browses the web. This adware can also re-
direct search engine results, monitor a user’s acti-
vity and send such information to an attacker (Ad-
ware:Win32/Lollipop, 2018).

Obfuscator.ACY is a family of viruses that hide
their purpose through various obfuscation techni-
ques. The underlying malware can serve any pur-
pose (VirTool:Win32/Obfuscator.ACY, 2018).

Ramnit is a worm that spreads through infected re-
movable drives. This malware is capable of stea-
ling sensitive information, such as bank credenti-
als (Win32/Ramnit, 2018). Ramnit can give an at-
tacker access to—and control of—an infected ma-
chine.

Winwebsec is a trojan that pretends to be an antivi-
rus product. This malware attempts to convince
the user to pay for its fake antivirus protection by
displaying messages stating that the computer has
been infected (Win32/Winwebsec, 2017).

Zbot (aka Zeus) is a trojan horse that infects sys-
tems by downloading configuration files or upda-
tes. This financial botnet steals confidential infor-
mation, such as online credentials (Trojan.Zbot,
2010).

Zeroaccess is a trojan that makes use of a rootkit
to hide itself. ZeroAccess creates a backdoor on
compromised systems and is capable of down-
loading additional malware (Trojan.Zeroaccess,
2011).

The malware samples used in our experiments
were obtained from the Microsoft Malware Classifi-
cation Challenge (Kaggle, 2015) and the Malicia Pro-
ject (Malicia Project, 2015; Nappa et al., 2013). Table
1 lists the number of samples used from each malware
family. Our representative benign set consists of 300
executables from the System32 folder that were col-
lected from a system running a fresh install of Win-
dows XP.

Table 1: Malware samples per family.

Family Samples
Gatak 1,013
Kelihos 2,942
Lollipop 2,478
Obfuscator.ACY 1,228
Ramnit 1,541
Winwebsec 5,820
Zbot 2,167
Zeroaccess 1,306
total 18,495

For the bigram experiments discussed below, we
consider two cases. First, we use all of the available
malware samples in each family. Then, for a second
set of experiments, we use a balanced malware data-
set, consisting of 1,000 samples from each of the eight
malware families. The balanced experiments provide
more realistic results in cases where a large malware
family (e.g., Winwebsec) is atypical, in the sense of
being either unusually easy or unusually difficult to

On the Effectiveness of Generic Malware Models

445



detect. For our 3-gram and 4-gram experiments, we
use all of the available malware data.

3.3 SVM Experiments

In this section we discuss our SVM experiments ba-
sed on bigram in detail. We then give results for the
equivalent 3-gram and 4-gram experiments.

For each experiment, we determine the relevant
n-grams as discussed in Section 3.1. Once we have
selected the appropriate n-grams, we compute the re-
lative frequencies of each, to yield our feature vectors.

The samples listed in Table 1 were used as our
malware dataset and, as mentioned above, we use a
set of 300 System32 samples as our representative be-
nign samples. An SVM was trained on these datasets
using a radial basis function (RBF) kernel and a soft
margin setting of C = 1.

First, we tested each of the eight malware fami-
lies in Table 1 individually. For each family, we per-
formed one experiment using all available samples
from the family, and we performed another experi-
ment using a selection of 1,000 samples. The balan-
ced accuracies obtained for all of these experiments
are listed in Table 2.

Table 2: SVM balanced accuracy for individual families (bi-
gram models).

Family Samples per family
all 1,000

Gatak 0.9630 0.9803
Kelihos 0.9983 0.9958
Lollipop 0.8409 0.8757
Obfuscator 0.9199 0.9195
Ramnit 0.8402 0.8619
Winwebsec 0.9712 0.9705
Zbot 0.9614 0.9627
Zeroaccess 0.9793 0.9808
Average 0.9342 0.9434

Next, we train SVMs for each of the
(8

2

)
= 28 pairs

of the malware families in our dataset. For example,
one of these experiments consists of combining the
Gatak and Kelihos families into one set, and training
a single SVM to detect members of this combined fa-
mily. As above, we consider both the case where we
use all available samples, and the case where only a
subset of 1,000 samples from each family is conside-
red.

Next, we trained SVMs for all
(8

3

)
= 56 combined

sets of three families, and all
(8

4

)
= 70 sets of four fa-

milies and so on, up to one super-family that includes
all 8 families. In each case, we compute the average
balanced accuracy over all cases for a given number

of combined families. Table 3 lists these average re-
sults for all possible combinations of the eight mal-
ware families, where the “Families” column refers to
the number of families that were combined.

Table 3: SVM average balanced accuracy (bigram models).

Families Samples per family
all 1,000

1 0.9342 0.9434
2 0.8806 0.9010
3 0.8402 0.8605
4 0.8081 0.8310
5 0.7827 0.8077
6 0.7603 0.7890
7 0.7384 0.7738
8 0.7265 0.7678

Analogous SVM experiments were conducted ba-
sed on 3-grams and 4-grams, using all of the availa-
ble malware samples. The results of our SVM expe-
riments based on bigrams, 3-grams, and 4-grams are
summarized in the line graphs in Figure 1. Qualita-
tively, we observe that the SVM results for 3-gram
and 4-gram models are similar to those for the bigram
case.

1 2 3 4 5 6 7 8
0.50

0.60

0.70

0.80

0.90

1.00

Number of families

B
al

an
ce

d
ac

cu
ra

cy

bigram (1000 samples)
bigram (all samples)
3-gram (all samples)
4-gram (all samples)

Figure 1: SVM accuracy vs number of families.

3.4 Chi-squared Experiments

In this section we discuss our experiments and results
using a χ2 statistic. The experiments here are essen-
tially the same as those discussed in Section 3.3, ex-
cept that we use a χ2 statistic to compute a score, as
opposed to an SVM classifier. Since we have a score
instead of a classifier, we use the area under the ROC
curve as our measure of success, rather than the ba-
lanced accuracy.

BASS 2018 - International Workshop on Behavioral Analysis for System Security

446



For the bigram case, we compute the relative bi-
gram distribution (for the most common bigrams)
over the entire training set. Then to score any sample,
we determine its relative bigram distribution and find
the χ2 distance from the distribution of the training
set. This is interpreted as a score, where a smaller
value indicates a sample that is closer to the training
set.

When testing each of the eight families individu-
ally, we obtain the AUC values in Table 4. We note
that the range of these results is much greater than the
SVM balanced accuracy discussed above. Here, the
score range from a near-perfect 0.9943 for Winweb-
sec, to a near coin flip of 0.6541 for Lollipop.

Table 4: AUC of χ2 score for individual families (bigram
models).

Family Samples per family
all 1,000

Gatak 0.8784 0.9921
Kelihos 0.9943 0.9930
Lollipop 0.6541 0.6876
Obfuscator 0.8750 0.8712
Ramnit 0.8772 0.8748
Winwebsec 0.9450 0.9384
Zbot 0.8709 0.8646
Zeroaccess 0.9502 0.9472

As with the SVM experiments above, we also con-
sider all combinations of families, and we perform
analogous experiments using 3-gram and 4-grams.
The results of these experiments are summarized in
the form of line graphs in Figure 2.

1 2 3 4 5 6 7 8
0.50

0.60

0.70

0.80

0.90

1.00

Number of families

A
U

C

bigram (1000 samples)
bigram (all samples)
3-gram (all samples)
4-gram (all samples)

Figure 2: χ2 score AUC vs number of families.

The bigram (all samples) and 3-gram cases are vir-
tually indistinguishable in these experiments. Also,
we see that the low score for the Lollipop family drags

down the balanced bigram scores for two families, but
has no appreciable effect on the imbalanced datasets,
as the larger (and easier to detect) families more than
make up for Lollipop.

The results for the χ2 score are generally similar to
those for the SVM classifier, in the sense that the more
families we group together, the weaker the results be-
come, on average. However, due to the extremely
poor χ2 score for the Lollipop family, the combined
score never falls below that of the weakest individual
score.

3.5 k Nearest Neighbor Experiments

In this section we give our experimental results for
a k-NN classifier, based on n-gram features. Note that
no explicit training is required when using the k-NN
technique—after the n-grams are selected, the (labe-
led) points from the training set form the model. Also,
we need to specify the number of nearest neighbors to
use, i.e., the value of k in k-NN. In all other respects,
the experimental design here is analogous to the SVM
case in Section 3.3, above.

To determine value for k, we performed a set of
experiments on the Gatak family. Specifically, we tes-
ted each k ∈ {2,3,4, . . . ,10} and computed the balan-
ced accuracy for each case. Figure 3 depicts the re-
sults of these experiments in the form of a line graph.
Although the differences are relatively small, we see
that k = 5 gives the best results, and hence we have
selected k = 5 for all of our subsequent k-NN experi-
ments.

2 3 4 5 6 7 8
0.90

0.92

0.94

0.96

k

B
al

an
ce

d
ac

cu
ra

cy

Figure 3: k-NN results for various values of k.

In Table 5, we give our experimental results—in
the form of the balanced accuracy—for each of the in-
dividual malware families in our dataset. We see that
all families score very high, except Ramnit, which

On the Effectiveness of Generic Malware Models

447



at 86% accuracy (for the “all” case) is significantly
below the results obtained for any of the other fami-
lies.

Table 5: k-NN balanced accuracy for individual families
(bigram models).

Family Samples per family
all 1,000

Gatak 0.9514 1.0000
Kelihos 0.9765 0.9852
Lollipop 0.9334 0.9438
Obfuscator 0.9211 0.9267
Ramnit 0.8632 0.8752
Winwebsec 0.9481 0.9487
Zbot 0.9525 0.9600
Zeroaccess 0.9799 0.9827

We also conducted bigram, 3-gram, and 4-gram
experiments with combined families. The results
obtained for these cases are summarized here in Fi-
gure 4. Qualitatively and quantitatively, our k-NN
results are very similar to those we obtained for the
SVM classifier.

1 2 3 4 5 6 7 8
0.50

0.60

0.70

0.80

0.90

1.00

Number of families

B
al

an
ce

d
ac

cu
ra

cy

bigram (1000 samples)
bigram (all samples)
3-gram (all samples)
4-gram (all samples)

Figure 4: k-NN balanced accuracy as a function of the num-
ber of families.

3.6 Random Forest Experiments

In this section, we discuss our experiments and results
for random forest classifiers. The experimental setup
here is analogous to that used for the SVM and k-NN
experiments considered above. For random forests,
there are many parameters, and we experimented with
a variety of values. For all of the random forest results
presented here, we use the following selection of pa-
rameters.

• The number of trees in each forest is 10.

• Entropy is used to measure the quality of a split.

• We use
√

N features—where N is the total number
of features available in the tree—when determi-
ning the best split. Note that the value of N is
tree-specific.

• No maximum depth, i.e., nodes are expanded until
all leaves are pure or until all leaves contain less
than 2 samples.

• A minimum of 2 samples is required to split an ex-
isting node.

For each individual family, using random forest
classifiers with the parameters listed above, we have
obtained the balanced accuracy results given in Ta-
ble 6. From these results, it is clear that random fo-
rests perform significantly better on these individual
families than any of the techniques considered previ-
ously in this paper.

Table 6: Random forest balanced accuracy for individual
families.

Family Samples per family
all 1,000

Gatak 0.9882 1.0000
Kelihos 0.9982 0.9962
Lollipop 0.9736 0.9750
Obfuscator 0.9505 0.9407
Ramnit 0.9049 0.9079
Winwebsec 0.9897 0.9882
Zbot 0.9894 0.9765
Zeroaccess 0.9887 0.9922

We also conducted bigram, 3-gram, and 4-gram
experiments for random forests. The results for these
cases are summarized in Figure 5. Note that the
two bigram experiments—using all samples versus
using 1,000 samples per family—are virtually indis-
tinguishable in this case.

For our random forest classifiers, the average
accuracy drops gradually as we increase the num-
ber of families being modeled. However, the mag-
nitude of the decline is even smaller than we obser-
ved with k-NN. These results indicate that a random
forest is, in some sense, the most robust of the classi-
fiers we have considered in this paper. Nevertheless,
the average accuracy of our random forest classifier
does drop to 88% in the bigram case when we con-
struct a model based on all 8 families, which is sig-
nificantly below the lowest accuracy of any of the in-
dividual classifiers. Similar statements hold for the
3-gram and 4-gram experiments.

BASS 2018 - International Workshop on Behavioral Analysis for System Security

448



1 2 3 4 5 6 7 8
0.50

0.60

0.70

0.80

0.90

1.00

Number of families

B
al

an
ce

d
ac

cu
ra

cy

bigram (1000 samples)
bigram (all samples)
3-gram (all samples)
4-gram (all samples)

Figure 5: Random forest balanced accuracy as a function of
the number of families.

3.7 Summary of Results

Figure 6 depicts the variation in average accuracy
with increasing generality of the data for each of the
four techniques considered in this paper. For the χ2

experiments, the y-axis represents the area under the
ROC curve (AUC), while for the other three techni-
ques, the y-axis is given in terms of the balanced accu-
racy.

1 2 3 4 5 6 7 8
0.50

0.60

0.70

0.80

0.90

1.00

Number of families

B
al

an
ce

d
ac

cu
ra

cy
/A

U
C

Random forest
k-NN
SVM

χ2 score

Figure 6: Comparison of average accuracy (bigrams using
all samples).

The results in Figure 6 show that a random forest
is the strongest and most robust technique considered
here, followed closely by k-NN, while SVM has the
most significant drop off as additional families are in-
cluded. But perhaps the most pertinent observation is
that in every case, a clear trend is apparent—the more

generic the training dataset, the weaker the resulting
model.

4 CONCLUSION

In this paper, we considered four different learning
techniques—SVM, a χ2 score, k-NN, and random
forests—and tested the strength of each when faced
with increasingly generic malware “families.” In each
case, we experimented with bigram, 3-gram, and 4-
gram features.

Overall, we found that bigrams gave us the best
results. In addition, the neighborhood based techni-
ques (i.e., random forest and k-NN) proved to be the
strongest, with random forest being the best. In all
cases, we observed that accuracy generally suffers as
the models become more generic.

In our experiments, we considered eight malware
families. Even with this fairly small number of fa-
milies, the effect of an increasingly generic dataset
are readily apparent. Of course, the fewer models we
have to deal with, the better in terms of efficiency. Ho-
wever, our results show that we are likely to suffer a
significant penalty with respect to classification accu-
racy when multiple families are combined into a sin-
gle model, except perhaps in cases where the under-
lying families are closely related. Note that this does
not imply any flaw in the classification techniques or
the features used. Indeed, our results show that a sim-
ple bigram feature, for example, can be quite strong
when constructing models within reasonable bounds.

It is also worth noting that the experiments con-
sidered in this paper are, in a sense, a relatively easy
case, as our dataset only has eight well-defined fa-
milies. An extremely large and diverse malware da-
taset is likely to contain a vast number of families,
as well as significant numbers of sporadic (i.e., non-
family) malware examples. We would expect any mo-
del trained on such a generic dataset to learn only the
most generic of features. When viewed from this per-
spective, the results given in (Raff et al., 2016) can
be seen to be a natural artifact of the dataset itself,
as opposed to an inherent limitation of the particular
features (i.e., n-grams) under consideration.

For future work, additional features can be consi-
dered. For example, we plan to develop models that
include n-grams, opcodes, and various dynamic fe-
atures, with the goal of analyzing the robustness of
such models in the face of ever more generic data-
sets. While we would certainly expect any model to
deteriorate as the training data becomes more gene-
ric, as a practical matter, anything that can be done
to effectively group more families together—thus re-

On the Effectiveness of Generic Malware Models

449



ducing the number of models required for detection—
while still retaining a usable degree of accuracy would
be a worthy result.

It would also be interesting to study this problem
from the perspective of malware type. That is, can
we achieve greater success if we restrict our attention
to a specific class of malware, such as botnets, tro-
jans, or worrms, for example? It seems plausible that
there will be more similarity between families that all
belong to the same class than families that span dif-
ferent classes. If so, we would expect to effectively
deal with larger numbers of families within a single
model.

Another basic problem is the need for an extre-
mely large, labeled, and publicly available malware
dataset. While the dataset used here is quite substan-
tial, with 18,495 samples, a dataset with a much larger
number of families (as well as sporadic non-family
malware samples) would be invaluable for research
of the type considered here, as well as for many other
research problems. We are currently in the process of
assembling just such a dataset.

REFERENCES

Adware:Win32/Lollipop (2018). Adware:Win32/Lollipop
threat description. https://www.microsoft.com/en-us/
wdsi/threats/malware-encyclopedia-description?
Name=Adware:Win32/Lollipop.

Bradley, A. P. (1997). The use of the area under the
roc curve in the evaluation of machine learning algo-
rithms. Pattern Recognition, 30(7):1145–1159.

Kaggle (2015). Kaggle: Microsoft malware classification
challenge (BIG 2015). https://www.kaggle.com/c/
malware-classification/ data.

Liangboonprakong, C. and Sornil, O. (2013). Classification
of malware families based on n-grams sequential pat-
tern features. In 2013 IEEE 8th Conference on Indus-
trial Electronics and Applications, ICIEA ’13, pages
777–782.

Malicia Project (2015). Malicia project. http://
malicia-project.com/.

Nappa, A., Rafique, M. Z., and Caballero, J. (2013). Dri-
ving in the cloud: An analysis of drive-by download
operations and abuse reporting. In Proceedings of the
10th Conference on Detection of Intrusions and Mal-
ware & Vulnerability Assessment, DIMVA 2013, pa-
ges 1–20.

Norton (2018). Norton Security Center — Malware.
https://us.norton.com/internetsecurity-malware.html.

Pearson, K. (1900). On the criterion that a given system of
deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The
London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, 50(302):157–175.

Plackett, R. L. (1983). Karl Pearson and the chi-squared
test. International Statistical Review / Revue Interna-
tionale de Statistique, 51(1):59–72.

Raff, E. et al. (2016). An investigation of byte n-gram fea-
tures for malware classification. Journal of Computer
Virology and Hacking Techniques, pages 1–20.

Reddy, D. K. S. and Pujari, A. K. (2006). N-gram analysis
for computer virus detection. Journal in Computer
Virology, 2(3):231–239.

Shabtai, A., Moskovitch, R., Elovici, Y., and Glezer, C.
(2009). Detection of malicious code by applying ma-
chine learning classifiers on static features: A state-of-
the-art survey. Information Security Technical Report,
14(1):16 – 29.

Singh, T., Troia, F. D., Visaggio, C. A., Austin, T. H., and
Stamp, M. (2016). Support vector machines and mal-
ware detection. Journal of Computer Virology and
Hacking Techniques, 12(4):203–212.

Stamp, M. (2017). Introduction to Machine Learning with
Applications in Information Security. Chapman and
Hall/CRC, Boca Raton.

Symantec (2017). Symantec internet security threat report.
https://www.symantec.com/content/dam/symantec/
docs/reports/istr-22-2017-en.pdf.

Tabish, S. M., Shafiq, M. Z., and Farooq, M. (2009). Mal-
ware detection using statistical analysis of byte-level
file content. In Proceedings of the ACM SIGKDD
Workshop on CyberSecurity and Intelligence Informa-
tics, CSI-KDD ’09, pages 23–31, New York.

Trojan:Win32/Gatak (2018). Trojan:Win32/Gatak threat
description. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?
Name=Trojan%3AWin32%2FGatak.

Trojan.Zbot (2010). Trojan.Zbot. http://
www.symantec.com/security response/writeup.jsp?
docid=2010-011016-3514-99.

Trojan.Zeroaccess (2011). Trojan.Zeroaccess. https://
www.symantec.com/security response/writeup.jsp?
docid=2011-071314-0410-99.

VirTool:Win32/Obfuscator.ACY (2018). VirTool:Win32/
Obfuscator.ACY threat description. https://
www.microsoft.com/en-us/wdsi/threats/malware-
encyclopedia-description?Name=VirTool:Win32/
Obfuscator.ACY.

Win32/Kelihos (2018). Win32/Kelihos threat descrip-
tion. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32
%2fKelihos.

Win32/Ramnit (2018). Win32/Ramnit threat descrip-
tion. https://www.microsoft.com/en-us/wdsi/threats/
malware-encyclopedia-description?Name=Win32/
Ramnit.

Win32/Winwebsec (2017). Win32/Winwebsec. https://
www.microsoft.com/security/portal/threat/encyclopedia/
entry.aspx?Name=Win32%2fWinwebsec.

Wong, W. and Stamp, M. (2006). Hunting for metamorphic
engines. Journal in Computer Virology, 2(3):211–229.

BASS 2018 - International Workshop on Behavioral Analysis for System Security

450


