
Secure Endpoint Device Agent Architecture

Kevin Foltz and William R. Simpson
Institute for Defense Analyses, 4850 Mark Center Drive, Alexandria, VA 22311, U.S.A.

Keywords: Enterprise, Software Agent, System Design, Confidentiality, Integrity, Application Security, Security, End-
to-end Encryption, Mobile Device Management, Host based Security.

Abstract: Software agents are installed on endpoint devices to monitor local activity, prevent harmful behavior, allow
remote management, and report back to the enterprise. The challenge in this environment is the security of
the agents and their communication with the enterprise. This work presents an agent architecture that operates
within a high-security Enterprise Level Security (ELS) architecture that preserves end-to-end integrity,
encryption, and accountability. This architecture uses secure hardware for sensitive key operations and device
attestation. Software agents leverage this hardware security to provide services consistent with the ELS
framework. This enables an enterprise to manage and secure all endpoint device agents and their
communications with other enterprise services.

1 INTRODUCTION

Defending an enterprise and its information against
external attacks has moved from the central network
to the edge devices. Network monitoring provides a
centralized approach where all communications can
be intercepted, recorded, analysed for malicious
intent, and modified as needed. However, this is
complicated by current threats and operational
practices.

Widespread encrypted hypertext transfer protocol
(HTTPS) traffic requires a network scanner to act as
a central point of decryption. This can be
accomplished by sharing server private keys with
network appliances on the wire, but such an approach
violates end-to-end security by breaking every secure
connection within the enterprise. In addition, these
network appliances provide central points of attack
that enable access to all traffic and allow an attacker
to impersonate any entity within the enterprise. Such
a network-based approach has critical security flaws.

Moving the defense to the edge of the network
offers several advantages. There is no need to break
end-to-end secure connections. There is no central
point of attack that can compromise all connections
and impersonate any entity. The defense tools can
operate at the endpoint to detect malicious behaviour
as it happens and directly respond instead of trying to
predict it before it happens based on network traffic

and then trying to respond remotely after the damage
is done.

The edge defense model does have some
drawbacks. The distributed nature of the defense
introduces the challenge of coordination and
correlation of data. End-to-end security requires new
approaches to decrypt data for analysis. Also,
software agents at the endpoints, which are often
lightweight applications, must perform secure
operations and initiate secure communication
channels.

This paper presents a method for enabling
distributed endpoint-based defense while preserving
end-to-end integrity, encryption, and authentication
of communications across the enterprise. This agent
architecture is part of a larger effort to secure
information sharing for the United States Air Force
(Foltz and Simpson, 2017).

2 RELATED WORK

Network monitoring can provide important insights
about lower layer resources and communications, but
with widespread HTTPS and similar protocols it does
not have access to the higher layer content. Web
application firewalls (WAFs) attempt to bridge this
gap by decrypting content for the server, analysing
and modifying it for security, and passing the clean
content to the server. The WAF may even open files

Foltz, K. and Simpson, W.
Secure Endpoint Device Agent Architecture.
DOI: 10.5220/0007658705470554
In Proceedings of the 21st International Conference on Enterprise Information Systems (ICEIS 2019), pages 547-554
ISBN: 978-989-758-372-8
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

547

and execute code to determine if certain content
presents a danger to the receiver. This approach
catches many attacks that network monitoring and
pattern-based detection miss, but it breaks the end-to-
end security model, introduces latency in
communications, and does not stop all attacks.

Endpoint agent architecture design has seen some
work with varying goals. (Wang, et al., 2003)
describe an agent architecture that preserves battery
life of mobile devices. (Assink, 2016) describes the
potential benefits of using agents for Internet of
Things (IoT) applications. (Berkovits, et al., 1998.)
and (Varadharajan and Foster, 2003) examine
security of agents that migrate between different
hosts. (Liu and Wang, 2003) describe a secure agent
architecture for sensor networks. (Šimo et al., 2009)
describe a secure agent architecture for mobile
agents. It has similar security goals, but unlike our
work its agents operate with their own software-based
private keys, and the agent code itself must be
carefully protected.

There is a lot of work in the area of mobile agent
computing, where agents move from device to device.
However, our interest is in monitoring the device
itself using agents, not doing computations that move
agents across devices.

3 RESEARCH METHODS

This work uses as a starting point the Enterprise Level
Security (ELS) model. ELS is designed for high
assurance information systems subject to constant
sophisticated attacks (Trias, et al., 2016). It then
addresses the challenge of integrating endpoint
device agents into such an architecture while adhering
to and working with the existing ELS concepts,
components, and protocols. This section provides an
overview of ELS and the integration challenges for
agent-based security.

3.1 ELS Overview

The core of ELS is identity management and access
control. The goal is to uniquely identify every entity
in the enterprise, human and non-human, and use
these identities with strong authentication methods to
initiate communication. For interactions where data
or services are requested access is determined by data
providers using rules based on attributes stored in an
Enterprise Attribute System (EAS).

The data owner or service provider is part of the
enterprise and is responsible for setting access rules.
This preserves some degree of autonomy for the data

owners and supports scalability through its
distributed architecture. These rules are compared
against attributes collected from across the enterprise
to compute which entities have access to which
resources. This information is provided on-demand to
requesters in the form of a secure access token.
Requesters must authenticate to the token server to
receive an access token, and this token is time-limited
and tied to the requester’s identity and the target
resource.

Requesters then authenticate to the target resource
and provide the token for access. The token is
checked for validity using a server handler. This
handler code is provided by the enterprise to all
entities using access controls, and it parses the token
and conducts security checks in a standardized way.
A token that is valid and contains the proper identity
and access information provides a requester access to
data or services at the provider.

3.2 ELS Standards and Protocols

ELS starts with high level goals and design
philosophies, which are successively refined into
specific methods and implementation details for the
core security functions (Foltz and Simpson, 2016b).

For identity, each entity is issued an X.509
certificate that is tied to a public/private key pair. The
distinguished name (DN) in the certificate is used as
a unique identifier for each entity in the enterprise.
These X.509 certificates are signed by a CA that is
part of a public key infrastructure (PKI). This PKI
includes root CAs, issuing CAs, OCSP responders for
validity checks, and CRLs for offline use. All entities
are vetted thoroughly before they are assigned a
certificate and key pair. All private keys are stored in
hardware to prevent duplication and to provide
accountability.

Communication uses transport layer security
(TLS) with HTTPS as well as other protocols that
integrate TLS, such as secure lightweight directory
access protocol (LDAPS). The PKI credentials are
used within TLS to provide a secure, authenticated
communication channel for entities within the
enterprise.

The access token is formatted according to the
security assertion markup language (SAML) version
2.0. This provides fields for the identity, attribute
values, validity time window, target resource, and
digital signature. It also provides the option for
encryption of tokens, as well as other security
options. The SAML standard allows many options,
but the tokens allowed in ELS are restricted to access
tokens of a particular form, which differs from many

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

548

non-ELS implementations where SAML tokens are
used primarily for single sign on (SSO).

The standards mentioned here, including PKI,
TLS, and SAML, are not fundamental to the ELS
concepts, but they are the currently adopted
implementation choices, so integration with ELS
must use these particular choices in addition to
conforming to the overall architectural goals.

3.3 Agent Security Challenges

The ELS model starts with the premise that security
is between endpoints. However, in reality endpoints
are one of the most vulnerable areas of any
information system. As a result, ELS requires strong
guarantees that the endpoints have not been
compromised. For example, a stolen smart card
credential compromises an individual, but such a
problem is often quickly reported by the person who
lost the credential. However, a compromised device
can monitor user activity and act as the user
surreptitiously over long periods of time with no
obvious signs to the user. A systematic approach is
required to monitor devices for such compromise and
malicious behavior.

In addition, the ELS infrastructure includes other
types of agents, such as logging and monitoring
agents and endpoint device management agents.

The primary challenges for agents in a secure
environment are:

 Establishing secure agent communication
with external entities

 Tying agent communication to its host device
The first challenge requires that all endpoints use

the same ELS methods to communicate whether they
are a person, server, or other active entity in the
enterprise. The agent, as the initiator of
communication with a central server, gateway, or
collection system, qualifies as such an active entity.
It must be secured at a level comparable to a user with
a hardware-based PKI credential. This is challenging
because agents operate differently than normal users
or other active entities.

The second challenge relates to the separate
methods of authenticating endpoint requesters and the
devices themselves. Users, for example, can use
smart cards, and servers can use hardware security
modules (HSMs) to authenticate from different
underlying hardware platforms or even virtual
machines. However, hardware authentication must be
through a different means, as it must be tied to the
hardware platform itself. The challenge for agents is
to tie the agent to its digital identity, and then tie its
digital identity to a hardware-based device identity.

4 RESULTS

Sections 4.1 through 4.5 describe the approach for the
different agents that both use ELS and expand ELS
services to address enterprise needs.

4.1 Mobile Device Management Agents

With the move from desktops and laptops to mobile
devices like phones and tablets, the edge of the
enterprise has changed. Gone are the days where
employees log in from an enterprise machine in an
enterprise building on an enterprise network. Current
users can come from personal mobile devices in
public spaces through a commercial cellular network.
This motivates our first use case of endpoint device
management. These endpoints include mobile
devices as well as more traditional laptops, desktops,
and servers. Agents for device management must
have a software component for the agent code, but
they must also leverage a hardware key store on the
device. Unlike ELS authentication, where the keys
are tied to the user or other entity using the device,
agent authentication must be tied to the device
hardware.

Such an agent need not have any security itself for
authentication. In fact, as a software element the
agent should not have any security information,
because such information could be easily duplicated
or extracted. The agent is similar to a web browser on
a desktop. The browser does not itself authenticate to
servers. It provides the means for a user to
authenticate and request or provide content. The
agent is similar in nature. It relies on existing device
keys and certificates to authenticate and communicate
securely. The source of the agent keys must be the
device hardware, not a portable or external key store,
because such agents speak for the device itself, not
some other entity like a person or server that can
migrate from device to device.

This introduces some complications. First, the
agent is a piece of software that is separate from its
hardware-based keys. Hence, any agent, real or
malicious, that gains access to the real agent’s keys
can act as a real agent. There are a number of attacks
possible between a software instance and the
hardware keys it uses. This is similar to the challenge
of securing keys in the cloud, which has a similar key
and software separation issue. The agent, and
endpoint security in general, must rely on the device
to monitor itself, including the software on it, because
the agent cannot be trusted by itself.

Secure key storage and use (SKSU) on a device,
such as a TPM, has the capability to perform

Secure Endpoint Device Agent Architecture

549

attestations, and such an attestation is required to
ensure that the device is running the proper agent and
other software. The attestation is a report that lists the
state of hardware and software on the device and
provides a signature using a key associated with the
particular SKSU module on the device. The SKSU
hardware module serves as the root of trust for all
device-based communications, as indicated in Figure
1. The SKSU must itself be trusted as a starting point,
and from there security for the device and its software
functionality can be secured using attestation reports.

Figure 1: Using the hardware based SKSU as a root of trust
for the device.

The attestation report must cover the hardware,
operating system, any virtualization or
containerization, and the applications and agents
installed on the device. In order for an agent to
communicate securely, it must first produce an
attestation report that shows that at the current time
the device is running as intended with no malicious
entities or configuration modifications. Typically this
is implemented as a white list of approved software.

The agent invokes the TPM to produce an
attestation report with the required parameters. In
Figure 2, the elements covered by the attestation
report are highlighted. They include the full set of
components that can affect the agent, which is
running as an app in a container in this case. In this
case, the containerization and containers are trusted
to isolate the apps within their containers sufficiently
well that any other apps or containers are allowed to
operate on the device. Other apps outside the
container need not be validated, and other containers
need not be validated. This might be the case for a
phone with separate work and personal spaces.
However, if the containerization or containers had
known vulnerabilities or insufficient protections and
isolation capabilities, then the attestation report
would have to cover the other components as well. In
general, the attestation report must cover all elements

of the device and its software that could negatively
affect the agent’s ability to securely communicate
with an external entity.

The trust starts at the bottom with hardware and
works its way up the stack. The SKSU validates that
the device hardware is operating correctly. It then
validates that the operating system is correct. This
may include such checks as whether the OS is
“rooted,” which version is installed, and whether the
software is installed properly, such as checking a hash
of the executable against a known value. The
containerization and applications, including the agent
itself, can then be validated in a similar manner.

With a trusted SKSU, and a valid agent running
with other valid applications in a valid container in a
valid containerization method on a valid operating
system on valid hardware, a high degree of trust can
be established in the agent functionality. In particular,
a high degree of trust can be established that a private
key operation for the agent was actually initiated by
the agent itself. This is required because there is no
external method, such as a PIN or biometric
information, to validate the agent’s request at the
SKSU itself. The SKSU, in combination with the full
validated software stack is required to secure the
private key use by the agent. Without such validation
it may be possible for another entity to use the key,
which would prevent proper authentication of the
agent to the central server.

The agent, with its attestation report,
communicates with the external entity, which is often
an aggregation point for many device agents. After
authentication, the agent may send a SAML token to
the external endpoint for access, in accordance with
standard ELS rules for access. A simpler alternative
is to have the agent use identity-based authentication.
In this case, the server maintains an access control list
(ACL) of the known deployed device agents. This
reduces the need for a SAML token, but eliminates
the efficiency that ELS provides for managing access
control rules for large groups.

The external entity must be configured to expect
and then validate an attestation report for an agent
request. The agent’s credential is stored on the TPM
or other SKSU module. Such a credential alone is not
sufficient for ELS authentication, because rogue
software may have compromised the device and used
the agent key. To secure against this attack the
attestation report validates that the proper software is
installed and running at the time of the
communication with the agent.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

550

Figure 2: Extending trust to other hardware and software
using a trusted attestation report.

The SKSU module itself may be compromised,
which would allow an attacker to generate valid
attestation reports for a compromised device. This is
addressed by choosing hardware devices that protect
against such attacks. Such hardware is becoming a
standard part of mobile phones, and keys generated
on such devices are very difficult to extract. (Apple,
2018) (Trusted Computing Group, 2016).

The full secure communication sequence from
agent to external entity is shown in Figure 3. The
steps are as follows:

1) The agent requests an attestation report from
the SKSU module.

2) The SKSU module validates the hardware.
3) The SKSU module validates the operating

system version, configuration, and hash.
4) The SKSU module validates the

containerization mechanism or other isolation
mechanism(s), if applicable.

5) The SKSU module validates the container or
other isolation unit where the agent is located,
if applicable.

6) The SKSU validates other applications in the
same container as the agent.

7) The SKSU validates the agent itself.
8) The SKSU provides the attestation report to

the agent.
9) The agent initiates a secure connection to the

external entity and validates the external
entity credentials.

10) The external entity requests authentication of
the agent.

11) The agent requests a private key operation for
the agent key stored in the SKSU.

12) The SKSU returns the results of the private
key operation.

13) The agent uses the private key operation to
authenticate to the external entity and
provides the attestation report through the
secure connection.

The external entity must validate that the
attestation report has a valid signature from a trusted
source and the items listed for the device conform to
a valid configuration of the device. At this point the
agent has successfully authenticated to the external
entity using the device key in the SKSU and
leveraging the SKSU and its internal key as a root of
trust.

Figure 3: Agent communication security flows.

The external entity may then request an access
token or it may check the identity of the agent against
an ACL for authorization. This process proceeds
similar to normal ELS SAML requests. The only
difference is that authentication to the token server
also uses the flows above to use the SKSU and its
attestation report for authentication.

4.2 Monitoring Agents

In addition to device management agents, ELS
requires agents for monitoring of endpoint devices.
With end-to-end security, it is not possible to directly
monitor the content of communication between
endpoints. This information must be collected from
the endpoints using agents. These agents operate on
servers as well as user devices. The monitoring agents
watch for potentially malicious inputs and outputs,
much like a network-based monitoring system does.
However, the monitoring agents only process a single
device’s communications. This can help performance

Secure Endpoint Device Agent Architecture

551

by distributing the load across all enterprise devices.
However, some data must be shared with a central
entity to enable cross-device correlations. The agent
is responsible for communicating with the central
aggregator and sending relevant data periodically or
upon request. The agent also responds to
configuration changes pushed from the central
aggregator in response to changing monitoring needs.

The monitoring agents process security sensitive
information related to device, operating system, or
application anomalies and compromises, and they
initiate the transmission of this as active entities, so
they must be authenticated much like the endpoint
device management agents. The monitoring agent
keys are stored in the TPM and used to initiate TLS
connections to central servers. The agent
authenticates using its key, and this is coupled to an
endpoint device management agent’s attestation
report that certifies the operational state of the device.
Because monitoring agents and endpoint device
management agents are both part of the standard ELS
infrastructure, such attestation reports can be shared
among the backend servers through a common
storage system.

With a TPM attestation report from the endpoint
device management system, the device’s state is
established as “clean.” Such a clean device can then
be trusted to authenticate and provide proper
information from all of the agents covered by the
attestation report, including the monitoring agent.
The monitoring agent then provides further
information about potentially malicious activity on
the device itself. This information can include details
of malicious operating system configuration changes,
such as rooting, or malicious or anomalous
application activities, such as accessing or requesting
resources that are restricted.

4.3 Log Aggregation Agents

Log aggregation agents periodically assemble the
relevant log content from the device, which may
include monitoring logs, browser history, key usage,
location history, network utilization rates, or other
information as configured by the enterprise. They
then send this information to an aggregator, which
may further aggregate it at the enterprise level. The
log information from a single device is packaged as a
signed message that can be passed through multiple
aggregators without loss of security properties. The
intermediate aggregators are not active entities
because they do not modify the data packages. They
only provide performance benefits, such as load
balancing or aggregation of data packets.

Log records can come from the hardware, in
which case an attestation report is a natural security
measure. They can also come from the operating
system, which is often tightly coupled with a SKSU
module, and again the attestation report is a natural
choice for security. The challenge is application-layer
logging, which may not be completely in control of
the application that generates it. The operating
system, in particular, may interfere with the log file
management, make it available to other applications,
or directly modify it. The operating system could also
act on behalf of the application when requesting
logging related activities. Again, the attestation report
for the software on the device provides a method to
secure against a modified or compromised operating
system. The system attestation report combined with
the log attestation report provides the needed security
for transferring the log record to the central
aggregator.

The log aggregator has a unique position. It is a
passive entity with respect to the content of the log
records. These are signed by the log aggregation
agents on individual devices, so such content cannot
be modified by the aggregator. However, the
aggregator does have an important active role to play
in validating the integrity of the signature. The
aggregator must validate the attestation report for the
device that signed the log record. A bad attestation
report implies that the signature cannot be trusted, and
the log aggregator is the point where this is checked.
The log aggregator signs valid log records and refuses
to sign invalid log records. The aggregator serves as
an active entity in providing its own validation but a
passive entity with respect to the signed log records
themselves.

The central aggregator need not be a central point
of failure for log record security. Confidentiality is
difficult to provide due to the nature of the
aggregator, but integrity is often more important for
log-related applications. The signatures by the
device-based keys and certificates, combined with a
validation of their attestation reports, provides a high
level of integrity for such records. For aggregation
functions, it may be necessary to strip the signatures
and use the raw data for further processing. In this
case, there is no direct method to validate the
processed data, but because all original data is signed,
it is possible to independently validate such
computations. Thus, the central aggregator is a single
point of aggregation, but is not a single point of
integrity vulnerability due to the device signatures for
individual records.

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

552

4.4 Service Desk Agents

Another type of agent is installed for the enterprise
service desk. Such an agent provides remote access
and capabilities for a service desk person or
automated service. The service desk agent provides a
higher degree of access than other agents. This is
because the service desk operators often need to
explore and experiment in order to troubleshoot an
issue, which requires privileged access to many
functions on the device. The service desk agent, as a
highly capable agent, introduces a potentially
dangerous interface into the device and a tempting
target of attack.

The security goals are slightly different for the
service desk agents than other agents. For other
agents, the goal is strong validation of what comes out
of such agents. For the service desk agent, the goal is
strong validation of what goes into the device. It is
important to prevent intruders from using the service
desk agent as an attack vector into the machine.

The attestation reports collected by the endpoint
device management system identify devices that are
out of compliance. Agents will fail to authenticate to
external servers under these conditions, just as for any
other agent. However, a service desk agent on an out-
of-compliance device can potentially open the door
for attackers, so a stronger response is required.
Instead of just denying the service desk agent external
access, the agent must be locked down or disabled
until the device is brought into compliance.

4.5 Import and Mediation Agents

Import agents are used to refresh data in reference
stores and mediate their content for compatibility
with other information. The agents pull data through
a guard for integrity and accuracy checking. Guarded
and filtered inputs are aggregated. Because numerous
errors and inconsistencies may exist, the guard checks
for formatting errors, discrepancies between data
bases, incorrect or missing data, illogical data, and
other undesirable conditions. Handling of
discrepancies from sources depend upon the nature of
the discrepancy and corrections may be required
before the data can be imported.

Import and mediation agents handle sensitive
personal data that is used across the enterprise for
security decisions, so they also have special responses
beyond a normal agent. Any attestation report
anomaly related to the import and mediation agent
must lead to failure of authentication and disabling of
these agents, much like the service desk agents.
However, the data managed by these agents must also

be rolled back to a prior known good state, because
data modifications made from an import and
mediation agent on a non-compliant device could
have widespread lasting effects on the entire
enterprise.

4.6 Other Agents

The preceding descriptions of agents focused on
enterprise agents. These are installed on devices as
part of normal enterprise operations in order to
conform to enterprise rules for security and
functionality. In addition, there may be other
application specific agents that are desired for
subgroups of the enterprise or individuals within the
enterprise. These may or may not have enterprise
approval or support.

Such agents can operate like the monitoring or
logging agents. They ultimately rely on device
hardware key storage, the operating system, and the
MDM system to bootstrap the security of their
communications. They require an attestation report, a
hardware-based authentication key, and possibly an
access token, much like any other active entity in the
enterprise. The response to an attestation report
showing an out-of-compliance device is to prevent
such agents from authenticating to external servers.

5 CONCLUSIONS

Moving from a centralized network-based security
model to a distributed endpoint-based model provides
many benefits for the current enterprise information
sharing network dominated by mobile devices.
However, under a high assurance enterprise security
model the endpoint-based model requires careful
planning to preserve existing security properties
while adding the additional functionality.

This paper examines the agents that must both
secure the enterprise and be secured. Security relies
on a hardware-based attestation of the operating state
of each device. This can be provided by a software
agent, but it must be tied to trusted hardware on the
device. The attestation report bootstraps the software
agent’s actions by ensuring that they are done on a
clean device. Other agents use this same
bootstrapping process to secure the information they
transmit about the device and applications on it.
Using such an approach, the end-to-end security
between all active endpoints is preserved and existing
monitoring capabilities are performed on the devices.

Thus, this provides a way to extend the enterprise
footprint onto mobile devices outside the enterprise

Secure Endpoint Device Agent Architecture

553

while maintaining security comparable to internal
networks.

This work is part of a body of work for high-
assurance enterprise computing using web services
(Simpson and Foltz, 2016; Foltz and Simpson, 2016a;
Foltz and Simpson, 2016c).

6 EXTENSIONS

Other tools or applications that use agents may use
the same process to provide secure device-based
communication. For example, in addition to a mobile
device manager (MDM), it is possible to use a mobile
application manager (MAM) from a different vendor.
The MAM has a lower level of control due to the
restricted operating system interfaces compared to the
MDM. However, it would use the same basic
communication methods with external servers and
internal operating system components and hardware
elements.

Many mobile device applications have tight ties to
external servers and serve mainly as a user interface
to web APIs. Such applications function much like
agents because they are lightweight and communicate
with a central server. As such, the architecture
described in this paper also serves as a blueprint for
such applications.

REFERENCES

Apple, “iOS Security, iOS 12.1”, November 2018,
https://www.apple.com/business/site/docs/iOS_Securit
y_Guide.pdf

Assink, Alexander, 2016. “The Potential of Agent
Architectures”, https://dzone.com/articles/the-
potential-of-agent-architectures

Berkovits S., Guttman J.D., Swarup V., 1998.
Authentication for Mobile Agents. In: Vigna G. (eds)
Mobile Agents and Security. Lecture Notes in
Computer Science, vol 1419. Springer, Berlin,
Heidelberg.

Foltz, K. and Simpson, W., 2017. Enterprise Level Security
with Homomorphic Encryption. In Proceedings of 19th
International Conference on Enterprise Information
Systems (ICEIS 2017), Porto, Portugal, April 26–29,
2017.

Foltz, K. and Simpson, W. R. 2016. “The Virtual
Application Data Center.” In: Proceedings of
Information Security Solutions Europe (ISSE) 2016.
Paris, France.

Foltz, K. and Simpson, W. R. 2016. “Enterprise Level
Security – Basic Security Model.” In: Proceedings of
the 20th World Multi-Conference on Systemics,

Cybernetics and Informatics: WMSCI, Volume I,
WMSCI 2016. Orlando, FL.

Foltz, K. and Simpson, W. R. 2016. “Federation for a
Secure Enterprise.” In: Proceedings of The Twenty-first
International Command and Control Research and
Technology Symposium (ICCRTS 2016). London, UK.

Liu, Z., Y. Wang, 2003. “A Secure Agent Architecture for
Sensor Networks”, In Proceedings of the International
Conference on Artificial Intelligence, IC-AI '03, Las
Vegas, Nevada.

Šimo, Branislav, Zoltán Balogh, Ondrej Habala, Ivana
Budinská, Ladislav Hluchý, 2009. “Architecture of the
Secure Agent Infrastructure for Management of Crisis
Situations”, Institute of Informatics, Slovak Academy
of Sciences, Dúbravská cesta 9, 845 07 Bratislava,
Slovakia, http://www.secricom.eu/images/articles/
UISAV_simo_final.pdf

Simpson, W. R. 2016. Enterprise Level Security – Securing
Information Systems in an Uncertain World. Boca
Raton, FL: CRC Press, p. 397.

Trias, Eric D., et al. 2016. “Enterprise Level Security”,
Proceedings of the 35th MILCOM conference, DOI:
10.1109/MILCOM.2016.7795297 pp. 31-36,
http://ieeexplore.ieee.org/document/7795297/.

Trusted Computing Group, “TPM 2.0 Library
Specification”, September 29, 2016. https://
trustedcomputinggroup.org/resource/tpm-library-
specification/

Varadharajan, V. and Foster, D. World Wide Web, 2003. 6:
93. https://doi.org/10.1023/A:1022360516731

Wang, Alf Inge, Carl-Fredrik Sørensen and Eva Indal,
2003. “A Mobile Agent Architecture for Heterogeneous
Devices.” Dept. of Computer and Information Science,
Norwegian University of Science and Technology, N-
7491 Trondheim, Norway, https://
pdfs.semanticscholar.org/874b/20fbd73f5c598c8032d
b0c6c9e5708bc7cec.pdf?_ga=2.107853322.92995789
9.1544120432-1559163387.1544120432

ICEIS 2019 - 21st International Conference on Enterprise Information Systems

554

