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Abstract: With the revolution of the new technologies and intelligent transportation systems (ITS) as one category of 

the artificial intelligent (AI) models, fuzzy logic models (FLMs) were considered as one of the promising 

methods applied in signalized intersections. In general, results show significant improvements on the 

efficiency of the traffic networks and intersections. This paper presents a new method of developing an 

optimal real-time traffic signal controller using the fuzzy logic technique/method (FLM), taking into 

consideration all various incoming traffic flows. The developed FLM was designed for an isolated intersection 

with four legs, split phasing, and three different movements (through, right, and left). This research aims at 

developing an FLM that replicate the control settings of optimized methods. Calibration and validation tests 

were conducted to ensure accuracy and efficiency of the developed model. Results show that the developed 

FLM outputs are close to those obtained from optimum methods for traffic signal control systems. 

1 INTRODUCTION 

The main purpose of traffic engineering is to improve 

vehicles’ movement and traffic safety (Roess, Prassas 

and Mcshane, 2004). The improvement of the traffic 

control systems is continues, wherein scholars keep 

on modifying existing controller, and integrating new 

ones. Sydney Coordinated Adaptive Traffic System 

(SCATS), Split Cycle and Offset Optimization 

Technique (SCOOT), and Fuzzy Signal Control 

(FUSICO), are of the most well-known and recent 

applied traffic signal control systems. For example, 

Sydney Coordinated Adaptive Traffic System 

(SCATS) shows a reduction in the delay time in cases 

of low traffic flows (Wolshon and Taylor, 1999). 

Another type of traffic signal controller is the 

adaptive traffic signal controller which uses the 

Approximate Dynamic Programming (ADP), where 

it shows an improvement of traffic efficiency by 

reducing vehicle delay time as compared to fixed-

time traffic control systems (Cai, Wong and 

Heydecker, 2009).  

Now-a-days, Intelligent Transportation Systems 

(ITS) as part of Artificial Intelligent (AI) are 

considered as a promising method in multiple areas 

of traffic and transportation engineering and 

management. Such Intelligent Transport Systems 

(ITS) are mainly applied to improve traffic operation 

system by enhancing the controller decision-making 

(Miles and Walker, 2006).  

Fuzzy logic systems are considered as one of the 

applied methods in artificial intelligent systems, 

which is used to convert human-experience into 

practical systems (Štencl and Lendel, 2012). Fuzzy 

sets were presented initially by Lotfi Zadeh in 1965 

(Ross, 2004). Applications of the FLM in 

transportation engineering was presented, describing 

the four components of FLM namely; fuzzification, 

fuzzy logic rules, inference engine, and 

defuzzification (Teodorovic, 1999).  

Many of the developed FLM rules can be 

classified as ‘pure fuzzy’ models, in which input-

output relationships were based on human-

knowledge and experience (i.e. developed system for 

traffic signal controller for an isolated intersection 

(Pranevičius and Kraujalis, 2012)). 

In other models, a genetic algorithm (GA) showed 

an improvement in the performance of a developed 

model, in which (GA) was designed and applied for 

optimizing the membership function and the fuzzy 
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rules of traffic signal controllers, (Qiao, Yang and 

Gao, 2011). 

Moreover, ‘Neuro-Fuzzy, NF’ systems or 

‘Adaptive Neuro-Fuzzy Inference System (ANFIS)’ 

were also applied, and good results were achieved by 

reducing the average vehicle delay at signalized 

intersection (Iqbal et al., 2012), and (Seesara and 

Gadit, 2015). 

These FLM for traffic signal controllers were 

either limited to network parameters (i.e. geometry 

and number of lanes) or to input-output relationship 

in the rule block of the FLM controller (i.e. pure 

fuzzy). This paper presents the development of an 

FLM controller for a real-time traffic signal controller 

that can emulate the well-known optimization 

methods, taking into consideration various incoming 

traffic flows. Achieving this objective entails: 1) 

developing a fuzzy logic model, FLM, for a real-time 

signal control for a defined intersection, and 

calibrating it using various traffic flows and 

configurations that would be initially developed using 

a simulation environment, 2) developing an inference 

engine (‘IF-THEN’ logic) of the FLM, 3) testing the 

developed FLM controller by comparing its output to 

the output of optimal signal control settings, 4) 

validating the developed FLM controller using 

different set of input data (traffic flow combinations). 

2 METHODOLOGY AND MODEL 

DEVELOPMENT  

Various techniques and methods are applied for 

controlling traffic signal systems. In this research, the 

following sequence of procedures was applied to 

achieve the defined objective including; design of 

experiments, development and modelling an isolated 

intersection using a simulation software, extracting 

required data from the simulation model that would 

be used for FLM development (in the fuzzification 

process, and in the membership function 

development), FLM model calibration and 

verification, and finally conclusions and 

recommendations.  

Throughout the literature, a common observation 

was that many of the developed FLMs were not 

verified against a well-known signal control 

optimization method, while in this research, the 

developed FLM controller was designed using the 

well-known traffic simulation and analysis model 

(SYNCHRO), in which the Highway Capacity 

Manual (HCM) formulae are applied for traffic signal 

optimization and green time estimations.  

As for a base model, an isolated intersection was 

designed with four approaches (East, West, North, 

and South). For all operational scenarios, various 

assumptions were applied regarding control type, 

geometry, and traffic parameters. This includes; a 

pre-timed signalized intersection with protected left 

turn movement and split phasing operation, three 

shared lanes for each approach (East, West, North, 

and South) with a length of 500 m and speed of 60 

km/h, saturation flow rate of 1900 veh/h/lane. The 

selected phases were same as the approaches, where 

each phase would serve a full approach. The 

percentage distributions of the approach traffic 

movements for the right, through, and left were 30%, 

60%, and 10%, respectively. Also, a peak hour factor 

(PHF) of 0.92 was used, and 2% as the percentage of 

heavy vehicles.  

The developed FLM is designed to work as a real-

time traffic controller which has accessibility to raw 

field data of each approach, 𝑖 (𝑖 ∈ [1, 4]). This data 

includes approach real-time traffic flow,𝑣𝑖, and 95% 

of approach queue length, 𝑄𝑖 .  

Based on these field data, green weight for each 

phase or approach, 𝐺𝑊𝑖, would be estimated by 

applying the proposed FLM. The green time 

allocation for a particular phase, 𝐺𝑇𝑖 , could then be 

determined based on the estimated green weight of 

that phase, 𝐺𝑊𝑖.  

Out of the total cycle time, 𝐶, the higher the green 

weight, 𝐺𝑊, the higher the allocated portion of green 

time, 𝐺𝑇, for a specified phase, 𝑖. 
The developed FLM was calibrated to determine 

the green weights, 𝐺𝑊, that can be obtained using 

pure optimization methods such as the Highway 

Capacity Manual (HCM) optimization method.  

In order to calibrate the rule base functions of the 

designed FLM, the following procedures were 

followed;  

1. input variable, 𝑣𝑖, fuzzification,  

2. verification of the developed membership 

function of 𝑣𝑖,  

3. design of experiment to ensure covering wide 

range of approach traffic flows from free flow 

to grid locks,  

4. output determination, 

5. fuzzification of output variables, 𝑄𝑖 , 𝐺𝑊𝑖, and 

𝐶, 

6. definition of Input-output relationship,  

7. FLM development and calibration, and 

8. validation of the developed FLM. 
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2.1 Input Variable, 𝒗𝒊, Fuzzification 

In designing traffic models, field data collection is 

usually considered as the main input to the designed 

model. Herein, due to some limitations in the human 

resources, tools, and time, input data was obtained 

from a well-known optimization/simulation 

environment (SYNCHRO). Various traffic flow 

combinations, for the four approaches (East, West, 

North, and South), were considered.  

The minimum and maximum traffic flow values 

were determined based on the level(s) of service 

(LOS) which was presented in Transportation 

Research Board (TRB), Circular 212 (Transportation 

Research Board, 1980).  Moreover, the 𝑣/𝑐 ratio was 

recommended for use in the Canadian Capacity Guide 

(CCG) for Signalized Intersections (Teply et al., 

2008), in which the level of service [LOS] is related 

to the value of the volume to capacity ratio, 𝑣/𝑐. For 

example; if the 𝑣/𝑐 ratio is (less than 0.60), then the 

intersection LOS is defined as [A]. Similarly, LOS 

[B] represents a 𝑣/𝑐 ratio range of (0.60 to 0.69), LOS 

[C] represents a 𝑣/𝑐ratio range of (0.70 to 0.79), LOS 

[D] represents a 𝑣/𝑐ratio range of (0.80 to 0.89), LOS 

[E] represents a 𝑣/𝑐 ratio range of (0.90 to 0.99), and 

finally, the LOS [F] represents a 𝑣/𝑐 (greater than or 

equal to 1.00). 

Herein, using the assumed values for the lane 

saturation flow rate, 𝑠𝑖, as 1900 (veh/h/lane) for urban 

intersections, and the number of lanes, 𝑛 (3 lanes), the 

total approach saturation flow, 𝑠 (veh/h) was 

calculated by multiplying the lane saturation flow 

rate, 𝑠𝑖,  by the number of lanes, 𝑛. This calculated 

value of the approach saturation flow, 𝑠, was 

determined as 5700 (veh/h).  

Assuming equal number of lane groups, and that 

for the lane group; the saturation flow rate and the 

approach capacity are equal (5700 pcu/h).  

Moreover, due to lane group turning movements 

consideration (turning movements of 30% right and 

10% left), a reduction factor in estimating the 

approach traffic flow was considered and assumed to 

be 35%. This value was determined by conducting 

several simulation runs and experiments. From these 

experiments, it was found that the assumed reduction 

factor (35%) gives similar results and estimates of the 

total intersection 𝑣/𝑐 ratio using SYNCHRO 

simulation software.  

Based on these findings, the approach traffic flow, 

𝑣𝑖, was modified and estimated using following 

equation;

Traffic flow for lane group (approach), vi (
veh

h
) =

(1 − 0.35) ×  Intersection v/c ×
5700(

veh

h
) 

4
           (1) 

 

By determining various approach traffic flows, 𝑣𝑖,   

using equation (1) and with correspondence to the 

different 𝑣/𝑐 ratios presented in TRB, Circular 212 

(Transportation Research Board, 1980), the main 

input of the proposed FLM, 𝑣𝑖 , was determined. 

The membership function of the input variable, 𝑣𝑖, 

was assumed to be distributed into five fuzzy terms 

(low, medium, medium high, high and very high), as 

shown in Figure 1.   

Figure 1: Fuzzification of Input Variable, Traffic Flow, 𝑣𝑖, 

(The Membership Function). 

The traffic flow fuzzy terms of the membership 

function were defined based on the level of service, 

LOS, and the corresponding 𝑣/𝑐 ratio (Transportation 

Research Board, 1980). For example, the “Low” 

fuzzy term of traffic flow refers to LOS of “A & B”, 

the “Medium” fuzzy term of traffic flow refers to LOS 

of “C”, “Medium High” refers to LOS of “D”, “High” 

refers to LOS of “E”, and “Very High” fuzzy term of 

traffic flow refers to LOS of “F”.   

Using this definition and referring to the 𝑣/𝑐 ratio, 

the values of a, c, e, g, and  i were determined in terms 

of (veh/h) as; 324, 695, 787, 880, and 1112, 

respectively.  

In order to ensure covering all different 

combinations of traffic flows, a total of 289 

combinations of approach traffic flow, 𝑣𝑖, were 

carefully selected covering traffic flow ranges from 

“low” to “very high”. 

2.2 Verification of the Developed 
Membership Function of Input 
Variable, 𝒗𝒊,   

In order to ensure the validity of the fuzzification 

process to different 𝑣/𝑐 ratios, a well-known 

simulation environment (SYNCHRO) was used to 
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randomly run selected values of 𝑣𝑖. The ICU-LOS as 

well as the estimated 𝑣/𝑐 ratio were recorded and 

compared with the TRB, Circular 212 (Transportation 

Research Board, 1980). Comparison results shows 

similarity in these parameter (LOS, and the 𝑣/𝑐 ratio) 

as shown in Table 1 below. 

Table 1: LOS Comparison between the TRB- Circular 212, 

and SYNCHRO.  

Tested 𝒗/𝒄 

LOS- 
TRB- Circular 212 

(Transportation 
Research Board, 

1980) 

ICU LOS 
(SYNCHRO) 

0.3 A A 

0.65 B B 

0.75 C C 

0.85 D D 

0.92 E E 

0.95 E E 

0.99 E E 

1.1 F F 

1.2 F G 

1.4 F H 

2.3 Design of Experiment 

After conducting the verification test, a simulation 

model of a signalized intersection with four legs was 

developed using the SYNCHRO simulation software, 

with optimized settings.  

A simulation of 289 experimental scenarios 

covering various levels and combinations of traffic 

flows among the four approaches (East, West, North, 

and South) was conducted. These scenarios were 

carefully selected and simulated as a representation of 

field data collection, covering all levels of approach 

traffic flow. 

The 289 scenarios were selected to cover all 

possible LOS’s. Initially, only four different levels of 

fuzzy sets (“low”, “medium”, “medium to high”, and 

“high”) were considered for the traffic flow of each 

approach, where the “high” fuzzy term represents the 

LOS of “E & F”.  This resulted in 256 scenarios (44 = 

256).  However, in order to differentiate the totally 

blocked approach traffic flow (LOS “F”), a fifth level 

term (“very high”) was considered, and additional 33 

different experimental scenarios were considered for 

simulation. 

2.4 Output Determination 

For each of the 289 simulation-scenario, and using the 

traffic simulation software, SYNCHRO, three main 

outputs (𝑄𝑖 , 𝐺𝑇𝑖 , and 𝐶) were obtained and recorded. 

A new variable, approach green weight, 𝐺𝑊𝑖, was 

estimated as the proportion of the approach green 

time, 𝐺𝑇𝑖 , out of the total intersection green time, 𝐺. 

Figure 2 below represents the rule block (RB) of 

the fuzzy logic model structure. 

 
Figure 2: Rule Block (RB) of the fuzzy logic model (FLM).  

2.5 Fuzzification of Output Variables, 
𝑸𝒊, 𝑮𝑾𝒊, and 𝑪 

After conducting the 289 experimental runs, and 

recording the selected outputs for each experiment, 

the fuzzification of these outputs was done.  

Fuzzification process was mainly done by 

determining the range of each output variable. The 

range of the output variable was determined by 

estimating the absolute difference between the 

maximum and minimum recorded values out of the 

289 experiments. Table 2 shows the minimum and the 

maximum obtained-values of the output variables. 

Table 2: Min and Max Output Values obtained from 

running the 289 SYNCHRO Simulation Runs.  

 
C 

(sec) 

Qi  

(m) 

GTi 

(sec) 

GWi 

 

Min. 

of all  

approaches 

80 24.3 16 0.170 

Max.  

of all  

approaches 

160 179.1 36 0.311 

The range of each output variable was then divided 

into equal selected terms to determine the fuzzy sets 

for that variable. The membership function was then 

developed for each output variable as shown in Figure 

3 and Figure 4. Where Figure 3 represents the 

membership function for the 95 percentile approach 

queue length, 𝑄𝑖 , and approach green weights,  𝐺𝑊𝑖 , 

while Figure 4 represents the membership function 

for the cycle length, 𝐶. 
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Figure 3: Fuzzification (Membership Function) for the 95 

percentile approach queue length,  𝑄𝑖, output variable, and 

approach green weight,  𝐺𝑊𝑖. 

 
Figure 4: Fuzzification (Membership Function) of the cycle 

time, 𝐶 output variable. 

The values of a, b, and c shown in Figure 3 were 

estimated using equations (2), (3), and (4) 

respectively. 

 

a = min +
1

4
 (max −  min )               (2) 

 

b =  min +
2

4
 (max −  min )              (3) 

 

c = min +
3

4
 (max −  min )                                      (4) 

 

The obtained values of a, b, and c for the 95 

percentile approach queue length, 𝑄𝑖, were 

approximately; 63, 102, and 140 (m), respectively. 

For the Approach green weights, 𝐺𝑊𝑖 , the values of 

a, b, and c were; 0.205, 0.241, and 0.276, 

respectively. The fuzzification process of the 95 

percentile approach queue length, as well as the 

approach green weights,  𝐺𝑊𝑖 , was done based on 

“IF-THEN” statements as explained below.  

Based on Figure 3, the fuzzification formulae for 

the 95 percentile approach queue length output 

variable, 𝑄𝑖, was integrated as the following 

equations (eqns. 5 to 9). 

 

If Qi  ≤  Qmin, then Qi ∈ {L}, PQi
(L) = 1;            (5) 

 

If (Qmin <  Qi <  Qb), then  

Qi ∈ {L, M}: {
PQi

(M) = (
Qi−Qmin

77.4
 )

PQi
(L) = 1 − PQi

(M)
                       (6) 

 

If Qi = Qb, then Qi ∈ {M}, PQi
(M) = 1;        (7) 

 

If (Qb <  Qi <  Qmax), then  

Qi ∈ {M, H}: {
PQi

(H) = (
Qi−Qb

77.4
 )

PQi
(M) = 1 − PQi

(H)
              (8) 

 

If Qi  ≥  Qmax, then Qi ∈ {H}, PQi
(H) = 1;          (9) 

 

Similarly, the fuzzification formulae for the 

approach green weights output variable,  𝐺𝑊𝑖 , was 

integrated using the following equations (eqns. 10 to 

14); 

 

If GWi  ≤  GWmin, then GWi ∈ {L}, PGWi
(L) = 1;  (10) 

 

If (GWmin < GWi < GWb), then GWi ∈

{L, M}: {
PGWi

(M) = (
GWi−GWmin

0.07
 )

PGWi
(L) = 1 − PGWi

(M)
                      (11) 

 

If GWi = GWb, then GWi ∈ {M}, PGWi
(M) = 1;     (12) 

 

If (GWb <  GWi <  GWmax), then GWi ∈

{M, H}: {
PGWi

(H) = (
GWi−GWb

0.07
 )

PGWi
(M) = 1 − PGWi

(H)
                                                 (13) 

 

If GWi  ≥  GWmax, then GWi ∈ {H}, PGWi
(H) = 1;  (14) 

 

Moreover, the domain of each fuzzy term 

{minimum, mid, and maximum} was defined as 

follows; 

 

Qi, GWi  (Low): 

{0, min, min +
2

4
(max −  min )}                 (15) 

 

Qi, GWi (Medium):  

{ min, min +
2

4
(max −  min ), max}                  (16) 

 

Qi, GWi (High):  

{ min +
2

4
(max −  min ), max, max+}                (17) 

 

With regards to the cycle length output variable, 

𝐶, the values of d, e, f, g, h, i, and j were estimated 

based on simple mathematics, and found to be; 90, 

100, 110, 120, 130, 140, and 150 (sec), respectively.  
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With reference to Figure 4, the fuzzification 

formulae for the cycle length output variable, 𝐶, was 

integrated as the following equations (eqns. 18 to 26). 

  

If C ≤  Cmin, then C ∈ {L}, PC(L) = 1;               (18) 

 

If (Cmin < C < Ce), then C ∈

{L, (L~M)}: {
PC(L~M) = (

C−Cmin

20
 )

PC(L) = 1 − PC(L~M)
                   (19) 

 

If C = Ce, then C ∈ {L~M}, PC(L~M) = 1;        (20) 

 

If (Ce <  C <  Cg), then C ∈

{(L~M), M}: {
PC(M) = (

C−Ce

20
 )

PC(L~M) = 1 − PC(M)
                              (21) 

 

If C = Cg, then C ∈ {M}, PC(M) = 1;                  (22)  

 

If (Cg <  C <  Ci), then C ∈

{M, (M~H)}: {
PC(M~H) = (

C−Cg

20
 )

PC(M) = 1 − PC(M~H)
                           (23) 

 

If C = Ci, then C ∈ {M~H}, PC(M~H) = 1;       (24)  

 

If (Ci <  C <  Cmax), then C ∈

{(M~H), H}: {
PC(H) = (

C−Ci

20
 )

PC(M~H) = 1 − PC(H)
                              (25) 

 

If C ≥  Cmax, then C ∈ {H}, PC(H) = 1;             (26) 

 

The range for each fuzzy term of the, 𝐶, variable 

{minimum, mid, and maximum} was defined as 

follows: 

 

C (L): {0, min, min +
2

8
(max − min}                     (27) 

 

C (L~M): {min, min +
2

8
(max − min ), min +

4

8
(max −min  )}                                                                                 (28) 

 

C (M): {min +
2

8
(max − min ), min +

4

8
(max −min  ), min +

6

8
(max −min  )}                                (29) 

 

C (M~H): {min +
4

8
(max − min ), min +

6

8
(max −

min ), max}                                                                                      (30)  

 

C (H): {min +
6

8
(max −  min ), max, max +}      (31)                                       

2.6 Definition of the Input-Output 
Relationship  

After running the 289 different experimental tests in 

SYNCHRO, and following the developed 

fuzzification process for the input variable as well as 

the output variables, the input-output relationship was 

formed.  

One of the most common methods in defining the 

input-output relationship is ‘Pure Fuzzy Logic’ where 

input-output relationship is actually developed based 

on experience and experts’ opinion. 

In order to ensure replicating actual optimized 

real-time traffic control methods, the input-output 

relationship in this research was determined based on 

the 289 conducted tests in SYNCHRO. That is, for 

each simulation run, a new (if-then) rule was obtained 

and added to the rule block of the fuzzy logic.  

By the end, a total of 289 if-then rules were coded 

for the membership function of the FLM rule block. 

2.7 Fuzzy Logic Model Development 
and Calibration  

The proposed fuzzy logic model was developed using 

a specialized software, FuzzyTECH. Input and output 

variables, as well as the rule block, were defined and 

integrated based on the designed FLM as discussed in 

this paper.  

By developing the designed FLM, a calibration 

process was conducted to measure the difference 

between the developed FLM system and the HCM 

optimized methods (SYNCHRO). Where the same 

289 scenarios, which were used in SYNCHRO 

simulation model, were again applied and imported in 

the developed FLM using the FuzzyTECH software.  

The obtained results from the FLM were then 

compared with the SYNCHRO results using 

descriptive statistical methods. Both difference and 

percentage difference between the two model 

outputs’ (FLM and SYNCHRO) were estimated. 

Mainly, the cycle time, 𝐶, and green times using the 

green weights’ estimates, 𝐺𝑊, of the FLM were used 

in the comparison for the calibration test.  

The main criteria which was applied and followed 

in the calibration stage was that; the average 

percentage difference between the FLM output and 

SYNCHRO output should not exceed the confidence 

interval, which was considered here as 10.  

The obtained results showed that the average 

percentage difference between the FLM and 

SYNCHRO for each of the cycle time, 𝐶, and green 

times, 𝐺𝑇𝑖  output parameters were 6% and 7.7%, 
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respectively, which are lesser than the 10% (the 

considered confidence interval).  

As the developed FLM was subjected to 

calibration test and passed the acceptance criteria 

(percentage difference between the FLM and 

SYNCHRO did not exceed the confidence-interval), 

the calibration test was finalized and ended. 

2.8 Validation of the Developed Fuzzy 
Logic Model 

Validation test is considered as a standard practice in 

developing new models, in which a new set of input 

data is used in the developed model for validation 

purpose.  

In this research a validation test was conducted by 

comparing the output results obtained from both; the 

developed FLM and the simulation model 

(SYNCHRO), using a new set of input data (traffic 

flows).  

The new set of input data was randomly selected, 

covering various levels of traffic flow (ranging from 

low to very high traffic flows). This data was then 

applied in the simulation model (SYNCHRO), with 

the similar parameters (geometric, traffic, and 

control), which were used initially in designing the 

model.  

The main considered outputs from the validation 

test that would be considered in the assessment of the 

developed FLM were; the cycle time and green times 

for each of the four approaches. The acceptance 

criteria which was used in the validation test was 

similar to the one that was applied before in the 

calibration stage. That is; the absolute value of the 

average percentage difference between the FLM and 

SYNCHRO outputs should not exceed the confidence 

interval (a confidence interval of 10% was used).  

After running the validation test, output data was 

recorded and analysed. Comparison among the results 

indicated that absolute percentage difference between 

the FLM and SYNCHRO outputs for each of the 

cycle time (%∆ 𝐶), and the approach green times (%∆ 

𝐺𝑇𝑖) were 3.5%, and 3.3%, respectively, which were 

lesser than the 10% (the selected confidence interval).  

By completing this stage, it can be concluded that 

the developed FLM is valid and can replicate the 

optimized measures of traffic signal control models, 

such as SYNCHRO. 

 

 

3 DISCUSSIONS AND 

CONCLUSIONS 

In this study, a Fuzzy Logic Model, FLM, is 

developed to act as an optimized real-time traffic 

signal controller, for all traffic conditions from free 

flow to highly congested flow. It can be used as a base 

model to which other parameters could be added. For 

example, in urban areas, pedestrian traffic could 

significantly affect the control settings. The optimal 

can be easily modified to include pedestrian flow as 

input. The rule block can be adjusted to consider the 

pedestrian priority. Other factors might be considered 

as well, such as presence of priority or emergency 

vehicles, etc.   

The approach traffic flow is considered as the 

main input for the developed FLM. The outputs are 

the cycle time, 𝐶, and the approach green time, 𝐺𝑇𝑖 . 

The membership of the FLM rule block (the Input-

Output relationship) is developed based on data 

collected from a real-time traffic simulation software, 

SYNCHRO. Using such simulation software (that 

follows optimized methods e.g. HCM) ensures the 

accuracy of collected data in optimized settings. 

Moreover difficulties and deficiencies, faced during 

real-life data collection, in covering various 

combinations of different levels of traffic flow at a 

signalized intersection are overcome.  

With regards to the developed FLM, the input 

variable, 𝑣𝑖, is based on the  definition of LOS with 

correspondence to the 𝑣/𝑐 ratio, where. 𝑣𝑖is then 

fuzzified by characterizing the LOSs with five fuzzy 

terms.  

A total of 289 different traffic scenarios are 

simulated in SYNCHRO and output data is recorded. 

The rule block of the proposed FLM is then defined 

based on the recorded data from SYNCHRO. 

Calibration test is conducted, in which output 

results of both SYNCHRO and the developed FLM 

are similar, with a minor accepted difference (6% and 

7.7%, as an average percentage difference for the 

cycle time, 𝐶, and green times, 𝐺𝑇𝑖 , respectively).  

Further, a new set of input data is tested to ensure 

the validity of the developed FLM in replicating 

optimum traffic signal control settings. Results prove 

the validity of the proposed FLM, where the absolute 

percentage difference between the FLM and 

SYNCHRO outputs are 3.5%, and 3.3%, for %∆𝐶, 

and %∆𝐺𝑇𝑖  respectively. 

Results show that using the developed FLM for 

controlling traffic signals with optimized conditions 

is promising as it proved its’ ability to provide 

optimal solution for all different traffic flow 

combinations.   
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During all model development stages, including; 

the simulation, calibration, and the validation 

processes, some assumptions were used such as; 

geometry of the intersection, type of the traffic 

controller, etc.  Future work might consider using 

different or additional parameters such as pedestrians. 
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