Huang,  T.-J.  (2017).  Imitating  the  Brain  with 
Neurocomputer:  A  “New”  Way  Towards  Artificial 
General  Intelligence.  International Journal of 
Automation and Computing,  14(5),  520–531. 
http://doi.org/10.1007/s11633-017-1082-y. 
Jiang, J., Zhang, J., Yang, G. H., Zhang, D., and Zhang, L. 
(2010). Application of back propagation neural network 
in the classification of high resolution remote sensing 
image:  Take  remote  sensing  image  of  beijing  for 
instance.  In  2010 18th International Conference on 
Geoinformatics (pp. 1–6). Beijing, China: IEEE.  
Kusumadewi,  S.  (2006).  Jaringan Syaraf Tiruan. 
Yogyakarta: Graha Ilmu.  
Laudon,  K.  C.,  and  Laudon,  J.  P.  (2007).  Management 
Information Systems: Managing the Digital Firm (10th 
ed.). Lebanon, IN: Prentice.  
Liang,  P.,  Zhaoyang,  X.,  and  Jiguang,  D.  (2010). 
Application  of  BP  neural  network  in  remote  sensing 
image classification. In 2010 International Conference 
on Computer Application and System Modeling 
(ICCASM 2010) (pp. 212–215). IEEE.  
Lisboa,  P.  J.  G.  (2002).  A  review  of  evidence  of  health 
benefit  from  artificial  neural  networks  in  medical 
intervention. Neural Networks: The Official Journal of 
the International Neural Network Society,  15(1),  11–
39. http://doi.org/10.1016/s0893-6080(01)00111-3. 
Lisboa, P. J. G., and Taktak,  A. F. G. (2006). The  use  of 
artificial neural networks in decision support in cancer: 
A  systematic  review.  Neural Networks: The Official 
Journal of the International Neural Network Society, 
19(4),  408–415.  http://doi.org/10.1016/j.neunet.2005. 
10.007. 
Mantzaris,  D.  H.,  Anastassopoulos,  G.  C.,  and 
Lymberopoulos,  D.  K.  (2008).  Medical  disease 
prediction  using  Artificial  Neural  Networks.  In  2008 
8th IEEE International Conference on BioInformatics 
and BioEngineering. Athens, Greece: IEEE.  
Meengoen,  N.,  Wongkittisuksa,  B.,  and  Tanthanuch,  S. 
(2017). Measurement study of human blood pH based 
on  optical  technique  by  back  propagation  artificial 
neural  network.  In  2017  International  Electrical 
Engineering Congress (iEECON) (pp. 8–10). IEEE.  
Nayak, R., Jain, L. C., and Ting, B. K. H. (2001). Artificial 
Neural  Networks  in  Biomedical  Engineering:  A 
Review. In S. Valliappan and N. Khalili (Eds.), 
Computational Mechanics–New Frontiers for the New 
Millennium: Proceedings of the First Asian-Pacific 
Congress on Computational Mechanics, Sydney, 
N.S.W., Australia, 20-23 November 2001  (Vol.  1,  pp. 
887–892). Amsterdam: Elsevier.  
Nicoletti, G. M.  (2000). An Analysis of  Neural Networks 
as Simulators and Emulators. Cybernetics and Systems, 
31(3),  253–282.  http://doi.org/10.1080/01969720012 
4810. 
Ottenbacher, K. J., Linn, R. T., Smith, P. M., Illig, S. B., 
Mancuso, M., and Granger, C. V. (2004). Comparison 
of  logistic  regression  and  neural  network  analysis 
applied  to  predicting  living  setting  after  hip  fracture. 
Annals of Epidemiology,  14(8),  551–559. 
http://doi.org/10.1016/j.annepidem.2003.10.005. 
Paliwal, M., and Kumar, U. A. (2009). Neural networks and 
statistical techniques: A review of applications. Expert 
Systems with Applications, 36(1), 2–17. http://doi.org/ 
10.1016/j.eswa.2007.10.005  
Panchal, F. S., and Panchal, M. (2014). Review on Methods 
of  Selecting  Number  of  Hidden  Nodes  in  Artificial 
Neural  Network.  International Journal of Computer 
Science and Mobile Computing,  3(11),  455–464. 
http://doi.org/10.1155/2013/425740. 
Park, S. H., and Han, K. (2018). Methodologic Guide for 
Evaluating  Clinical  Performance  and  Effect  of 
Artificial  Intelligence  Technology  for  Medical 
Diagnosis and Prediction. Radiology, 286(3), 800–809. 
http://doi.org/10.1148/radiol.2017171920. 
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., 
Ortega, J.,  and  Rojas,  I.  (2016). Neural  networks:  An 
overview  of  early  research,  current  frameworks  and 
new  challenges.  Neurocomputing,  214,  242–268. 
http://doi.org/10.1016/j.neucom.2016.06.014. 
Ramesh, A. N., Kambhampati, C.,  Monson, J. R. T., and 
Drew, P. J. (2004). Artificial intelligence in medicine. 
Annals of the Royal College of Surgeons of England, 
86(5), 334–338. http://doi.org/10.1308/147870804290. 
Remzi,  M.,  Anagnostou,  T.,  Ravery,  V.,  Zlotta,  A., 
Stephan,  C.,  and  Marberger,  M.  (2003).  An  artificial 
neural network to predict the outcome of repeat prostate 
biopsies.  Urology,  62(3),  456–460.  http://doi.org/ 
10.1016/s0090-4295(03)00409-6. 
Richards,  J.  A.  (2006).  Remote Sensing Digital Image 
Analysis: An Introduction. Berlin: Springer-Verlag.  
Sargent,  D.  J.  (2001).  Comparison  of  artificial  neural 
networks  with  other  statistical  approaches.  Cancer, 
91(S8),  1636–1642.  http://doi.org/10.1002/1097-0142 
(20010415)91:8 <1636::AID-CNCR1176>3.0.CO;2-D  
Sazli, M. H. (2006). A brief review of feed-forward neural 
networks.  Communications Faculty of Sciences 
University of Ankara,  50(1),  11–17.  http://doi.org/ 
10.1501/0003168. 
Siang,  J.  J.  (2009).  Jaringan Syaraf Tiruan and 
Pemrogramannya Menggunakan Matlab. Yogyakarta: 
ANDI.  
Song, J. H., Venkatesh, S. S., Conant, E. A., Arger, P. H., 
and  Sehgal,  C.  M.  (2005).  Comparative  analysis  of 
logistic  regression  and  artificial  neural  network  for 
computer-aided diagnosis of breast masses. Academic 
Radiology,  12(4),  487–495.  http://doi.org/10.1016/ 
j.acra.2004.12.016. 
Suliman,  A.,  and  Zhang,  Y.  (2015).  A  Review  on  Back-
Propagation  Neural  Networks  in  the  Application  of 
Remote Sensing Image Classification. Journal of Earth 
Science and Engineering,  5
,  52–65.  http://doi.org/ 
10.17265/2159-581X/2015.01.004. 
Sun,  Y.,  Peng,  Y.,  Chen,  Y.,  and  Shukla,  A.  J.  (2003). 
Application of artificial neural networks in the design 
of controlled release drug delivery systems. Advanced 
Drug Delivery Reviews,  55(9),  1201–1215. 
http://doi.org/10.1016/S0169-409X(03)00119-4. 
Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R. B., 
and Selker, H. P. (2003). External validity of predictive 
models:  A  comparison  of  logistic  regression, 
The 4th ICE on IMERI 2019 - The annual International Conference and Exhibition on Indonesian Medical Education and Research Institute