
Domain-specific Language and Tools for Strategic Domain-driven
Design, Context Mapping and Bounded Context Modeling

Stefan Kapferer and Olaf Zimmermann
University of Applied Sciences of Eastern Switzerland (HSR FHO), Oberseestrasse 10, 8640 Rapperswil, Switzerland

Keywords: DSL, Enterprise Application Integration, Model-driven Software Engineering, Service Design, Patterns.

Abstract: Service-oriented architectures and microservices have gained much attention in recent years; companies adopt
these concepts and supporting technologies in order to increase agility, scalability, and maintainability of their
systems. Decomposing an application into multiple independently deployable, appropriately sized services
and then integrating such services is challenging. With strategic patterns such as Bounded Context and Context
Map, Domain-driven Design (DDD) can support business analysts, (enterprise) architects, and microservice
adopters. However, existing architecture description languages do not support the strategic DDD patterns
sufficiently; modeling tools for DDD primarily focus on its tactical patterns. As a consequence, different
opinions on how to apply strategic DDD exist, and it is not clear how to combine its patterns. Aiming for
a clear and concise interpretation of the patterns and their combinations, this paper distills a meta-model of
selected strategic DDD patterns from the literature. It then introduces Context Mapper, an open source project
that a) defines a Domain-specific Language (DSL) expressing the strategic DDD patterns and b) provides
editing, validation, and transformation tools for this DSL. As a machine-readable description of DDD, the DSL
provides a modeling foundation for (micro-)service design and integration. The models can be refactored and
transformed within an envisioned tool chain supporting the continuous specification and evolution of Context
Maps. Our validation activities (prototyping, action research, and case studies) suggest that the DDD pattern
clarification in our meta-model and the Context Mapper tool indeed can benefit the target audience.

1 INTRODUCTION

Domain-driven Design (DDD) was introduced in a
practitioner book in 2003 (Evans, 2003). Since then,
the DDD patterns, especially tactical ones such as En-
tity, Value Object, Aggregate, and Repository, have
been used in software engineering to model complex
business domains. Strategic DDD has gained even
more attention during the last few years in the con-
text of microservices and enterprise application inte-
gration (Pautasso et al., 2017). The decomposition
of an application into appropriately sized services is
challenging. Achieving high cohesion within the ser-
vices and loose coupling between them is crucial to
keep the application scalable and maintainable.

How to decompose software systems into smaller,
more maintainable units indeed has been an open re-
search question for many years. For instance, Parnas
already wrote about module decomposition in 1972
(Parnas, 1972).

Despite the large body of existing work, it is not
understood well yet how service interfaces can be

identified and which patterns and practices are suit-
able to analyze and design service-oriented systems
(Pautasso et al., 2017):

Which criteria are relevant to find adequate service
boundaries? Which patterns and practices can be

applied to identify candidate services?
DDD can play a key role in answering these ques-

tions: with patterns such as Bounded Context (an
abstraction of systems and teams developing them,
defining a model boundary), it provides an approach
for structuring a domain. Context mapping patterns
such as Customer-Supplier, Shared Kernel or Open
Host Service (Evans, 2003) can define the relation-
ships between the units of decomposition. However,
the strategic patterns come with some ambiguity and
different interpretations of how they shall be applied.

The microservices community suggests to lever-
age DDD patterns to answer the above design ques-
tions. Advocates of this field suggest to model
software-intensive systems in terms of Bounded Con-
texts, and then implement one microservice for each
Bounded Context.

Kapferer, S. and Zimmermann, O.
Domain-specific Language and Tools for Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling.
DOI: 10.5220/0008910502990306
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 299-306
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299



However, the identification of suited Bounded
Contexts is still challenging. This is where Con-
text Map models and diagrams, context mapping as a
practice and the strategic DDD patterns to define the
relationships between Bounded Contexts come into
play. From our experience, a clear understanding of
how these patterns shall work together is often miss-
ing, and different stakeholders have different opinions
on how these patterns should be applied and com-
bined. From these observations we derived our first
hypothesis:

Software engineers and service designers benefit
from clarification and advice on how to combine the

strategic DDD patterns in Context Maps.

We further believe that Context Maps are artifacts
which evolve iteratively. Software engineers can use
them to analyze and understand a domain. They can
also serve as an instrument to describe and communi-
cate the architecture of a system. However, it is also
beneficial if models can be transformed seamlessly
in order to improve the architecture in an agile way
or to generate other representations upon demand. A
machine-readable definition of a model offers the pos-
sibility to automate certain steps, for instance to gen-
erate abstract or concrete service contracts. This leads
us to our second hypothesis:

Adopters of DDD benefit from a tool which supports
the creation of DDD pattern-based models in a

rigorous and expressive way. They want to refactor,
transform and evolve such models iteratively.

In this paper, we present a Domain-specific Lan-
guage (DSL) for the strategic DDD patterns and as
another contribution, we distill a meta-model provid-
ing a concise interpretation of these patterns and their
applicability. The DSL is implemented in Context
Mapper. Domain-driven designs modelled in our tool
can be used to identify services with reasonable cohe-
sion and coupling. Our DSL also supports the refine-
ment of Bounded Contexts with tactic DDD patterns
as supported in the Sculptor DSL1. Generator tools
producing graphical Context Maps, PlantUML2 dia-
grams, and (micro-) service contracts illustrate how
the language can be used to transform the Context
Maps into other representations. This paper focuses
on the DSL and addresses the second hypothesis only
partially. All other parts of our framework are docu-
mented online3 and will be elaborated upon in future
work.

1http://sculptorgenerator.org/
2http://plantuml.com/
3https://contextmapper.org/

The remainder of the paper is structured as fol-
lows. In Section 2 we present our first research con-
tribution, a strategic DDD meta-model with seman-
tic rules that describe our interpretation of the pat-
terns. Section 3 introduces the DSL syntax. Section 4
discusses usage scenarios and the applicability of the
presented approach. Section 5 concludes and outlines
future work.

2 DOMAIN-DRIVEN DESIGN
(DDD) ESSENTIALS/ANALYSIS

Since Evans has published his original DDD book
(Evans, 2003), other – mostly gray – literature on this
topic has been published. Our analysis and interpre-
tation of the patterns is based on the books of Evans
(Evans, 2003) and Vernon (Vernon, 2013). Our per-
sonal professional experience (Kapferer, 2017) has in-
fluenced the meta-model as well. Additional patterns
of Evans’ DDD reference (Evans, 2015), which has
been published a fews years after his first book, were
also considered. We further studied publications of
context mapping experts such as Brandolini (Bran-
dolini, 2009) and Plöd (Plöd, 2018; Plöd, 2019).

2.1 Example

Strategic Domain-driven Design (DDD) can be used
to decompose the problem domain of a software
system into multiple sub-domains and the so-called
Bounded Contexts. It also allows architects to define
the relationships between Bounded Contexts, e.g.,
how they work together. To explain pattern concepts
(and also, in Section 3, the DSL syntax) we use a
fictitious insurance software scenario. Figure 1 illus-
trates the Context Map of the scenario inspired by the
visualizations of Vernon (Vernon, 2013), Brandolini
(Brandolini, 2009) and Plöd (Plöd, 2018).

A Bounded Context defines an explicit boundary
within which a particular domain model, implement-
ing parts of sub-domains, applies. This boundary af-
fects team organization as well as physical manifesta-
tions such as code bases and database schemata. The
internal design of a Bounded Context is specified with
the tactic DDD patterns, including the Aggregate pat-
tern. An Aggregate is a cluster of domain objects
(such as Entities that have identifiers and lifecycles,
Value Objects that are stateless and immutable, and
Services) which is kept consistent with respect to spe-
cific invariants and typically also represents a unit
of work regarding system (database) transactions. A
Context Map provides a global view over all Bounded
Contexts related to the one a team is working on.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

300



Figure 1: Insurance Scenario Example Context Map (Kapferer, 2018).

DDD offers several relationship patterns allow-
ing modelers to describe how two Bounded Contexts
and the corresponding development teams work to-
gether. The Partnership relationship describes an inti-
mate mutual relationship between two Bounded Con-
texts, since the resulting product of the two can only
fail or succeed as a whole. A Shared Kernel rela-
tionship indicates that two contexts are very closely
related and the two domain models overlap at many
places. This pattern is often implemented as a shared
library that is maintained by both teams.

Upstream-downstream relationships are marked
with a U for upstream and a D for downstream in
our illustration in Figure 1. The terms upstream and
downstream are used in DDD to describe relation-
ships in which only one Bounded Context influences
the other; the upstream influences the downstream.
Thus, the downstream Bounded Context depends on
the domain model of the upstream Bounded Context,
but not vice versa. A Customer-Supplier relationship
is given if the downstream Bounded Context in an
upstream-downstream relationship has power regard-
ing the implementation decisions of the upstream.
The supplier respects the requirements of the down-
stream and plans the development accordingly.

The patterns Published Language (PL), Open
Host Service (OHS), Anticorruption Layer (ACL)
and Conformist (CF) are used to describe the inter-
action between Bounded Contexts in an upstream-
downstream relationship. In Figure 1 they are added
to the rectangles either on the upstream or on the
downstream side. A Bounded Context can offer an
OHS, which provides access to a subsystem as a set of
open services, if multiple other Bounded Contexts re-
quire access to the same functionality. The PL pattern
advises to use a well-documented shared language for
communication and translation. Serving as a wrap-
per, an ACL protects the domain model of a Bounded

Context from changes of another one it depends on.
In contrast to an ACL, a context applying CF decides
to simply conform to the domain model of the other
context and must therefore always adjust its model to
follow changes of the other context. Due to space lim-
itations we do not explain all pattern details and refer
to the corresponding literature (Evans, 2003; Evans,
2015; Plöd, 2018; Vernon, 2013).

2.2 Our Meta-model for Strategic DDD

The meta-model presented in this section is based on
the previously mentioned strategic DDD patterns and
our own analysis and understanding regarding how
they can be combined. The model is illustrated in Fig-
ure 2. It is implemented in our DSL and the Context
Mapper tool introduced in Section 3.

The most central element in our meta-model is
the Context Map. A Context Map shows Bounded
Contexts and their relationships. A Bounded Con-
text itself consists of a well-defined and delimited do-
main model which is decomposed into multiple Ag-
gregates. It implements parts of one or many subdo-
mains, which can be Core Domains, Supporting Do-
mains or Generic Subdomains. Both a subdomain and
a Bounded Context benefit from a statement regarding
the vision and purpose of their own part of the do-
main. Hence, we apply the Domain Vision Statement
pattern. We further include the Knowledge Level pat-
tern on the level of a Bounded Context. The Responsi-
bility Layers pattern is implemented by assigning sin-
gle responsibilities to Bounded Contexts.

We distinguish between symmetric and asymmet-
ric relationships between Bounded Contexts: We call
asymmetric relationships upstream-downstream rela-
tionships in our meta-model. This is in line with the
terminology in the DDD literature. In an upstream-
downstream relationship only one context depends on

Domain-specific Language and Tools for Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling

301



Figure 2: Context Mapper: Strategic DDD Meta-Model (UML class diagram)

the other. Likewise, only one Bounded Context influ-
ences the other; the upstream-downstream metaphor
indicates an influence flow between teams and sys-
tems as discussed by (Plöd, 2018). The Partnership
and Shared Kernel patterns, on the other hand, de-
scribe symmetric relationships. The Bounded Con-
texts involved in such relationships are mutually de-
pendent on another.

The remaining patterns Published Language (PL),
Open Host Service (OHS), Anticorruption Layer
(ACL) and Conformist (CF) are roles taken by the
upstream or downstream context within an upstream-
downstream relationship. OHS and PL are patterns
implemented by the upstream, which exposes parts of
the model to be used by the downstream. The CF and
ACL patterns are implemented by the downstream,
which decides to either conform to the model exposed
by the upstream or protect itself from changes (ACL).

According to our analysis, the Customer-Supplier
pattern is a special case of an upstream-downstream
relationship. We indicated this in Figure 2 by distin-
guishing between customer-supplier relationships and
generic upstream-downstream relationships.

2.3 Semantic Rules

There is no consensus in the DDD community on how
the patterns are related and how they can be com-
bined. We evolved a set of semantic rules in addi-
tion to our meta-model. These rules define the valid
relationships between the patterns as well as combi-
nations not permitted in our language. Note that these
rules mainly reflect the authors interpretation based
on empirical evidence (e.g., (Kapferer, 2017)). How-
ever, all rules have been conceptualized considering
the literature of DDD and Context Mapping experts
(Vernon, 2013; Plöd, 2019; Brandolini, 2009). Sev-
eral rules are already implicitly given by the meta-
model in Figure 2, others extend the model.

2.3.1 Rule #1: Permitted Upstream Roles

The patterns OHS and PL can only be implemented
by the upstream context in an upstream-downstream
relationship. The upstream context always provides
and exposes a certain functionality. The downstream
context uses and consumes this services and does not

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

302



expose parts of his/her own domain model. If this
was the case and the upstream used this functionality,
the definition that the upstream is independent of the
downstream would be contradicted.

2.3.2 Rule #2: Permitted Downstream Roles

The patterns ACL and CF can only be applied by the
downstream context in an upstream-downstream rela-
tionship. These patterns solve a downstream problem,
namely how to deal with a dependency to another con-
text. It is always the downstream context that has to
integrate the upstream model.

2.3.3 Rule #3: Protect or Conform

The patterns ACL and CF cannot be applied jointly,
but provide alternatives. The downstream either con-
forms (CF) or protects itself with an ACL.

2.3.4 Rule #4: Integrity of Symmetric
Relationships

The patterns OHS, PL, ACL and CF are not applicable
in symmetric relationships (Partnership and Shared
Kernel), since doing so would lead to contradictions
with the pattern definitions. In a Shared Kernel rela-
tionship, the two contexts communicate over shared
code such as a library. Both contexts manage the
shared code together, which clearly contradicts with
the mentioned four pattern definitions. An OHS indi-
cates a directed provider/consumer behavior which is
not the case here. There is no need for a common
inter-context language (PL), since the two contexts
simply share the same model. An ACL is not required
either since the two participants share the model any-
way. And neither context has to conform to the model
of the other since it is one shared model. In a Partner-
ship relationship both contexts depend on each other,
which means they can only succeed or fail together.

2.3.5 Rule #5: Customer vs. Conformist

The CF pattern is not applicable within a customer-
supplier relationship. In a customer-supplier relation-
ship the customer has influence on the supplier and
can at least negotiate regarding priorities of the re-
quirements and the implementation. A conformist in
contrast has no influence and simply decides to con-
form to what the upstream provides.

2.3.6 Rule #6: Generic vs. Custom Service

The OHS pattern is not applicable within a customer-
supplier relationship. Whereas the customer-supplier

pattern implies that the involved teams work closely
together, meaning that the upstream respects the
downstreams requirements in his planning sessions,
the OHS pattern indicates that the upstream team
decides to implement one API in a one for all ap-
proach. This is contradictory since it is unlikely that
such an upstream implementing an OHS is able to
have a close customer-supplier relationship with all its
downstreams. From personal practical experience a
customer-supplier relationship leads to individual re-
quirements of single customers. As soon as the sup-
plier implements a customer-specific API feature it is
by pattern definition no longer an OHS.

2.3.7 Rule #7: Protect or Cooperate

The ACL pattern should not be used within a
customer-supplier relationship. Changes of the sup-
plier should be in-sync with the needs of the customer.
Protection should be unnecessary. Note that this is
only a soft rule since the combination is possible but
not common. Our tool issues a warning rather than an
error message if it detects a violation of the rule.

3 CONTEXT MAPPER DSL

To allow software architects to model systems accord-
ing to our DDD meta-model, we implemented the
Context Mapper4 tool.

All of the following DSL examples are based
on the insurance scenario introduced in Section 2.
The complete example can be found in our examples
repository5.

3.1 Bounded Context, Subdomain and
Context Map Syntax

We start with the Context Mapper DSL (CML) syn-
tax for Bounded Contexts. Listing 1 shows the dec-
laration of the CustomerManagementContext as an
example. The attributes at the top of the declara-
tion are implementations of the Domain Vision State-
ment and the Responsiblity Layers patterns. The user
can further specify the implementation technology of
a Bounded Context. A Bounded Context consists
of one or more Aggregates. Inside the Aggregates
the language supports the usage of all tactical DDD
patterns to fully specify the domain model of the

4https://contextmapper.org/
5https://github.com/ContextMapper/context-mapper-

examples

Domain-specific Language and Tools for Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling

303



Bounded Context. The implementation of CML in-
side the Aggregates is based on the Sculptor6 project.

Listing 1: Bounded Context Syntax in CML.
BoundedContext CustomerManagementContext implements

CustomerManagementDomain {
domainVisionStatement = "The customer context ..."
responsibilities = "Collects and exposes customer data",

"Manages the customers addresses"
implementationTechnology = "Java , JEE Application"

Aggregate Customers {
Entity Customer {
aggregateRoot

String firstname
String lastname

}
}

}

The user specifies the subdomains implemented
by the Bounded Context behind the keyword imple-
ments. The subdomains are declared as illustrated in
Listing 2 and must always be part of a domain. A
subdomain is of the type Core Domain, Supporting
Subdomain or Generic Subdomain according to our
meta-model and (Evans, 2003). Note that a Bounded
Context not necessarily implements a complete sub-
domain.

Listing 2: Subdomain Syntax in CML.
Domain Insurance {

Subdomain CustomerManagementDomain {
type = CORE_DOMAIN
domainVisionStatement = "Customer -related entities..."

}
}

The central and most important structure of CML
is the Context Map which specifies the relationships
between Bounded Contexts. Listing 3 shows a small
example of a Context Map written in CML. The con-
tains keyword indicates the Bounded Contexts that
are added to the Context Map. They can then be used
to declare relationships.

Listing 3: Context Map Syntax in CML.
ContextMap {

contains CustomerContext , PolicyContext

CustomerContext [U,OHS,PL]->[D,CF] PolicyContext {
implementationTechnology = "RESTful HTTP"

}
}

Listing 3 also features an exemplary upstream-
downstream relationship. The endpoints of this rela-
tionship apply three more patterns, Open Host Service
(OHS), Published Language (PL) and Conformist
(CF).

6http://sculptorgenerator.org/

3.2 Relationship Syntax

For symmetric relationships the syntax uses an arrow
directing to both Bounded Contexts (<−>), whereas
asymmetric relationships use an arrow (− > or < −)
pointing from the upstream towards the downstream.
In all cases, the relationship roles are declared within
brackets as illustrated in Listing 3. Note that the dec-
laration of the implementation technology is optional
and we omit it in the following examples.

3.2.1 Partnership

Listing 4 shows an example for the Partnership (P)
pattern, which is a symmetric relationship.

Listing 4: Partnership Pattern Syntax in CML.
RiskManagementContext [P]<->[P] PolicyManagementContext

3.2.2 Shared Kernel

The second symmetric relationship is the Shared Ker-
nel (SK). The syntax is identical to the Partnership.
Listing 5 illustrates an example.

Listing 5: Shared Kernel Pattern Syntax in CML.
PolicyManagementContext [SK]<->[SK] DebtCollection

3.2.3 Generic Upstream-downstream
Relationship

As already mentioned, the upstream-downstream (or
asymmetric) relationships use an arrow from the up-
stream towards the downstream, expressing the influ-
ence flow. This syntax states which Bounded Context
is upstream and which one is downstream in an ex-
pressive way. The arrowhead can be placed either on
the left or on the right. Thus, the declaration examples
in Listings 6 and 7 are semantically equal.

Listing 6: Upstream-downstream Relationship in CML (1).
PrintingContext [U]->[D] PolicyManagementContext

Listing 7: Upstream-downstream Relationship in CML (2).
PolicyManagementContext [D]<-[U] PrintingContext

3.2.4 Upstream-downstream Roles

The upstream and downstream roles Open Host Ser-
vice (OHS), Published Language (PL), Anticorrup-
tion Layer (ACL) or Conformist (CF) are listed within
the brackets after the upstream (U) and downstream
(D) specification. Listing 8 illustrates an example
with the OHS and PL patterns on the upstream side
and the ACL pattern on the downstream side.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

304



Listing 8: Upstream-downstream Relationship with Roles.
PrintingContext [U,OHS,PL]->[D,ACL] PolicyMgmtContext

3.2.5 Customer-supplier Relationship

The customer-supplier relationship is a special case
of an upstream-downstream relationship in which the
upstream is called supplier and the downstream is
called customer. The syntax is therefore almost iden-
tical to the generic upstream-downstream relation-
ship; to state that the upstream-downstream relation-
ship is a customer-supplier relationship the user has
to add the abbreviations S for supplier and C for cus-
tomer. These abbreviations must appear behind the
U/D, but before the relationship roles, as shown in
Listing 9.

Listing 9: Customer-supplier Relationship in CML (1).
SelfServiceContext [D,C,ACL]<-[U,S,PL] CustomerMgmtContext

However, since the upstream in a customer-
supplier relationship is always the supplier and the
downstream is always the customer, it is also possible
to omit the U and D abbreviations in this case. Thus,
the declaration in Listing 10 is semantically equal to
the one in Listing 9.

Listing 10: Customer-Supplier Relationship in CML (2).
SelfServiceContext [C,ACL]<-[S,PL] CustomerMgmtContext

We have shown the core concepts of CML Con-
text Maps above. Due to space limitations we cannot
present all abilities of our language. CML currently
also supports an alternative syntax to declare relation-
ships for A/B testing purposes. All language features
are documented online7 and the complete insurance
example can be found in our examples repository8.

4 USAGE SCENARIOS AND
APPLICABILITY DISCUSSION

Our DSL and tools have three primary usage scenar-
ios and user roles: 1) business analysts can use the
modeling language to analyze and understand a do-
main, and establish a common vocabulary for it. 2)
architects can describe, communicate, and evolve sys-
tem designs and connections with other systems (e.g.,
enterprise application integration). 3) adopters of mi-
croservices architectures can model system decompo-
sitions and individual services.

7https://contextmapper.org/docs
8https://github.com/ContextMapper/context-mapper-

examples

Our vision is to use the language as a tool to
evolve and improve the architecture with refactorings
and model transformations iteratively (note that these
two topics are not in the scope of this paper). The
language can be further used as input for generators
which produce other representations of the models or
input for other tools. With our PlantUML9 genera-
tor, for instance, we demonstrate how the models can
be transformed into graphical representations. It sup-
ports the generation of UML component diagrams out
of Context Maps and class diagrams for individual
Bounded Contexts (and their Aggregated and Enti-
ties). Figure 3 illustrates the Context Map introduced
by Figure 1 as a component diagram generated within
the Context Mapper tool. Another generator recently
added to the tool produces graphical Context Maps
identical to the illustration in Figure 1.

The service contract generator of Context Mapper
assists architects designing service-oriented architec-
tures. It supports the Microservices Domain Specific
Language (MDSL)10 format, an emerging DSL real-
izing the API Description pattern, which is part of
the Microservice API Patterns (MAP) language (Zim-
mermann et al., 2019).

We have validated different versions of the DSL
syntax with 20 exercise participants in a software ar-
chitecture course at our institution. We evaluated
readability and writability, for example by asking for
the time needed to understand existing and write new
models. Participants worked with the online docu-
mentation of Context Mapper, including the provided
examples; they also were asked to model a real-world
Context Map from the oil industry (Wesenberg et al.,
2006). The feedback was generally positive; partici-
pants were able to complete the exercise tasks in the
allocated time slots. Tool features such as hover help
and constructive, detailed validation messages were
appreciated, as they (re-)educate users about the pat-
tern meanings and valid pattern combinations.

In addition we conceptualized a more verbose al-
ternative syntax for A/B testing. In comparison to the
presented version in this paper, which is very dense
and optimized for writability, the alternative version
improves the readability. Due to space limitations we
were not able to introduce both variants in this paper;
both versions are documented online.

5 SUMMARY AND OUTLOOK

In this paper we presented Context Mapper, a DSL
and tools to describe application landscapes and ser-

9http://plantuml.com/
10https://socadk.github.io/MDSL/

Domain-specific Language and Tools for Strategic Domain-driven Design, Context Mapping and Bounded Context Modeling

305



Figure 3: Context Mapper Eclipse Plugin: PlantUML Generator Example Output.

vice designs in terms of strategic DDD patterns. As
our research contributions, we proposed a) a meta-
model and semantic rules aiming for a concise specifi-
cation of how DDD patterns can be combined, and b)
a DSL and supporting tools to model Bounded Con-
texts and their relationships as well as tactic DDD pat-
terns such as Aggregates. Being defined in a DSL,
our Context Maps can be processed and transformed
into other representations. Thus, the Context Map-
per DSL (CML) provides a modeling foundation for
service design approaches and tools aiming for visu-
alizing Context Maps and transforming them.

In our future work we plan to further improve the
tool so that software architects can evolve system ar-
chitectures with more transformations and refactor-
ings. Besides the already supported generation of
MDSL service contracts, we may automatically gen-
erate microservice application stubs out of the Con-
text Maps. An already prototyped reverse engineering
tool to generate CML from existing source code can
ease the application of the tool in brownfield projects
that plan to refactor monoliths to microservices and/or
migrate them to the cloud. Decoupling the language
from Eclipse and providing other development envi-
ronments on the basis of the approach proposed by
Bünder (Bünder, 2019) may further increase the tar-
get user group.

REFERENCES

Brandolini, A. (2009). Strategic domain
driven design with context mapping.
https://www.infoq.com/articles/ddd-contextmapping.

Bünder, H. (2019). Decoupling language and editor -
the impact of the language server protocol on textual

domain-specific languages. In Proceedings of the 7th
International Conference on Model-Driven Engineer-
ing and Software Development - Volume 1: MODEL-
SWARD,, pages 131–142. INSTICC, SciTePress.

Evans, E. (2003). Domain-Driven Design: Tackling Com-
plexity in the Heart of Software. Addison-Wesley.

Evans, E. (2015). Domain-driven design refer-
ence: Definitions and pattern summaries.
https://domainlanguage.com/ddd/reference.

Kapferer, S. (2017). Architectural refactoring of data ac-
cess security. Semester thesis, University of Ap-
plied Sciences of Eastern Switzerland (HSR FHO).
https://eprints.hsr.ch/564.

Kapferer, S. (2018). A domain-specific language for ser-
vice decomposition. Term project, University of Ap-
plied Sciences of Eastern Switzerland (HSR FHO).
https://eprints.hsr.ch/722.

Parnas, D. L. (1972). On the criteria to be used in de-
composing systems into modules. Commun. ACM,
15(12):1053–1058.

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J.,
and Josuttis, N. (2017). Microservices in practice, part
1: Reality check and service design. IEEE Software,
34(1):91–98.

Plöd, M. (2018). DDD Context Maps - an enhanced
view. https://speakerdeck.com/mploed/context-maps-
an-enhanced-view.

Plöd, M. (2019). Hands-on Domain-driven Design - by ex-
ample. Leanpub.

Vernon, V. (2013). Implementing Domain-Driven Design.
Addison-Wesley Professional, 1st edition.

Wesenberg, H., Landre, E., and Rønneberg, H. (2006). Us-
ing domain-driven design to evaluate commercial off-
the-shelf software. In Comp. to 21th Annual ACM
SIGPLAN OOPSLA, pages 824–829.

Zimmermann, O., Stocker, M., Zdun, U., Luebke, D.,
and Pautasso, C. (2019). Microservice API Patterns.
https://microservice-api-patterns.org.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

306


