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Abstract: This paper addresses the problem of deciding how many positions to set aside, in a military establishment, 
for recruits undergoing training. We assume a cap on total strength, and thus must select a ratio between 
positions in the force’s training pipeline versus its trained establishment. We develop a Markovian model of 
the training pipeline, with parameters derived from historical Human Resources data. Through Monte Carlo 
simulation we may then predict how often a given ratio will be sufficient to generate the required trained force, 
as well as how much surplus trained personnel it is expected to generate. Our modelling results have informed 
ongoing initiatives to optimize the force mix and structure of the Canadian Armed Forces. 

1 INTRODUCTION 

This paper describes the approach taken to solve a 
challenging Human Resource problem faced by the 
Canadian Armed Forces. This problem concerns how 
many positions must be set aside for Regular Force 
recruits undergoing their training. We present a 
solution based on a stochastic simulation of the 
training pipeline. Through simulation, we estimated 
how often a given number of positions reserved for 
trainees will be sufficient to generate the desired 
trained force. Simulation also gives us an estimate of 
the number of surplus trained personnel that is to be 
expected. Armed with these results, departmental 
decision makers will be able to select a training 
structure that balances the risk of not meeting 
operational requirements against the costs from 
pipeline overcapacity. 

The scheme presented in this paper is simple and 
effective. It is presented in the hope that it will be 
appreciated as a practical application of military 
Operations Research. Our solution was developed in 
the context of designing a future fighting force, but is 
also relevant to examining the current force structure. 
Regularly revisiting the ratio of trainee-to-trained 
positions will be necessary to preserve a force where 
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all units can be sufficiently manned. Our model offers 
a way to inform this rebalancing.  

2 BACKGROUND 

In 2017, the Government of Canada issued Strong 
Secure and Engaged, the latest Canadian Defence 
Policy. Notably, this policy mandates the capability 
to conduct a defined set of concurrent operations, 
including both emergency responses and planned 
deployments, and ranging from limited to sustained 
commitments. To ensure that the Canadian Armed 
Forces have the right mix of military personnel to 
satisfy these requirements, the Force Mix and 
Structure Design initiative was launched. This 
initiative is in the process of designing, from the 
ground up, the required military establishment.  

Operations Research analyses in support of the 
Force Mix and Structure Design initiative are not the 
first to be conducted in support of establishment 
reviews. For example, both Bender (2005) and 
Couillard et al (2015) present stochastic simulations 
that quantify to what extent given force mixes (mixes 
of military personnel from various occupation 
categories) meet contingent operational 
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requirements. Filinkov et al (2011) similarly present 
a model designed to study the Australian Army. 

A first phase of Force Mix and Structure Design 
strived to determine the Force Employment 
requirement – the required number of “boots on the 
ground” conducting operations. The second phase 
then looked at supporting elements involved in force 
generation and the institution of the Canadian Armed 
Forces. It is in this context that the required size of the 
combined Basic Training List (recruits in their initial 
phases of training) and Supplementary University 
Training List (recruits requiring training in higher 
education institutions) had to be determined. For 
simplicity, we will thereafter refer to the positions 
reserved for members on these lists as the training 
pipeline. Regular Force recruits remain in this 
pipeline until they reach an Operationally Functional 
Point – at which point they are considered trained and 
can occupy trained effective positions. 

Straver and Christopher (2015) have conducted a 
study based on stochastic simulation to determine the 
sustainable composition of the Regular Force, 
including the size of the training pipeline. 
Nevertheless, it is now understood that the data 
underpinning that study were problematic. As such, 
our model is a successor to Straver and Christopher’s 
that now focuses exclusively on the training pipeline, 
and that was built to work with new and improved data.  

3 MARKOV MANPOWER 
MODELS 

Many approaches have been used to model personnel 
systems. For example, Wang (2005) categorizes these 
approaches into Markov Chain models, Computer 
Simulation models, Optimisation models and System 
Dynamics. The approach that we describe is a hybrid 
of the first two categories, being a discrete-time 
Markovian model serving as a basis for stochastic 
simulation. 

The earliest described application of Markov 
Chains to a personnel systems is found in (Seal, 
1945), whereas a general overview of their use in this 
context is found in (Guerry and De Feyter, 2009). 
Guerry and De Feyter define Markov Manpower 
models as satisfying four assumptions: 
 They are memory-less (the usual Markovian 

assumption); 
 Their flow rates are time-independent; 
                                                                                                 
1 We used 14 years of historical data. This goes beyond the 

maximum length of training, but excludes earlier years, 
when the system may have behaved differently. 

 They are discrete-time, with fixed-increment 
intervals; 

 Their stocks describe homogeneous populations. 
Models developed to study the Canadian Armed 

Forces have generally obeyed the first two of these 
assumptions, but not always the last two. In fact, 
Discrete Event Simulation has been the most-
employed paradigm (Okazawa, 2013), but is based on 
next-event time progression rather than fixed 
increments. 

The homogeneous stocks assumption requires that 
populations be broken down into homogeneously 
behaving subsets. To do this, regression is often used 
to identify the variables that most-affect behaviour. In 
our case, this would pose a problem. The Regular 
Force employs members of various ranks, and who 
have completed different periods of service – factors 
that are closely tied to the propensity to release (to 
leave the forces). Also, they belong to many different 
occupations, and are recruited through a number of 
different entry plans, implying widely different 
durations of training. Given this wide spectrum of 
factors, and given the need to use data that remain 
representative of the current system,1 we would not 
have sufficient data available to accurately estimate 
all the parameters that would be associated with the 
multiple resulting homogeneously behaving subsets 
(groups of members of similar ranks, years of service, 
occupations and entry plans). 

We thus build a model that diverges from Markov 
Manpower models with respect to the homogeneous 
stock assumption. We group in our stocks cohorts of 
members who behave diversely, but who when taken 
collectively, have aggregate flow probabilities that are 
nevertheless fairly consistent from year to year. 
Therefore, the historically observed proportion of 
members from a stock who flow in a given direction 
cannot be interpreted as a probability applying to 
individuals, but it can still be interpreted as the 
expected proportion of individuals who will transition. 

4 TRANSITION PROBABILITIES 

For Markov Manpower models, Anderson and 
Goodman (1957) demonstrate that the maximum 
likelihood estimator for transition probabilities is given 
by the numbers of employees that underwent that 
transition divided by the total number of eligible 
employees in the relevant sub-periods (e.g. each year, 
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if looking for an annual probability). Under the 
homogeneous stock assumption, the probability for the 
total number of employees undergoing that transition 
is then binomial. Binomial distributions are thus 
commonly used in stochastic interpretations of Markov 
Manpower models, but this would be inappropriate in 
our case, as our stocks are not homogeneous. 

In the absence of a priori knowledge of the shape 
of the flow probabilities in our model, we fit Gaussian 
distributions. For example, Figure 1 shows the 
distribution used for members graduating from the 
training pipeline within the year after they had first 
appeared in it. The 14 years of available annual 
observations are shown as a bar histogram. The 
Gaussian that was fit, with mean 45.2% and standard 
deviation 2.1% is shown as the dashed line.  

 

Figure 1: Distribution for the proportion of members who 
graduate within the next year, among members who first 
appeared in the training pipeline, 2006-2020. A Gaussian 
fit is also shown as the dashed line. 

When we get to our simulation, the proportion of 
members who graduate from the training pipeline in 
a given year will thus be drawn from this and similar 
distributions in each annual iteration. In order to 

avoid unrealistically extreme outcomes, we only draw 
within three standard deviations of the mean. 

Previous efforts to model the Regular Force 
training pipeline, such as (Bender, 2005) and (Straver 
and Christopher, 2015) have sought to explicitly 
model the main specific processes of the human 
resources system. For example, graduation from the 
training pipeline would be modelled as the result of 
separately considering graduations of Officers and 
Non-Commissioned Members, further split according 
to their entry plan, as various categories of trained, 
semi-trained and untrained recruits. Instead, our 
approach considers no more than a single flow 
between each model stock, consolidating a number of 
sub-flows. This greatly simplified our task of 
historical data analysis for estimating model 
parameters, as we did not need to categorize the data 
associated with past recruits. We also expect the 
resulting model to be more reliable, as covariance 
between sub-flows would have been impossible to 
determine from our limited data, but is avoided by 
directly estimating the aggregate flows.  

5 THE MODEL 

Figure 2 depicts our model. The percentages shown 
on arrows correspond to the mean proportions for 
certain modelled flows. The model has two parts: A 
stock for the Trained Effective Strength (TES), and a 
set of stocks for the training pipeline. The TES 
encompasses all members who have completed their 
training up to the Occupationally Functional Point, 
and are not in certain operationally unavailable 
categories. Members who change occupation 
generally require re-training – these correspond to the 
0.8% arrow flowing toward the training pipeline.  

 

Figure 2: Illustration of our model of the Canadian Armed Forces training pipeline. 
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Others leave the system, corresponding to the 7.2% 
arrow. These leaving members may be leaving the 
forces completely through release or death, but could 
also be moving to the Reserve Force, or to a non-
effective status (ill, injured or pre-release). 

The training pipeline is divided into cohorts. After 
having first appeared in the pipeline, members may 
graduate (45.2%), remain for at least another year 
(46.3%), or leave the system (8.6%). A total of 12 
such similar stocks are modelled, with any remaining 
trainees graduating after the twelfth year. In our 
historical record, only one member was in the training 
pipeline for 12 consecutive years. No occupation 
requires this much training, but delays can result from 
changes in occupation, or pauses in training. The 
most frequent type of pause is parental leave – an 
entitlement for new parents.  

The remaining important flow is intake, which 
here includes recruitment, but also return from ill or 
injured status. On average, 19.9% of intake go 
straight to the TES. This includes trained recruits (re-
hires or transfers from the Reserve Force), but also 
recruits requiring less than a year of training, who 
joined the Regular Force and move on to the TES 
within the year (our model being based on annual 
iterations). 

Markov Chains can be treated as deterministic or 
stochastic. Davies (1982) introduced a partially 
stochastic Markov model. In that model, attrition is 
considered an uncontrollable flow, and treated as 
stochastic, whereas promotions are decided by 
management, and thus treated as deterministic. Our 
model does not consider promotions, but does treat 
the magnitude of total intake deterministically, and is 
thus also partially stochastic. Intake is set to re-fill the 
training pipeline each year (with a hard cap on total 
strength, i.e. the total Regular Force population) 
rather than varying stochastically. This intake is also 
the only pull flow in our model. It is generated by 
vacancies in the destination (pull), rather than arising 
spontaneously from the source (push), as defined by 
Bartholomew et al (1991). 

Although we set the magnitude of intake 
deterministically, we vary the proportion going to the 
TES versus the training pipeline stochastically. This 
treatment of TES intake as a direct proportion of total 
intake resembles the proportionality constraint 
introduced by Nilakantan and Raghavendra (2005). 
Their constraint requires that a fixed proportion of 
vacancies in a given grade be filled externally. Our 
model is however different in that our proportion 
varies according to the observed historical 
distribution. 

6 MODEL LIMITATIONS 

We will now highlight three limitations of our model. 
We do not believe that these limitations invalidate our 
results, but they should be kept in mind when 
interpreting them. A first limitation has to do with 
using historical data to estimate the rates of flow out 
of the training pipeline. Currently, delays result from 
limitations on training institution capacity or from 
their sub-optimal organisation. However, our results 
are meant to be applicable to future force structures, 
where sources of delay will hopefully have been 
reduced. Historical observation could therefore 
overestimate future training durations, and 
consequently, over-estimate the number of required 
training pipeline positions. 

A second limitation of our model is that it is based 
on annual-duration iterations (taken at fiscal year-
end: 31 March). However, that day does not 
correspond to the annual peak for the training 
pipeline. Typically, the peak will be in summer, when 
more recruits begin their training. As such, slightly 
more training pipeline positions are likely to be 
required than is determined by our model. It would 
however be possible to introduce a correction factor 
for our results based on the historical differences 
between end fiscal year and annual peaks. Finally, our 
model’s last important limitation is that it only 
considers an overall TES target, ignoring its 
composition in terms of ranks and occupations. This 
will mask specific gaps in trained personnel. In the 
normal course of business, retention encounters ups 
and downs at various ranks and occupations, leading 
to local gaps. Certain positions can be filled from a 
range of different ranks and occupations, but others 
cannot, and a larger training pipeline cannot address 
gaps in senior or specialized positions in the short 
term. It should therefore be understood that some 
vacancies in the establishment are to be expected, 
even when the pipeline trains enough members to 
counter the raw number of departures. 

Fully addressing these three limitations with an 
enhanced model is likely impossible, given data 
constraints. For example, given that there are only so 
many members in each occupation, and that it is only 
relevant to look back so many years in the data record, 
accurately estimating occupation-specific training 
and attrition model parameters would not be feasible. 
However, decision makers can appreciate the 
constraints’ impact on our modelling results, and 
consider them in developing policy. Overall, our 
model outputs remain informative, especially if 
interpreted as slightly under-estimating true training 
pipeline requirements.  
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Figure 3: Five hundred years of simulation result showing excess TES – trained effective personnel generated above the set 
requirement. 

7 SIMULATION 

We derived Monte Carlo simulation results using a 
spreadsheet. Each line of the spreadsheet recorded the 
state of the stocks in a given year. Subsequent years 
were then computed from the line above, with the 
annual flows drawn from specified Gaussian 
distributions. The number of lines in the spreadsheet 
then corresponds to the number of simulated years. 

Our goal was to assess the adequacy of various 
force structures by considering ratios of the number 
of positions allocated to the TES versus the training 
pipeline. From year to year, the simulated TES varied 
with the simulated stochastic flows, and could either 
be driven above or below the set objective. Each year, 
the intake was set to re-fill the training pipeline, but 
subject to a cap of total strength, which came into play 
when the number of trained personnel exceeded the 
target TES.  

Each simulation began with a fully manned TES, 
and a training pipeline full of fresh recruits. We 
would then simulate 200 years, in order to allow the 
composition of the pipeline to stabilize. Each 
subsequent year was then captured toward the output. 
As an example, Figure 3 shows 500 years of 
simulation, with a ratio of 1,547 training pipeline 
positions to 10,000 required TES. The graph shows 
the resulting annual variation in excess TES. We see 
that the excess TES tends to vary within a set range. 
Whenever the excess is too great, the cap on total 
strength means that the training pipeline cannot be 
filled to capacity, eventually leading to fewer 
graduations into the TES, and thereby eventually 
reducing the excess. Conversely, when the excess is 
negative, the training pipeline is filled to capacity, 
allowing for eventual growth of the TES. For the ratio 
of training pipeline positions to required TES used in 
this example, we see that the TES meets (or exceeds) 
the requirement approximately 95% of the time.  

All other results presented in this paper are based 
on 100,000 simulated years, which empirically 
proved to be enough for very stable results.  

8 RESULTS 

The main consideration, in fixing the capacity of the 
Regular Force’s training pipeline is ensuring that it is 
sufficient to generate the required TES. Figure 4 was 
obtained by simulating various ratios of training 
pipeline positions to required TES. It shows how 
often each ratio is expected to fail to yield the required 
TES. The failure rate decreases as the capacity of the 
training pipeline increases. 

Because a small number of unfilled TES positions 
might be a tolerable outcome, Figure 4 also shows an 
alternative measure of effectiveness. This alternative 
measure records how often the shortage is above 1% 
of the required TES. 

 

Figure 4: Fraction of simulated years where a TES shortage 
is observed, as a function of the number of training pipeline 
positions, given a 10,000 TES requirement.  

However, there is a trade-off in increasing the 
number of training pipeline positions. The larger 
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Figure 5: Mean TES above the requirement in those 
simulated years when the TES requirement is met, as a 
function of the number of training pipeline positions, given 
a 10,000 TES requirement. 

pipeline risks generating more TES than required. 
This over-generation would be costly in and of itself, 
but would also burden the forces with more trained 
personnel than required, leading to persistent excess 
costs. Figure 5 shows how this expected over-
generation increases with the size of the pipeline. 

To highlight the interplay between the two metrics 
shown in Figures 4 and 5, the results were combine 
into Figure 6. This depiction of the results was 
highlighted to departmental decision makers, as it 
quantifies the trade-off involved in right-sizing the 
training pipeline.  

Finally, Table 1 was disseminated as our principal 
deliverable. It essentially displays four scenarios from 
Figure 6 corresponding to the TES requirement being 
met 80%, 90%, 95% and 99% of the time. It was 
obtained by manually adjusting the training pipeline 
to TES ratio up or down until the simulation returned 
round number frequencies of TES shortages. Table 1 
can be used as a starting point on the way to settling 
on a preferred training pipeline to required TES ratio, 
while considering the limitations set out earlier in this 
paper.  

9 DISCUSSION OF MODELLING 
ERROR 

Guerry and De Feyter (2009) distinguish three types 
of error that apply to Markov Manpower models: 
statistical, estimation and specification. Statistical 
error results from the stochastic nature of models and 
may be reduced by increasing the number of 
simulation iterations. In our case, we expect this error 
to be small, given the 100,000 simulated years per 
scenario, and because that increasing that number 
minimally changes our results. 

Estimation error is related to the accuracy to 
which parameters are estimated. In our case, we relied 
on 14 years of available Human Resources data to 
estimate parameters. Older data, or data from other 

 

Figure 6: Combination of our two metrics into a single chart. 

Table 1: Four potential choices of training pipeline to TES ratios, with corresponding metrics obtained from simulation. 

Training pipeline to TES requirement 1,489:10,000 1,519:10,000 1,547:10,000 1,598:10,000 

Frequency of TES shortage 80% 90% 95% 99% 

Excess TES personnel 0.69% 0.95% 1.19% 1.64% 
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organisations would likely have been less 
representative of the current system, and therefore of 
little use in further reducing estimation error. 
Therefore, although we expect our estimation error to 
be substantial, there is no viable path to reducing it.  

Lastly, specification error results from the model 
being an inaccurate representation of reality. 
Reducing specification error eventually involves 
increasing the complexity of the model, thereby 
increasing the number of parameters. This introduces 
a trade-off with estimation error, since estimation 
error increases with the number of parameters that 
must be estimated. In our case, it would be 
unadvisable to attempt reducing specification error by 
introducing more parameters. We believe that our 
model design strikes an appropriate balance between 
estimation and specification error. 

10 CONCLUSIONS 

This paper described an application of Monte Carlo 
simulation on a straightforward Markovian model of 
the Canadian Armed Forces’ Regular Force training 
pipeline. The results of this simulation were provided 
to military staff tasked with redefining the 
organization’s force mix. An advantage of the method 
employed in deriving our results is that it was 
straightforward and easy to follow. Despite the 
complexity of the Canadian Armed Forces’ personnel 
system, our modelling results were readily trusted and 
appreciated.  

Although the Regular Force training pipeline has 
been undersized in recent years, efforts have been 
directed to bringing awareness to the issue and to 
improving the sustainability of the establishment. It is 
hoped that our model will support this continuing 
effort. 

Under existing total strength caps, sustainability 
can be improved by converting some TES positions 
into positions for trainees, but this comes at the 
expense of military capability. Alternatively, the 
current TES requirement can be maintained if the 
training pipeline (and by extension the total strength) 
are increased. 

Our model was nevertheless developed to support 
the currently ongoing Force Mix and Structure 
Design initiative. In that context, we have informed 
the future force structure. Subject to the limitations 
presented in this paper, our simulation results have 
allowed initiative staff to foresee the range of possible 
outcomes from different proposed force structures.  
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