
Recipe Enrichment: Knowledge Required for a Cooking Assistant

Nils Neumann and Sven Wachsmuth
Research Institute for Cognition and Robotics (CoR-Lab), Bielefeld University,

Universitätsstr. 25, 33615 Bielefeld, Germany

Keywords: Knowledge Representation and Reasoning, Knowledge-based Systems, Cognitive Assistance, Assisted
Living, Applications of AI.

Abstract: The preparation of a meal consisting of multiple components with different timing and critical synchronization
points is a complex task. An automated system assisting a human in the preparation process needs to track the
progress state, prompt the next recipe steps, control kitchen devices, monitor the final preparation time, and
deal with process deviations. This requires a detailed process representation including knowledge about states
with critical timing, control signals of devices, preparation steps and cooking times of ingredients, and neces-
sary user attention. At the same time, the system should be flexible enough to allow the free combination of
component recipes and kitchen devices to support the preparation of complete menus independent of a specific
kitchen setup. To meet these requirements, we propose a method to automatically enrich simple component
recipes with process-specific information. The resulting detailed process description can be processed by stan-
dard scheduling algorithms to sequence the preparation steps of complex meals. The control information for
kitchen devices is already included in the process description, so that monitoring of the progress becomes
possible. The reasoning process is driven by so-called action templates that allow to decouple knowledge on
recipes, ingredients, and kitchen devices in seperate re-usable knowledge bases.

1 INTRODUCTION

Preparing a meal consisting of multiple components
is a task with a high cognitive workload, especially
for inexperienced human cooks. It requires planning,
coordination, multitasking as well as memorizing and
accessing knowledge about ingredients, cooking de-
vices and associated actions. We aim at the devel-
opment and implementation of an automated intelli-
gent assistance that supports humans in the cooking
process at their regular kitchen environment. In this
paper, we address the challenge of formalizing and
enriching component recipes so that process descrip-
tions for preparing complete meals can be automat-
ically generated. These can be utilized for monitor-
ing, control, and feedback loops during the human-
centered cooking process in order to significantly re-
duce his or her cognitive workload. In order to close
the representational gap between regular fixed, pre-
defined recipes for complete meals towards a generic
process description of a human cooking process, we
need to model implicit knowledge that an experienced
cook would add by his or her “skilled practice, the
senses and memory” (Sutton, 2018). As a key con-
cept, we propose an action-centered representation

consisting of a composable template structure.
In a regular predefined recipe, implicit knowl-

edge is already considered during its creation, such
as causal relationships between the sub-tasks, use of
the devices, and the attention resource required by the
cook. However, meals are typically composed of mul-
tiple components, with one sub-recipe for each com-
ponent, that partially interfere with each other. Thus,
recipes cannot be freely combined without solving
conflicts between device usage and task order. In or-
der to find a generic approach that allows free com-
bination of component recipes, more information for
each sub-task are required, like its necessary attention
or logical connection between tasks. Having a com-
posable representation in place would allow to scale,
individualize, and adapt the cooking process to the
needs, preferences, and expertise of the user as well
as to the availability of the kitchen equipment.

In the cooking domain, several assistant systems
(An et al., 2017; Sato et al., 2014) exist following dif-
ferent approaches. Some cooking assistants like the
“KogniChef” (Neumann et al., 2017) model the skills
together with dependencies between the tasks and ad-
ditional information for device coordination inside the
recipe. This provides a good solution for cooking

822
Neumann, N. and Wachsmuth, S.
Recipe Enrichment: Knowledge Required for a Cooking Assistant.
DOI: 10.5220/0010250908220829
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 822-829
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



fixed sequential recipes but does not allow the cook
to prepare component variations or different meals in
parallel. Another cooking assistant “Cooking navi”
(Hamada et al., 2005) is utilizing action units that
have dependencies between each other and uses de-
vices and the user as resources to plan the execution
order of the action units. A plan is provided over a
touch panel as the user interface, without taking the
feedback of kitchen devices into account.

The Assistive Kitchen (Beetz et al., 2008) and
RoboEarth (Tenorth et al., 2012), among others, pre-
pare a meal with a robot. Therefore, they use a recipe
that provides a set of steps, add missing information
and additional micro actions which contain motion
primitives that can be executed by the robot. These
systems provide an approach for task representation
using an ontology and multiple small steps but focus
on a different goal with other required information,
due to coordinating a robot and not a human.

The TAAABLE system, from (Badra et al., 2008),
focuses on providing cooking recipes with a case
based system on a semantic wiki. It receives requests
with constrains for the recipe like desired ingredients
and provides a text based solution for the recipe. It
also forms the basis for the Computer Cooking Con-
test (CCC) (Nauer and Wilson, 2015). Teams com-
pete to find the best solution for given challenges.
2015 challenges like providing a sandwich recipe
or making a cocktail with specified wanted and un-
wanted ingredients were solved. The EVER project
(Bergmann et al., 2017) creates semantic workflows
based on textual sources, using similarity-based re-
trieval methods to find the best matching workflow.
They also participated multiple times in the CCC.
While the TAAABLE system, EVER project and the
CCC generate or adapt recipes for humans, we focus
on enriching recipes for the execution with a cooking
assistance, that requires additional information about
the recipe steps.

In this paper, a recipe representation utilizing ac-
tion templates is described that closes the gap be-
tween a regular predefined recipe and a composable
recipe for a cooking assistant supporting a human
cook. The action templates introduce a new abstrac-
tion layer, which captures device-dependent interac-
tion patterns and feedback loops between a human
user and the partially automated device control (com-
parable to the robot’s micro actions in the Assis-
tive Kitchen). They further allow a free combina-
tion of different component recipes considering the
required implicit knowledge, device setup and user
skills, which enables a high individualization and
flexibility for the cook.

2 PROBLEM STATEMENT AND
SYSTEM DESCRIPTION

Regular predefined recipes already encode fixed im-
plicit knowledge about tasks, task dependencies, in-
gredients, actions, and kitchen devices. Either they
leave their combination with other recipes to the skills
of the cook or need to be completely rewritten for
any changing component or device. They do not
consider recipe variations or interference with other
recipes. Consequently, the sequence of tasks is de-
fined from the perspective of the creator of the spe-
cific recipe and his or her assumptions about a stan-
dard cook. Enabling an automated cooking assistant
to support an individual human cook, while prepar-
ing multiple component recipes together as a meal re-
quires a higher flexibility.

Therefore we propose an action-centered ap-
proach that explicitly represents the knowledge im-
plicitly coded before. Figure 1 shows the difference
between a simple component recipe (provided as an
input to the system) and a process description (pro-
vided as an output of the system). The method pro-
posed in this paper is able to automatically enrich
such a recipe utilizing generic knowledge bases.

The action-centered approach is embedded in a
complete system for assisting users in a cooking pro-
cess at home. The main components of this system
are shortly described in the following. In this paper,
we focus on the recipe enrichment method providing
the process description:

• Knowledge Representation: provides the re-
quired recipe information from three sources
(action-template ontology, ingredient representa-
tion, recipe representation) and combines these
into multiple component recipes with different
types of preparation, which are usable at the same
time by the cooking assistance.

• Scheduler: schedules multiple component
recipes together providing an executable se-
quence of tasks, based on the available devices
and the different types of preparation.

• Device Control: provides the available devices
for the planning component, monitors and exe-
cutes tasks for the devices.

• Monitoring: supervises and controls the execu-
tion of the recipe, handles input from the user in-
terface and device control, detects deviations from
the plan and starts re-planning if necessary.

• User Interface: provides information and inter-
acts with the user.

Recipe Enrichment: Knowledge Required for a Cooking Assistant

823



Figure 1: The upper part of the picture shows a regular recipe for the preparation of cooked potatoes. The lower part of
the picture shows the enriched recipe for cooked potato with the action-centered approach that enables the use by the kitchen
assistant. Here the ”cook potato” task is split into several smaller tasks. Each task includes the necessary resource information
for the execution (task color), the logical dependency between the task (arrows over the tasks), device control commands for
automatic device control and prompting information for the user when the state of the device changes.

2.1 Modeling Composable Recipes for
Assisted Cooking

Most regular (human-defined) recipes are designed by
combining an average of ten actions together with an
average of nine ingredients (Yamakata et al., 2017;
Salvador et al., 2017). Only a limited number of
around 100 common action-verbs are used in a cook-
ing scenario, as shown in the EPIC-KITCHENS data
set (Damen et al., 2018). Therefore, we keep our
action-centered approach with a similar subdivision
of action types.

Our action-centered approach consists of three
different knowledge sources which are, then, com-
bined to create an executable component recipe by
utilizing the type of action as binding concept con-
necting them:

• Action-template Ontology: an action template is
a concept in the action-template ontology defin-
ing the action types to realize the appropriate
tasks given by the recipe representation which
is enriched by the ingredients from the ingre-
dient ontology. Therefore the action templates
can include multiple action-options to realize a
task in a recipe, e.g. cook with steamer or
hob, each with previous implicit sub-actions and
their dependencies, necessary devices/utensils re-
quired for each action-option. It further defines
how the sub-actions are parameterized applying
the information from the ingredient representation

and recipes, as shown in Figure 1 for cook hob
with the parameterization of the potato ingredi-
ent. The action template instantiates the task from
the recipe with (multiple-) actions executable by
the cooking assistant based on the devices, cook
attention, devices commands, and device interac-
tion types.

• Ingredient Representation: an ingredient inside
the ingredient representation is a concept that de-
fines all executable action templates for the spe-
cific ingredient and their parameterization (dura-
tion etc.).

• Recipe Representation: a recipe in the recipe
representation contains the specific tasks which
must be carried out to prepare and cook the de-
fined component recipe. Each task from a recipe
consists of a reference to an action template, a list
of ingredients with quantities and the logical de-
pendencies to other tasks. If no further parameters
are set, the ingredient information for the spec-
ified action template is used to parameterize the
task.

Combining the component recipes selected by the
cook, as described in the recipe representation, cre-
ates the menu. Each step from a component recipe
is represented as a task with its logical dependen-
cies. These dependencies are described as connec-
tions to its predecessor and successor tasks, instead of
a chronological sequence as frequently found in regu-
lar recipes. This creates a higher flexibility in combin-

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

824



ing component recipes, but means that the enriched
process description – which combines all component
recipes – must explicitly include all information re-
quired for a later scheduling of the tasks. As a con-
sequence, each component recipe can be composed
individually making it easier to extend the knowledge
base.

Deriving Ingredient Information for Recipes. In-
side the ingredient representation all feasible types
of action are defined for each ingredient and neces-
sary parameters are parameterized with default val-
ues independent of the recipe. These action types are
linked to the action templates and provide all infor-
mation for the execution by a cooking assistant, like
the abstract device interaction type, the necessary sub-
actions for the execution or scaling function for dif-
ferent ingredient quantities. For an instantiation in
the process description, each action-ingredient pair of
a task from the recipe is bound to an action type in
the ingredient representation and the task is enriched
with missing information from the ingredient repre-
sentation and the associated action template. Through
this distributed representation of knowledge, the re-
dundancy is reduced, while keeping the opportunity
to adjust parameter specifically for a recipe. As a con-
sequence, only very few information are required in a
component recipe, such that its creation in a machine-
readable format is a nearly effortless task. In this way,
the tasks in the component recipes just need recipe
specific information (e.g. divergent cooking times,
quantities of ingredients). All general knowledge is
taken from their default parameters. As an example,
duration times (relative to the quantity) are defined
in the action templates (by using scaling functions).
This allows an automated scaling of different quanti-
ties in the recipe.

Deriving Sub-tasks for Monitoring, Prompting
and Device Control. Enabling a cooking assistant
to support a human cook during the handling of
kitchen devices requires a more detailed representa-
tion than typically encoded in recipes, as shown in
Figure 1. These information are coded in the action
templates and describe the execution of a task in a
more precise way. The action templates are parame-
terized with the information from the recipe utilizing
the task representation as an action-ingredient pair.
Combing the recipe and ingredient information (dura-
tion, temperature, dependency between tasks, ingredi-
ents and quantities) with the action templates that pro-
vide information like user attention, device parame-
ters, and additionally required actions, creates the de-
tailed actions that are used by the cooking assistant

for prompting and monitoring the cooking progress.
Splitting a task into multiple smaller actions pro-

vides advantages in terms of utilizing more precise
information of the cooking process and a more ex-
act planning. Considering the limited user attention,
e.g. cooking in a steamer has a changing attention
level during the execution. Adding and removing has
a high user attention, while cooking has no user atten-
tion. Having smaller actions also creates device con-
trol and feedback loops based on the combination of
device feedback and abstract device interaction types
as coded in action templates. These abstract seman-
tic information (e.g. Add, Remove, Execute, Inter-
act) together with other action parameters (e.g. dura-
tion, temperature, device mode) can be executed and
monitored by the device control component, which
receives the device’s feedback over a network inter-
face (e.g. state of the device (program, door contact
switch)). Therefore, the device interaction type from
the action template, combined with the device feed-
back, as instantiated in the process description is uti-
lized to automatically monitor the task progress, e.g.
while an action with an Add interaction type is run-
ning, opening and closing an oven, can be interpreted
as putting something inside. Using a limited set of
abstract interaction types reduces the number of cases
that can occur. This enables an automatic device con-
trol and progress detection, reducing the confirmation
actions for the user and creating a more appropriate
feedback for the human cook.

Deriving Planning Options for Task Scheduling.
Preparing multiple component recipes as a meal re-
quires solving resource conflicts. While the necessary
information are available in the process description,
there is often more than one option to perform an ac-
tion with a specific ingredient considering the avail-
able devices, (e.g. boil noodle in a hob or steamer).
Therefore the action templates have a hierarchical
structure, that contains all action-options (e.g. differ-
ent devices/utensils) for the specific action type (e.g.
action template cook has action-options cook hob and
cook steamer). These possible options of preparation
can be limited in the ingredient or recipe representa-
tion by the specification and parameterization of pos-
sible devices/utensils. In this way, the scheduling al-
gorithm is able to find the best plan depending on the
set of chosen component recipes, enriched by the dif-
ferent knowledge sources, the possible action-options
and the available devices provided by the device con-
trol component.

The separation of tasks and action templates fur-
ther enables a personalization of the user actions, stor-
ing previous cooking performances in relation to the

Recipe Enrichment: Knowledge Required for a Cooking Assistant

825



action and ingredient. Also, their personal prefer-
ences, like preferred devices and recipe combinations,
can be considered in future planning processes.

Through the enrichment of the recipe, we know
the logical dependencies between tasks and actions,
the necessary kitchen devices and user attention for
each action. This defines a valid process descrip-
tion for computing the execution order of the actions
in the component recipes selected. Considering the
cook and the kitchen devices as resources, with the
user attention level as workload for the resources and
the individual recipes as projects, we can interpret
it as multi-mode resource-constrained multi project
scheduling problem. We solved the scheduling prob-
lem with the optaplanner tool (De Smet et al., 2016),
while considering rules that take the dependency be-
tween actions, the workload of the resources (device
and user), the maximum duration of the cooking pro-
cess and the synchronization of the end time for the
individual recipes into account.

2.2 Generating Process Descriptions
from Composable Recipes

In the following, we explain how the process de-
scription (e.g. prepare potatoes with meatballs and
cauliflower) is computed in the knowledge repre-
sentation from scalable and composable component
recipes, which is then passed to the scheduler. The
cooking assistant is implemented as a distributed sys-
tem, as described in the section 2, offering interfaces
via the MQTT network protocol using the interface
description language protocol buffers to serialize the
data.

At first, the cook selects the composable compo-
nent recipes to be prepared together with the number
of servings. For each action in a selected component
recipe, the content information required for its coor-
dination in the cooking process are automatically de-
duced from the ingredients in the ingredient represen-
tation, if they are not specified in the recipe.

A recipe, as shown in Figure 2, has general infor-
mation (title, number of servings) and a list of linked
tasks. The number of servings allows to scale a recipe
consistently relative to the number of servings cho-
sen from the cook. The list of tasks includes unique
identifiers for all actions required for a recipe. The
action key in each task references to an action in the
appropriate ingredient representation, if an ingredient
is used in the step and the ingredient can be used with
the corresponding action template. Furthermore, each
task contains the ingredients, their quantity, and a list
of predecessor tasks using the unique identifier from
the recipe task list. Optional parameters for each task

Figure 2: Recipe “Cooked Potatoes”, with two tasks
“cookpotato” and “peelpotato” that have a dependency,
where “peelpotato” must be finished before “cookpotato”
can start. The ingredient potato with 800g is used for 4 serv-
ings. The actions “cook” and “peel” from the recipe tasks
are used as references for the actions in the ingredient.

can be a specific duration if, e.g., the cooking time
is shorter than normal for an ingredient, images and
videos if they are specific for the recipe. They can
also contain, required and preferred devices, utensils
and additional action parameters if they are required
by the action template.

Figure 3: Ingredient “potato” with parameters for ac-
tions that can be performed with the ingredient. The task
“peelpotato” from the recipe in Figure 2, with action “peel”
and ingredient “potato” use the parameter from the “peel”
action in the ingredient “potato” for the parameterization of
the peel action template. The duration for the action “peel”
is relative to the quantity of potatoes in the recipe. The ac-
tion “cook” has parameters for the preparation options with
a steamer (17 min) or with a hob (25 min).

Missing non-recipe-dependent parameters are added
from the ingredient representation, as shown in Figure
3. This template contains basic information about the
ingredient, as well as parameter for each processable
action type. E.g. ”peelpotato” from the recipe task in
Figure 2 uses 800g potatoes for 4 servings. This in-
formation is combined with a duration of 2 min/100g
from the ”peel”-action in the ingredient representa-
tion and a scaling function from the action template
to calculate the duration with the used amount of the
ingredient. The scaling function from the action tem-
plate is necessary, since the scaling can differ depend-

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

826



ing on the action (e.g. constant value for cooking, lin-
ear scaling for peeling).

Subsequently, the list of tasks, completed by the
ingredient representation, is expanded by applying the
action templates to the named appropriate tasks. The
action templates enrich the recipe and create the ac-
tions for the cooking assistant as shown in Figure 4.
Each action template may contain several actions as
pre-/post-actions, that split the recipe task in multiple
more fine graded actions. They further define if pre-
/post-actions are parameterized with fixed values or if
their parameters are passed through from the recipe.

Additionally, some action templates model several
options to carry out a task. E.g. the action template
“cook” can be performed using either a steamer or a
hob as shown in Figure 4. Both are modeled as sub-
action templates derived from the “cook” template.
All valid options that fulfill the constraints of avail-
able devices and recipe specifications are taken into
account for the subsequent scheduling task.

After connecting the tasks from the recipe with the
action-templates, the relation between the tasks im-
plies dependencies between first and last (pre- or post-
) actions of the corresponding action templates as
shown in Figure 4, part 3. The user attention (depicted
for each action by the stick figure) is provided by
the action-templates and allows a parallel execution
of actions as long as their user attention together do
not exceed the maximum workload for the resource.
The action-templates further specify how the dura-
tion of the action scales with ingredient quantities de-
fined in the recipe. A post action priority ensures the
immediate execution of time-critical tasks following
the action. Additionally, categorized types of (user-)
device interactions, like add, execute, remove, inter-
act, and preheat, allows an automated progress detec-
tion based on sensor data of the devices (e.g. contact
switches, temperature drops). This can be utillized
for generating feedback loops for the user in the de-
vice control component. For prompting and control,
they include information like device commands, pos-
sible cutting states, temperature, or utensils required
to expand the actions.

Utilizing the separated knowledge sources, indi-
vidual user profiles can also be maintained. If reg-
istered users have used the cooking assistant before,
their preferences for multiple action-options, their
preferred recipe combinations, and their preparation
times required are saved in relation to the action and
ingredient. Based on this information, recipe com-
binations can be recommended, cooking instructions
can be adjusted to user skills and preferences, and
preparation times for an action can be estimated more
precisely.

After enriching the recipe with necessary infor-
mation for the execution by a cooking assistant, the
recipe is planned by the scheduling component, as
shown in Figure 5. The scheduling process takes the
available resources (devices provided by the device
control component and cook provided by the user in-
terface) and dependencies between tasks into account
and generates an executable sequence of tasks with
the available devices. The planned sequence of tasks
is executed and supervised by the monitoring compo-
nent. Therefore, it uses feedback from the user inter-
face and the device control component. If the execu-
tion of the recipe deviates too much from the planned
recipe, a re-planning is started. If possible, the con-
firmation of the recipe task is automatically accom-
plished by the device control, else the confirmation
is carried out by the cook via the device interface.
For the automatic task confirmation the device con-
trol component uses the sensor input from the devices,
e.g. door contact switch, selected program, tempera-
ture, in combination with the device interaction types.
Using the device interaction types abstracts the action
independently of the devices, e.g. hob, oven, steamer,
and defines a fixed amount of interaction possibilities.
The detection of the device interaction types may dif-
fer for different devices, e.g. ”Add something in the
steamer” can be detected by the door contact switch,
while ”Add something in a pot on the hob” requires
other device information due to the missing door con-
tact switch. By knowing which interaction type has to
be carried out, sensor information can be interpreted
in the appropriate context.

Due to the action-options with different devices,
a more flexible planning for multiple component
recipes is possible. E.g. if the steamer is used for the
cauliflower, the potato can alternatively be prepared
with the hob. By the division of tasks into smaller
sub-tasks, as shown in Figure 5 for the cook potato
task, a more accurate time management for the cook
is made possible, which can enable better planning
options.

3 VALIDATION OF THE RECIPE
ENRICHMENT

The approach was validated in a prototypical kitchen
environment with the cooking assistant as described
in the section 2. The setup included real kitchen
devices which were automatically registered as re-
sources in the system. The knowledge base consisted
of a set of 3 carbohydrate side dishes (C), 3 veg-
etable side dishes (V) and 3 main components (M),
with multiple preparation possibilities, which were

Recipe Enrichment: Knowledge Required for a Cooking Assistant

827



Figure 4: The recipe tasks enriched with the ingredient parameter (1. blue), are combined with the corresponding action
templates (2. grey), creating the actions (2. green) with their pre-/post-actions. The actions are parameterized with the recipe
parameter (blue text) and the action template information (gray arrow, e.g. stick figure for user attention). The first row of
each action shows the action type and used device/utensil. The second line the ingredient. While “peel potato” only has one
option and no pre-/post-actions, “cook potato” has two options with pre-/post-actions. 3. The dependencies from the recipe
are transferred onto the actions and the “peel potato” action on the left now points to both possible action-options, where the
scheduler have to choose one for the cooking process.

Figure 5: Planning example of one component recipe. Starting from the generated plan in Figure 4 part 3. The recipe is
planned depending on the available devices. In this example the kitchen only contains a steamer and no hob. Therefore the
possibility with the hob (Figure 4 part 3 upper option) can not be executed with the available setup and is removed. The
remaining tasks are planned, as shown, due to the utilization of resources (steamer and cook), and the dependency between
the tasks. During the execution of the recipe, the completion of the first cooking step ”peel potato” (red 1) must be confirmed
by the cook, since no devices are used. The steps ”add-/remove- steamer potato” (red 2/4) requires both the cook and the
steamer as resources, in this cases the task execution is detected by the device due to the interaction with the door and the next
step is started. The cooking step ”cook steamer potato” only needs the steamer as resource and requires no attention from
the cook. In this time the cook could perform other tasks from other component recipes if multiple component recipes are
planned together. Due to the feedback from the device the end of the task (red 3) is detected automatically.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

828



provided by a professional cook. These component
recipes were freely combined to valid recipes, with
one component from each set, considering the avail-
able devices (changing combinations of hob, steamer,
oven). The average number of tasks in a menu was
33.6 (C: 14.3, V: 4.6, M: 14.6). After the enrich-
ment of the recipes into a complete description of the
cooking process, the average task number changed to
44.3 (in case of multiple options the average num-
ber of tasks was counted). Multiple freely combined
recipes were prepared as system validation, both with
and without food, resulting in a functional cooking as-
sistance, in terms of planning, re-planning in case of
deviations, device control and automatic confirmation
of user interactions from the devices.

4 CONCLUSION

While regular (human readable) recipes look well-
structured and simple, the cooking process itself fre-
quently includes many pitfalls and unwritten (but nec-
essary) small pre- and post-actions which determine
the success of cooking. Therefore, today’s available
cooking assistants are designed either for a very spe-
cific device or for predefined hand-modeled recipes
which are completely decoupled from kitchen de-
vices. In comparison to other cooking assistants our
action templates enriches the recipe steps not only
with necessary information for visualization, plan-
ning, micro actions, and commands for device coor-
dination, but also with information about user-device
interaction and optional preparation alternatives. In
this paper, we propose action templates as a back-
bone for modeling component recipes that can be en-
riched and combined to full-blown descriptions of the
human-device interactions during a cooking process
and show its potential and benefits.

REFERENCES
An, Y., Cao, Y., Chen, J., Ngo, C.-W., Jia, J., Luan, H., and

Chua, T.-S. (2017). Pic2dish: A customized cook-
ing assistant system. In Proceedings of the 25th ACM
International Conference on Multimedia, MM ’17,
page 1269–1273, New York, NY, USA. Association
for Computing Machinery.

Badra, F., Bendaoud, R., Bentebibel, R., Champin, P.-A.,
Cojan, J., Cordier, A., Despres, S., Jean-Daubias, S.,
Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli,
A., and Toussaint, Y. (2008). Taaable: Text mining,
ontology engineering, and hierarchical classification
for textual case-based cooking.

Beetz, M., Stulp, F., Radig, B., Bandouch, J., Blodow, N.,
Dolha, M., Fedrizzi, A., Jain, D., Klank, U., Kresse, I.,

Maldonado, A., Marton, Z., Mosenlechner, L., Ruiz,
F., Rusu, R., and Tenorth, M. (2008). The assis-
tive kitchen — a demonstration scenario for cognitive
technical systems. pages 1 – 8.

Bergmann, R., Minor, M., Müller, G., and Schumacher, P.
(2017). Project ever: Extraction and processing of
procedural experience knowledge in workflows. In
ICCBR (Workshops), pages 137–146.

Damen, D., Doughty, H., Farinella, G. M., Fidler, S.,
Furnari, A., Kazakos, E., Moltisanti, D., Munro, J.,
Perrett, T., Price, W., and Wray, M. (2018). Scaling
egocentric vision: The epic-kitchens dataset. In Euro-
pean Conference on Computer Vision (ECCV).

De Smet, G. et al. (2016). Optaplanner user guide. Red
Hat and the community. URL http://www. optaplanner.
org. OptaPlanner is an open source constraint satis-
faction solver in Java.

Hamada, R., Okabe, J., Ide, I., Satoh, S., Sakai, S., and
Tanaka, H. (2005). Cooking navi: assistant for daily
cooking in kitchen. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages
371–374.

Nauer, E. and Wilson, D. C. (2015). Computer cooking
contest.

Neumann, A., Elbrechter, C., Pfeiffer-Leßmann, N.,
Kõiva, R., Carlmeyer, B., Rüther, S., Schade, M.,
Ückermann, A., Wachsmuth, S., and Ritter, H. J.
(2017). “kognichef”: A cognitive cooking assistant.
KI - Künstliche Intelligenz, 31(3):273–281.

Salvador, A., Hynes, N., Aytar, Y., Marı́n, J., Ofli, F., Weber,
I., and Torralba, A. (2017). Learning cross-modal em-
beddings for cooking recipes and food images. pages
3068–3076.

Sato, A., Watanabe, K., and Rekimoto, J. (2014). Mimi-
cook: A cooking assistant system with situated guid-
ance. pages 121–124.

Sutton, D. (2018). Cooking Skills, the Senses, and Memory:
The Fate of Practical Knowledge*, pages 88–109.

Tenorth, M., Perzylo, A. C., Lafrenz, R., and Beetz, M.
(2012). The RoboEarth language: Representing and
Exchanging Knowledge about Actions, Objects, and
Environments. In IEEE International Conference on
Robotics and Automation (ICRA), St. Paul, MN, USA.
Best Cognitive Robotics Paper Award.

Yamakata, Y., Maeta, H., Kadowaki, T., Sasada, T., Ima-
hori, S., and Mori, S. (2017). Cooking recipe search
by pairs of ingredient and action —word sequence
v.s. flow-graph representation—. Transactions of The
Japanese Society for Artificial Intelligence, 32:71–79.

Recipe Enrichment: Knowledge Required for a Cooking Assistant

829


