
AppArmor Profile Generator as a Cloud Service

Hui Zhu and Christian Gehrmann
Department of Electrical and Information Technology, Lund University, Lund, Sweden

Keywords: Security-as-a-Service, Docker, Container, AppArmor.

Abstract: Along with the rapid development of containerization technology, remarkable benefits have been created for
developers and operation teams, and overall software infrastructure. Although lots of effort has been devoted
to enhancing containerization security, containerized environments still have a huge attack surface. This paper
proposes a secure cloud service for generating a Linux security module, AppArmor profiles for containerized
services. The profile generator service implements container runtime profiling to apply customized AppArmor
policies to protect containerized services without the need to make hard and potentially error-prone manual
policy configurations. To evaluate the effectiveness of the profile generator service, we enable it on a widely
used containerized web service to generate profiles and test them with real-world attacks. We generate an
exploit database with 11 exploits harmful to the tested web service. These exploits are sifted from the 56
exploits of Exploit-db targeting the tested web service’s software. We launch these exploits on the web service
protected by the profile. The results show that the proposed profile generator service improves the test web
service’s overall security a lot compared to using the default Docker security profile.

1 INTRODUCTION

Containerization is by far the most eye-catching tech-
nology as an alternative or companion to virtualiza-
tion. Gartner predicts that by 2022, more than 75%
of global organizations will be running containerized
applications in production1. However, while enjoy-
ing the significant benefits brought by containeriza-
tion technology such as portability, efficiency, and
agility, several security issues also arise by the kernel-
sharing property of containerization (Casalicchio and
Iannucci, 2020). Containers and microservices ar-
chitectures are different from the traditional virtual
machines with monolithic applications (Martin et al.,
2018). DevSecOps is a set of practices that combines
software development (Dev), security (Sec), and IT
operations (Ops), which means built-in security in
application development through the whole service
life-cycle (Myrbakken and Colomo-Palacios, 2017).
Cloud Security Alliance (CSA) points out that De-
vSecOps are created as a response to resolve security
issues that have risen from microservices-based archi-
tectures2. CSA defines six focus areas critical to inte-

1https://www.gartner.com/smarterwithgartner/6-best-
practices-for-creating-a-container-platform-strategy/

2https://cloudsecurityalliance.org/artifacts/six-pillars-
of-devsecops/

grating DevSecOps into an organization, one of which
is automation. The security for microservices in con-
tainers should be automated to protect the environ-
ment and data. Several security controls for contain-
ers have been embedded into a continuous integration
and delivery pipeline to ensure the automated end-to-
end security of containers. One of such controls is
called behavior-based control securing the container
runtime.
Many different behavior-based solutions have ap-
peared in the industry. The top container security
products’ typical way is to monitor the container’s be-
havior and detect malicious activities by using rule-
based or machine-learning-based approaches. For ex-
ample, the TwistLock runtime offers both static anal-
yses and machine-learning-based behavioral monitor-
ing (Stopel et al., 2020). The TwistLock monitoring
and profiling defense work on four levels: the file sys-
tem (Levin et al., 2020a), the processes, the system
calls, and the network (Levin et al., 2020b). Sim-
ilarly, Aqua’s runtime security for Docker restricts
privileges for files, executables, and OS resources
based on a machine-learned behavioral profile to en-
sure that only necessary privileges are given to the

Zhu, H. and Gehrmann, C.
AppArmor Profile Generator as a Cloud Service.
DOI: 10.5220/0010434100450055
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 45-55
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

45

container3. NeuVector4, StackRox5 and Sysdig6 also
provide similar products. Besides the container secu-
rity companies, British Telecommunication also has a
patent called software container profiling, which can
generate runtime profile for the container in execu-
tion (Daniel and El-Moussa, 2019). Two open-source
projects secure containers based on the runtime be-
havioral monitoring: Falco7 and Dagda8. Falco is
a cloud-native runtime security tool that can detect
and alert on any behavior that involves making sys-
tem calls such as running a shell inside a container or
unexpected read of sensitive files. Dagda adds build-
time analysis on top of Falco’s runtime analysis.

However, not many similar solutions have been
introduced in academic works. Some researchers
propose novel design ideas but lacking implementa-
tion details and experimental results. In the work of
Sarkale et al. (2017), a new security layer with extra
security features on top of the container architecture is
proposed to secure the cloud container environment.
The proposed layer has two features: Container Secu-
rity Profile (CSP) and the Most Privileged Container
(MPC) feature. CSP is responsible for access con-
trol enforcement. It describes the minimum resource
requirements, runtime behavior, and extra privileges
for the container. The MPC is monitoring the system
and detects any attempt to act against assigned per-
missions. The MPC alerts the container engine when
suspicious processes are detected. This in turn allows
the engine to halt a potentially dangerous process.

Most recently, in the work of Zhu and Gehrmann
(2020), a command-line tool called Lic-Sec was pro-
posed which implements Linux tracing tools: System-
Tap9 and Auditd10 to trace the behavior of the con-
tainer runtime and generate a Linux security module
AppArmor11 profile. Docker container security is sig-
nificantly enhanced by restricting the privileges of ca-
pabilities, network accesses, file accesses, and exe-
cutables based on an automatically generated AppAr-
mor profile. The tool is experimentally evaluated to
be efficient to real-world attacks, especially the privi-
lege escalation attacks. However, the original Lic-Sec
work does not take profile generation dur-

3https://blog.aquasec.com/topic/runtime-security
4https://neuvector.com/products/container-security/
5https://www.stackrox.com/use-cases/threat-detection/
6https://sysdig.com/products/kubernetes-

security/runtime-security/
7https://github.com/falcosecurity/falco
8https://github.com/eliasgranderubio/dagda#monitoring-

running-containers-for-detecting-anomalous-activities
9https://sourceware.org/systemtap/

10https://linux.die.net/man/8/auditd
11https://www.openhub.net/p/apparmor/

ing container usage into account, which may cause
the generated profiles to be too restrictive to func-
tion in the final container deployment environment.
In this paper, we provide a novel cloud tool for Ap-
pArmor profile generation, which utilizes Lic-Sec but
allows dynamic and automatic AppArmor profile gen-
eration following the DevSecOps automation princi-
ple. Furthermore, we evaluate the profile generator’s
strength by running a typical set of containerized web
services against a filtered set of relevant known ex-
ploits. The evaluation is based on a designed mi-
croservice, and we show the significant security im-
provements achieved with our automated cloud-based
profile compared to using the default Docker security
configuration
In summary, we make the following contributions:

• We propose, design, and implement a novel, dy-
namic, AppArmor Profile Generator as a Cloud
Service.

• We evaluate the efficiency of the profile genera-
tion service by testing, on widely used container-
ized web services, the generated profile’s strength
against real-world exploits.

The rest of this paper is organized as follows. In
Section 2, we give a background description of Lic-
Sec and the classification for containers. In Section
3, we formulate the main research problem, i.e., the
design goal of the profile generator cloud service, and
the evaluation goal of the performance of the gener-
ated profile. In Section 4, we introduce the cloud ser-
vice approach of the profile generator in detail. In
Section 5, we describe the implementation details of
the cloud service. In Section 6, we introduce how the
microservice used in the evaluation is designed and
how the exploit database is generated. In Section 7,
the profile generator cloud service’s primary evalua-
tion results are presented, and a detailed analysis of
the results is given. In Section 8, we present and dis-
cuss related work. In Section 9, we conclude this re-
search and identify future work.

2 BACKGROUND

In this section, we describe Lic-Sec and the classifi-
cation for containers.

2.1 Lic-Sec

Lic-Sec (Zhu and Gehrmann, 2020) is a command-
line tool that can automatically generate AppArmor
profiles based on container runtime behaviors. Lic-
Sec combines LiCShield (Mattetti et al., 2015) and

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

46

Docker-sec (Loukidis-Andreou et al., 2018), both of
which enhance container security by applying cus-
tomized AppArmor policies. Lic-Sec has two primary
mechanisms, including tracing and profile generation.
SystemTap collects all kernel operations while Auditd
collects mount operations, capability operations, and
network operations. This information is processed by
the rules generator engine, and eventually, the AppAr-
mor profile is generated. Rules generated by Lic-Sec
include capabilities rules, network access rules, pivot
root rules, link rules, file access rules, mount rules,
and execution rules. This tool has been utilized in our
new cloud-based profiling solution.

2.2 Container Classification

A container can support almost any type of applica-
tion traditionally virtualized or runs natively on a ma-
chine. To design a microservice evaluated by our new
AppArmor profile tool, we have searched and clas-
sified the major container use cases. We explored
the top 50 most popular Docker official images from
Docker hub12 in 2020 and classified them based on
their labels. The final classification result is displayed
in Table 1. The total amount of images in the ta-
ble is larger than 50 since some images are labeled
with multiple categories. The results clearly show
that containerized database accounts for the largest
proportion, followed by the containerized application
services and infrastructures. Among the category of
containerized application infrastructure, web server
takes 50 percentage. Consequently, containerization
is widely applied to databases and server-side appli-
cations. Other major use cases are containerizing
services, programming languages, and operating sys-
tems.

Table 1: A summary of category for Docker official images.

Category Sub-category Amount Percentage

Database Database and
Storage System 15 30%

Application
service Service and Tool 14 28%

Application
infrastructure Web Server 5 20%

Reverse Proxy 3
Frontend 1

Service discovery 1

Programming Programming
Language 8 16%

Base image Operating System 5 10%

12https://hub.docker.com/search?q=&type=image

Figure 1: Scenario Overview.

3 PROBLEM DESCRIPTION

We are considering the scenario in Figure 1 where an
administrator, A, wants to launch an arbitrary service,
S, on a container. The service can be launched on a
local container infrastructure or a third-party cloud in-
frastructure utilized by the administrator. In this sce-
nario, the administrator is responsible for preparing S
and running it on a suitable container platform. To
achieve this goal, the administrator can leverage dif-
ferent protection schemes to enhance the container
platform’s security. One such scheme is based on
AppArmor security architecture, using the Mandatory
Access Control (MAC) to protect the container from
external threats. However, MAC is complicated to
configure manually even if the administrator has good
knowledge of the microservices since the MAC rules
are directly related to the Linux kernel. Furthermore,
even if the administrator can configure it, the rules’
scope is still hard to define since it cannot be too strict
to blocking the microservice’s essential functions nor
too generous to open up for attacks on containers.

Therefore, the aim of this research is, first, to pro-
vide a cloud service to generate tailored AppArmor
profiles for the administrator in order to protect differ-
ent microservices in the most user-friendly way. Sec-
ond, to evaluate the efficiency of the generated pro-
files in a real production environment. To accomplish
these goals, we want to solve the following two main
problems: 1) find a user-friendly cloud service to gen-
erate a tailored AppArmor profile for an arbitrary mi-
croservice automatically; 2) find a suitable methodol-
ogy and test framework for evaluating the strengths of
the profiles generated by the cloud service.

AppArmor Profile Generator as a Cloud Service

47

4 CLOUD SERVICE APPROACH

We suggest a solution where a MAC profile genera-
tion is offered as a security service for container ad-
ministrators. The MAC profile generator is based on
Lic-Sec, which has been described in Section 2.1. The
proposed profile generation service offloads the ad-
ministrator of a container service the burden of set-
ting up a protection profile generation environment.
In particular, the following principles apply (see also
overview Figure 2):

1. An administrator, A, prepares a new service, S, to-
gether with configuration information, C, includ-
ing parameters such as the mounted volumes, the
open ports, the needed capabilities, etc., as well
as a test suite, T, for S. S will be deployed on a
container on local or third-party cloud resources
as a new service with the given configurations. T
consists of cases for testing all functions of S.

2. A is assumed to have an agreement with a
container security provider and set up a secure
connection (authenticated, confidentiality and in-
tegrity protected) with these providers. The
provider evaluates if the requester has an agree-
ment with the provider. If this is the case, the
provider launches a new Virtual Machine (VM),
including container launch profile and MAC pro-
file generator on an internal cloud resource. Login
credentials for the VM running container services
are created on the internal resources, and a URL,
as well as credentials for accessing the VM, are
returned to the administrator machine.

3. A uses the credentials received in step 2) to make
a secure connection to the new VM created in the
profile generation service cloud. Using the re-
ceived credentials, A logs in to the VM and up-
loads S, C, and T to the VM.

4. A script on the VM launches container(s) with the
uploaded S and the given C. The functions of S
are tested automatically during the tracing period
by running T. Then, the script generates a MAC
protection profile based on the trace records. T is
rerun with profile enforced to verify no function
of S is blocked by the profile. If the verification
fails, the service provider informs A of the failure
and discontinues this service.

5. The profile generated in step 4 that is success-
fully verified is temporarily stored, and the VM is
killed, and all its data is wiped out from memory.

6. P is returned to A by sending a profile download
link to A.

Figure 2: Profile Generator as a Cloud Service Solution
Overview.

Figure 3: The implementation framework of profile genera-
tor service.

7. A takes the received MAC profile, P, and launches
S on a local or remote container service with the
profile applied.

5 IMPLEMENTATION

The implementation framework is displayed in
Figure 3. Openstack is implemented as the internal
cloud platform of the profile generator service. A
backend server and a data storage with contract users’
information are running on the cloud to provide three
main functions: user authentication, service launch,
and profile fetch. The detailed description for each
function is as follows:
User Authentication: The user is authenticated by
the backend server (username and password). After
successful authentication, the backend server sets up

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

48

a VM with a ready-to-use profile generation environ-
ment on Openstack. Openstack generates the SSH
key and the floating IP address for this VM. The back-
end server collects this information from Openstack
and sends it back to the user. The profile genera-
tion environment includes the following pre-installed
components:

• Profile Generator: We use the Lic-Sec tool de-
scribed in Section 2.1 for tracing behaviors and
generating AppArmor profile for the uploaded
service.

• Service Manager: This is a bash script re-
sponsible for discovering newly uploaded service,
launching Docker service, and enabling the profile
generator and verifier, which automates the profile
generation and verification.

• Verifier: We use Newman13 as the verifier, which
is a command-line collection runner for Post-
man14. It is responsible for running RESTful API
tests in the test suite uploaded by the user. The test
suite is a JSON file and easy to run with a simple
command: $newman run < testsuite. json >.

• Docker Environment: The Docker CLI, the
Docker daemon, and the docker-compose package
constitute the Docker environment, which runs
the uploaded service in Docker containers.

Service Launch: A user uses the received SSH key
and IP address to build a secure connection with the
VM. To use the profile generation service, the user
needs to prepare the service and configurations for
running the service in Docker containers and a test
suite script created by the service(s) owner. The script
tests all the service’s functionalities (see also the dis-
cussion on test suit preparation below). For the con-
figurations, the user can directly use the Docker Com-
pose file. For the test suite, the user can use the JSON
file exported from Postman Collection. Once the ser-
vice, configurations, and test suite are uploaded, the
service manager inside the VM runs the service with
docker-compose and starts the profile generator. Si-
multaneously, the service manager enables the train-
ing period and calls the verifier to run the test suite.
After the training phase is over, and the profile is suc-
cessfully generated, the service manager calls the ver-
ifier again with the profile enforced. Hence, the two
significant phases of service launch are training and
verification. Below, we discuss them in more detail.

• Training: The profile generator uses Lic-Sec to
trace the runtime behavior of the service, which
has been described in Section2.1. At the same

13https://www.npmjs.com/package/newman
14https://www.postman.com/

time, Newman runs the test suite, and all the func-
tionalities of the service are tested.

• Verification: Verification ensures that the gener-
ated profile does not block any functionality of
the service. The service manager first enforces
the generated profile and then calls Newman to
rerun the test suite. If any test case fails, the ser-
vice manager restarts the profile generation ser-
vice and regenerates the profile. If the verifica-
tion fails three times, the service manager stops
the profile generator and sends an error message
to the backend server. The backend server then
provides a secure link for users to check the failed
cases. The users can ask for technical supports
from the profile generator service provider.

Profile Fetch: Once the verification is successful,
the profile generated inside the VM is uploaded
to the backend server immediately by the service
manager. Upon receiving the profile, the backend
server requests Openstack to kill this VM completely.
Meanwhile, the backend server temporarily saves the
profile locally and provides a secure link for users to
download the profile.
Test Suite Preparation: Postman is a popular API
client that has been widely used by developers to cre-
ate and save HTTP/s requests, read and verify their
responses. The Postman Collection is a built-in func-
tion that includes a set of pre-built requests. Newman
automates the running and test of a Postman Collec-
tion. Users create a new collection by merely clicking
+NewCollection in the Postman GUI and then import
all pre-built requests against the same service into this
new collection. To run the collection with Newman,
users should export the collection as a JSON file. This
file is the test suite that will be run by the verifier au-
tomatically during the training period. The required
permissions and file operations by those requests are
traced to generate the profile. If the test suite misses
any request, corresponding permissions, and file oper-
ations required to handle the request will not be gen-
erated in the profile. Therefore, the profile’s effective-
ness dramatically relies on the test suite’s quality, and
the generated profile only fits the service that has been
trained. It is the users’ responsibility to guarantee that
the test suite covers all functions of the service. We
consider it not an extra effort since an end-to-end test
of a service is typically required before publishing the
service independently of our cloud profile generation
service.

AppArmor Profile Generator as a Cloud Service

49

6 EXPERIMENTAL SETUP

Here, we describe the experimental set-up used
in our evaluation. First, we discuss the selection
and deployment of the microservice used in our
evaluation. Then we describe how we have collected
and classified the exploits targeting this microservice,
and finally, we explain how the tests were executed.
Microservice Selection and Deployment: We de-
cide to use a web service stack to build the evaluated
microservice. This stack compiles software that
enables the creating and running of complex websites
on any computer. It usually includes a web server,
a database system, an underlying operating system,
and supports for particular programming languages.
It is very suitable to be used as the underlying
stack for building the containerized service since
databases, server-side applications, programming
languages, and operating systems are commonly
deployed as microservices in Docker containers as
concluded in Section 2.2. Besides, web services are
the most popular services which have been widely
deployed. Based on this stack, the evaluation’s
microservice includes a backend service, a reverse
proxy service, and a database service, each of which
runs in a separate container. We used a simple
secret management system to test the set-up. The
chosen service provides four APIs and safe persistent
storage for secret owners to save and manage their
secrets. To be more specific, the four APIs are
POST/path1 for creating secret and securely saving
it to the database, DELET E/path1 < secID > and
PUT/path1 < secID > for deleting and updating a
specific secret with secID, and GET/path2 < secID >
for fetching a specific secret with secID.
Exploit Database Collection and Classification:
We used the exploit collection and classification
method reported by Lin et al. (2018). The authors
first generated a universe exploit database by col-
lecting the latest 100 exploits of each category from
Exploit-db15. Then they filtered out the exploits
which may probably fail on the container platform
and used a two-dimensional method for classifying
the final set. We generated the final exploit dataset
and classified the exploits based on the method
discussed above but modified it to suit the study’s
evaluation goal. We implement the method from
Zhu and Gehrmann (2020) to obtain the exploits
which were effective on the evaluated microservice
discussed before. We first generated the initial uni-
verse set of exploits by searching out the exploits that
mainly target the microservice’s software. Based on

15https://www.exploit-db.com

this set, we filtered out exploits that can be defended
by default Docker security mechanisms by analyzing
the exploit codes and launching the exploits in the
Docker containers with default security configu-
rations. Eventually, we obtained the final exploit
dataset with 11 exploits published after 2016 out of
56 exploits, which were harmful to the containerized
web service. We classified these exploits using the
targeting object and its impact. The exploit details
and their categories are shown in Table 2.
Test Setup: The microservice was set up on a host
running the Linux distribution Ubuntu 18.04.5 LTS
with kernel version 4.15.0-72-generic. This Linux
version was chosen to guarantee that the host is vul-
nerable to the Linux vulnerabilities in the selected
exploit collection. Docker 19.03.1-ce was used for
the microservice. This version was released on 25th
July 2019 and supported Linux kernel security mech-
anisms, including Capability, Seccomp, and MAC.
We implemented the Redis and MySQL database ser-
vices. While implementing MySQL, we also de-
ployed phpMyAdmin as the administrator. Nginx was
implemented as the reverse proxy. PHP was used for
the backend service.

Table 2: Exploit Database Collection.
Object EDB-ID CVE-ID Category

Redis 48272 N/A Execute code
Gain information

47195 N/A Execute code
Gain information

40678 CVE-2016-6663 Gain Privilege

MySQL 40360 CVE-2016-6662 Execute code
Gain Privilege

39867 CVE-2015-4870 DoS

N/A CVE-2012-2122 Bypass
Gain information

PHP 47553
48182 CVE-2019-11043 Execute code

Linux 48052 CVE-2019-18634 Gain Privilege
Docker
engine N/A CVE-2020-13401 Gain information

DoS
phpMyAdmin 40185 CVE-2016-5734 Execute code

44496 CVE-2018-10188 Execute code

7 EVALUATION

Here we present the evaluation results. We start by
summarizing the overall results, and then we make a
detailed analysis of the successful and failed defenses,
respectively.

7.1 Test Results Overview

The evaluation results are listed in Table 3. The re-
sults indicate that, first, among all the rules gener-
ated by the cloud service, the file access rules play a

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

50

much more significant role in defending exploits than
the other rules. Second, the AppArmor profile-based
container protection scheme is more effective against
attacks with a high level of sophistication, which re-
quires many file manipulations than the simple at-
tacks, which directly exploit targets’ innate flaws with
limited privileges in the profile. We will explain it
in detail by analyzing the attacking principle of the
exploits, the defending principle of the enforced pro-
files, and the reasons for the failed defenses in the fol-
lowing subsections. It should be noted that limits ex-
ist for the evaluation: first, the test profile is generated
based on the designed microservice discussed in Sec-
tion 6. It gives the least privileges for running the ser-
vice without blocking any functionality of this service
only. Therefore, the exploits defended in this evalu-
ation setup may not be defended anymore in another
setup. Second, the generated profile cannot remedi-
ate the vulnerability but prevent attacks exploiting the
vulnerability.

7.2 Successful Defenses

In total, the generated profile successfully defends
7 out of 11 exploits. Among these defenses, 6
defenses are due to the restriction of permissions to
file resources, and only 1 defense is due to the lack of
specific capability.
Redis: Two exploits targeting Redis are proved to
be vulnerable to the tested microservice. These
exploits take advantage of an unauthorized access
vulnerability of Redis version 4.x and 5.x. It uses
the Master-Slave replication to load remote modules
from a Rogue Redis server to a targeted Redis server.
It executes arbitrary commands on the target16.
Successful launch of the exploit requires to create a
malicious exploit module written by the attacker in
the Redis server’s ’/data’ directory. After loading the
module, the attacker can execute arbitrary commands.
The exploit can be launched with the default security
mechanism since the file access rules for ’/data’
directory is quite generous with no restrictions.
However, the exploits are successfully defended by
the enforced profile. Since the profile only grants
’read’ permission to ’/data’ directory, no files can be
created inside this directory.
MySQL: Two exploits (EDB-ID-4067817 and
EDB-ID-4036018) aiming to gain privilege inside
the container are successfully defended by the

16https://2018.zeronights.ru/wp-
content/uploads/materials/15-redis-post-exploitation.pdf

17https://www.exploit-db.com/exploits/40678
18https://www.exploit-db.com/exploits/40360

generated profile. These two privilege escalation
exploits take advantage of two critical vulnerabilities
(CVE-2016-666219 and CVE-2016-666320) in Oracle
MySQL. The former one is a race condition that
allows local users with certain permissions to gain
privileges. The latter creates arbitrary configurations
and bypasses certain protection mechanisms to
perform arbitrary code execution with root privileges.
The successful launch of EDB-40678 needs to
create a table named ’exploit table’ in directory
’/tmp/mysql privesc exploit’. Since the profile does
not grant any ’write’ permission to this directory,
the launch of the exploit fails. Similarly, to launch
EDB-40360, the attacker must write to the file
’poctable.TRG’ in directory ’/var/lib/mysql/demo,’
which also requires ’write’ permission to the direc-
tory and the file. The profile defends the exploit
since there is no rule giving such permissions to the
directory and the file.
PHP: There is one attack targeting PHP-fpm exploit-
ing CVE-2019-11043 21, which is a bug in PHP-fpm
with specific configurations. It allows a malicious
web user to get code execution. We used an open
tool to reproduce the vulnerabilitythis tool22. A web
shell is written in the background of PHP-fpm, and
any command can be executed by appending it to all
PHP scripts. This attack cannot be performed with
the profile in force since the exploit needs ’write’
permission to directory ’/tmp’ to create new files in
this directory, which is not granted in the profile.
The reason is that the evaluated microservice does
not provide an API for users to upload files to the
server. Consequently, no permissions are granted to
the directory ’/tmp’.
Docker Engine: A vulnerability, CVE-2020-
1340123, is discovered in Docker Engine before
19.03.11. An attacker inside a container with the
CAP NET RAW capability can craft IPv6 router
advertisements to obtain sensitive information or
cause a denial of service. The enforced profile
perfectly defends this attack since the profile discards
the CAP NET RAW capability.
phpMyAdmin: CVE-2016-573424 is an issue of ph-
pMyAdmin which may allow remote attackers to ex-
ecute arbitrary PHP code via a crafted string. The
attack is written in Python and uses the function ’sys-
tem()’ to execute command after exploiting. This

19https://nvd.nist.gov/vuln/detail/CVE-2016-6662
20https://nvd.nist.gov/vuln/detail/CVE-2016-6663
21https://nvd.nist.gov/vuln/detail/CVE-2019-11043
22https://github.com/neex/phuip-fpizdam
23https://nvd.nist.gov/vuln/detail/CVE-2020-13401
24https://nvd.nist.gov/vuln/detail/CVE-2016-5734

AppArmor Profile Generator as a Cloud Service

51

function’s call needs the execution permission of
’/bin/dash’ to prompt a terminal. The enforced pro-
file successfully defends this attack since it denies the
execution of ’/bin/dash.’

7.3 Failed Defenses

In total, the generated profile fails to defend 4 out
of 11 exploits. The attacks we could not prevent are
generally not very complicated and do not rely on
any specific capability or network access.
MySQL: Two exploits are targetting on MySQL
that cannot be defended by the profile. One is a
DoS attack exploiting vulnerability CVE-2015-
4870 25 to crash the MySQL server by passing a
subquery to function PROCEDURE ANALYSE().
The attack does not require any extra capability
to launch. The required network access is only
’network inet stream’, which is also necessary for
running the MySQL database. Regarding the file
accesses, the attack needs ’read’ permission to
the directory ’/var/lib/mysql/mysql’, which has been
granted by the profile as it is needed to run the service.

The other uses vulnerability CVE-2012-212226

to log in to a MySQL server without knowing the
correct password. The vulnerability comes from the
incorrect handling of the return value of the memcmp
function, which is an innate flaw of the software.
Hence, the AppArmor profile will not help here. The
first attack’s impact is more severe than the second
one since it completely disrupts the database service.
For the second attack, even if the attacker bypasses
authentication and logs in as an authenticated user,
his behavior is still restricted by the enforced profile.
Linux: CVE-2019-1863427 is a bug in Sudo before
1.8.26. Pwfeed-back option is used to provide visual
feedback while inputting passwords with sudo. The
option is disabled by default, but in some systems,
users can trigger a stack-based buffer overflow in the
privileged sudo process if this option is enabled. The
stack overflow may allow unprivileged users to esca-
late to the root account28. The enforced profile fails
to defend this attack since overflowing the buffer does
not require extra file manipulation or extra capabil-
ities. However, the attack’s impact is limited since
the attacker gets root privilege only inside the com-
promised container. The profile is still effective to the
container so that the attacker is still under supervision.

25https://nvd.nist.gov/vuln/detail/CVE-2015-4870
26https://nvd.nist.gov/vuln/detail/CVE-2012-2122
27https://nvd.nist.gov/vuln/detail/CVE-2019-18634
28https://www.sudo.ws/alerts/pwfeedback.html

phpMyAdmin: CVE-2018-1018829 is a Cross-Site
Request Forgery issue in phpMyAdmin 4.8.0, which
allows an attacker to execute arbitrary SQL state-
ments. The vulnerability comes from the failure in
’sql.php’ script to properly verify the source of an
HTTP request, which is also an innate flaw of the soft-
ware. Similarly, the profile privileges are enough to
launch the attack, which leads to the failed defense.
The impact is relatively high since ’write’ and ’read’
permissions generally should be granted to ensure the
regular operation of a database’s essential functions;
the attacker is unfortunately still able to drop, read or
modify an existing database even if the profile is en-
forced.

Table 3: Evaluation Result Overview.

Categories
Software Redis MySQL PHP Linux Docker

Engine phpMyAdmin

Bypass
(Doc/Svc1) \ 1/1 \ \ \ \

Gain Privilege
(Inside Container)

(Doc/Svc1)
\ 2/0 \ 1/1 \ \

DoS
(Doc/Svc1) \ 1/1 \ \ 1/0 \

Gain
Information
(Doc/Svc1)

2/0 1/1 \ \ 1/0 \

Execute Code
(Doc/Svc1) 2/0 1/0 1/0 \ \ 2/1

1: ”Doc” denotes the number of exploits execute successfully on containers launched
with Docker, and ”Svc” denotes the number of exploits execute successfully on containers
launched with the profile generator service.

8 RELATED WORK

There are some researches addressing profiling to en-
hance runtime security for containerization environ-
ment. In the work of Pothula et al. (2019), a secu-
rity control map, including rate limit, memory limit,
and session limit, as well as a malware detection sys-
tem with profiling, is proposed to harden the security
of runtime containers. All of the limit thresholds in
this control map are derived from lab experiments and
customer use case scenarios. The malware detection
system is responsible for detecting malware behavior
events, conveying semantic information about mali-
cious behaviors, and predicting malware intentions.
Based on the intentions, corresponding security poli-
cies are created automatically. The proposed control
map is experimentally evaluated to improve container
security significantly, especially when the attacker is
inside the container. The main difference compared
to our work is that this security control map is profil-
ing the malware behavior but not the container run-
time behavior. Hence, the created security policies
will only protect the container from malware attacks
that have been detected by the malware detection sys-

29https://nvd.nist.gov/vuln/detail/CVE-2018-10188

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

52

tem and no other attacks.
Many commercial products are providing con-

tainer runtime profiling, as mentioned in Section 1.
In the academic area, LiCShield (Mattetti et al., 2015)
and Docker-sec (Loukidis-Andreou et al., 2018) men-
tioned in Section 2.1 are two such solutions. Both aim
to secure Docker containers through their whole life-
cycle by automatically generating AppArmor profiles
based on container runtime behavior profiling. The
main difference is that Docker-sec uses Auditd as the
tracing tool and generates capability rules and net-
work access rules, while LiCShield uses SystemTap
and generates rules other than the ones generated by
Docker-sec such as file access rules and mount rules.
However, both are command-line tools to be used lo-
cally and do not provide full dynamic profiling with
verification for the target application.

Other than solutions based on profiling, re-
searchers are exploring other ways to enhance con-
tainer security. One direction is to apply customized
LSM modules. Bacis et al. propose a solution that
binds SELinux policies with Docker container im-
ages by adding SELinux policy module to the Docker-
file. In this way, containerized processes are protected
by pre-defined SELinux policies (Bacis et al., 2015).
This approach requires the system administrator to
have good knowledge of the service running inside
the containers to define the most suitable SELinux
policy. Consequently, it is not an automatic pro-
cess according to the DevSecOps methodology. Sun
et al. (2018) propose the design of security names-
pace, which is a kernel abstraction that enables con-
tainers to utilize virtualization of the whole Linux ker-
nel security framework to achieve autonomous per-
container security control rather than relying on the
system administrator to enforce the security control
from the host. The experimental results show that se-
curity Namespaces can solve several container secu-
rity problems with an acceptable performance over-
head. An architecture called DIVE (Docker Integrity
Verification Engine) is proposed by De Benedictis and
Lioy (2019) to support integrity verification and re-
mote attestation of Docker containers. DIVE relies
on a modified version of IMA (Integrity Measure-
ment Architecture) (Sailer et al., 2004), and OpenAt-
testation, a well-known tool for attestation of cloud
services. DIVE can detect any specific compromised
container or hosting system and request to rebuild this
single container and report to the manager.

Another direction is to protect containers from
the kernel layer by providing a secure framework
or wrapper to run Docker containers. Charliecloud,
which is a security framework based on the Linux user
and mount namespaces, is proposed by Priedhorsky

and Randles (2017) to run industry-standard Docker
containers without privileged operations. Char-
liecloud can defend against most security risks such
as bypass of file and directory permissions and ch-
root escape. A secure wrapper called Socker is de-
scribed by Azab (2017) for running Docker containers
on Slurm and other similar queuing systems. Socker
bounds the resource usage of any container by the
number of resources assigned by Slurm to avoid re-
source hijacking. Furthermore, Socker enforces the
submitting user instead of the root user to execute on
containers to avoid privileged operations.

Besides proposing general security solutions for
containers, many pieces of research focus on propos-
ing container security countermeasure or algorithm
against a particular attack category, which includes
special investigations on some common attacks such
as DoS attacks (Chelladhurai et al., 2016), the appli-
cation level attacks (Hunger et al., 2018) and covert
channels attacks (Luo et al., 2016), as well as some
attacks with severe impacts such as container escape
attacks (Jian and Chen, 2017) and attacks from the un-
derlying compromised higher-privileged system soft-
ware such as the OS kernel and the hypervisor (Ar-
nautov et al., 2016). In the work of Chelladhurai et al.
(2016), a three-tier protection mechanism is applied
to defend against DoS attacks. The mechanism is de-
signed with memory limit assignment, memory reser-
vation assignment, and default memory value setting
to limit the container’s resource consumption. Re-
garding the application-level attacks, Hunger et al.
(2018) propose DATS, a system to run web container-
ized applications that require data-access heavy in
shared folders. The system enforces non-interference
across containers of data accessing and can mitigate
data-disclosure vulnerabilities. Covert channel at-
tacks against Docker containers are analyzed by Luo
et al. (2016). They identify different types of covert
channel attacks in Docker and propose solutions to
prevent them by configuring Docker security mech-
anisms. They also emphasize that deploying a full-
fledged SELinux or AppArmor security policy is es-
sential to protect containers’ security perimeters. Jian
and Chen (2017) make a thorough investigation of
Docker escape attacks and discover that a successful
escape would create different Namespaces. There-
fore, they propose a defense based on Namespaces
status inspection, and once a different Namespaces
tag is detected, the affiliated process is killed imme-
diately, and the malicious user is tracked. The test
results show that this defense can effectively prevent
some real-world attacks. SCONE is proposed by Ar-
nautov et al. (2016), which is a secure container en-
vironment for Docker utilizing Intel Software Guard

AppArmor Profile Generator as a Cloud Service

53

eXtension (SGX) (Hoekstra et al., 2013) for running
Linux applications in secure containers.

Some researches aim to provide secure connec-
tions for Docker containers. In the work of Kelbert
et al. (2017) and Ranjbar et al. (2017), both of them
propose solutions to build secure and persistent con-
nectivities between containers. The work of Secure
Cloud proposed by Kelbert et al. (2017) is realized
with the support of Intel’s SGX. While the SynAP-
TIC architecture from Ranjbar et al. (2017) is based
on the standard host identity protocol (HIP). Cilium 30

is open-source software for securing the network con-
nectivity between containerized application services.

9 CONCLUSION AND FUTURE
WORK

In this paper, we have proposed a secure cloud service
to generate runtime AppArmor profiles for Docker
containers. The cloud service is user-friendly and of-
floads the administrator of a container service the bur-
den of setting up a protection profile generation envi-
ronment. We evaluated the approach by running a set
of typical microservices on the cloud profile genera-
tor solution. We manually collected 11 most relevant
real-world exploits from Exploit-db, which target the
selected microservice’s software. Even if the num-
ber of exploits is not very large, it still gives us a
good view of our approach’s efficiency compared to
the strength of the default Docker profile. The results
show that the profile successfully defends 7 out of 11
exploits not covered by the default profile, a consider-
able improvement based on the evaluation set-up. By
analyzing the defending principles, we found that the
profile is more efficient against complicated exploits
that require many file manipulations. The results also
indicate that among all kinds of rules generated in the
profile, the file access rules play a much more signifi-
cant role in defending exploits than other rules.

It is left to future work to compare our profile gen-
erator cloud service with other commercial products
mentioned in Section 1 to get a comprehensive un-
derstanding of the proposed service’s strengths and
weaknesses.

ACKNOWLEDGEMENTS

Work supported by framework grant RIT17-0032
from the Swedish Foundation for Strategic Research

30https://github.com/cilium/cilium

as well as the EU H2020 project CloudiFacturing un-
der grant 768892.

REFERENCES

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A.,
Priebe, C., Lind, J., Muthukumaran, D., O’Keeffe, D.,
Stillwell, M. L., et al. (2016). {SCONE}: Secure
linux containers with intel {SGX}. In 12th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), pages 689–703.

Azab, A. (2017). Enabling docker containers for high-
performance and many-task computing. In 2017 ieee
international conference on cloud engineering (ic2e),
pages 279–285. IEEE.

Bacis, E., Mutti, S., Capelli, S., and Paraboschi, S. (2015).
Dockerpolicymodules: mandatory access control for
docker containers. In 2015 IEEE Conference on Com-
munications and Network Security (CNS), pages 749–
750. IEEE.

Casalicchio, E. and Iannucci, S. (2020). The state-of-the-art
in container technologies: Application, orchestration
and security. Concurrency and Computation: Practice
and Experience, page e5668.

Chelladhurai, J., Chelliah, P. R., and Kumar, S. A. (2016).
Securing docker containers from denial of service
(dos) attacks. In 2016 IEEE International Conference
on Services Computing (SCC), pages 856–859. IEEE.

Daniel, J. and El-Moussa, F. (2019). Software container
profiling. US Patent App. 16/300,169.

De Benedictis, M. and Lioy, A. (2019). Integrity verifi-
cation of docker containers for a lightweight cloud
environment. Future Generation Computer Systems,
97:236–246.

Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., and
Del Cuvillo, J. (2013). Using innovative instructions
to create trustworthy software solutions. HASP@
ISCA, 11(10.1145):2487726–2488370.

Hunger, C., Vilanova, L., Papamanthou, C., Etsion, Y., and
Tiwari, M. (2018). Dats-data containers for web appli-
cations. In Proceedings of the Twenty-Third Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
722–736.

Jian, Z. and Chen, L. (2017). A defense method against
docker escape attack. In Proceedings of the 2017
International Conference on Cryptography, Security
and Privacy, pages 142–146. ACM.

Kelbert, F., Gregor, F., Pires, R., Köpsell, S., Pasin, M.,
Havet, A., Schiavoni, V., Felber, P., Fetzer, C., and
Pietzuch, P. (2017). Securecloud: Secure big data pro-
cessing in untrusted clouds. In Design, Automation
& Test in Europe Conference & Exhibition (DATE),
2017, pages 282–285. IEEE.

Levin, L., Stopel, D., and Yanay, E. (2020a). Filesystem ac-
tion profiling of containers and security enforcement.
US Patent 10,664,590.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

54

Levin, L., Stopel, D., and Yanay, E. (2020b). Networking-
based profiling of containers and security enforce-
ment. US Patent 10,599,833.

Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., and Zhou, Q.
(2018). A measurement study on linux container secu-
rity: Attacks and countermeasures. In Proceedings of
the 34th Annual Computer Security Applications Con-
ference, pages 418–429. ACM.

Loukidis-Andreou, F., Giannakopoulos, I., Doka, K., and
Koziris, N. (2018). Docker-sec: A fully auto-
mated container security enhancement mechanism. In
2018 IEEE 38th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 1561–
1564. IEEE.

Luo, Y., Luo, W., Sun, X., Shen, Q., Ruan, A., and
Wu, Z. (2016). Whispers between the containers:
High-capacity covert channel attacks in docker. In
2016 IEEE Trustcom/BigDataSE/ISPA, pages 630–
637. IEEE.

Martin, A., Raponi, S., Combe, T., and Di Pietro, R. (2018).
Docker ecosystem–vulnerability analysis. Computer
Communications, 122:30–43.

Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A.,
Dolev, S., and Foschini, L. (2015). Securing the in-
frastructure and the workloads of linux containers. In
2015 IEEE Conference on Communications and Net-
work Security (CNS), pages 559–567. IEEE.

Myrbakken, H. and Colomo-Palacios, R. (2017). Devsec-
ops: a multivocal literature review. In International
Conference on Software Process Improvement and
Capability Determination, pages 17–29. Springer.

Pothula, D. R., Kumar, K. M., and Kumar, S. (2019).
Run time container security hardening using a pro-
posed model of security control map. In 2019 Global
Conference for Advancement in Technology (GCAT),
pages 1–6. IEEE.

Priedhorsky, R. and Randles, T. (2017). Charliecloud: Un-
privileged containers for user-defined software stacks
in hpc. In Proceedings of the International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, pages 1–10.

Ranjbar, A., Komu, M., Salmela, P., and Aura, T. (2017).
Synaptic: Secure and persistent connectivity for con-
tainers. In 2017 17th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 262–267. IEEE.

Sailer, R., Zhang, X., Jaeger, T., and Van Doorn, L. (2004).
Design and implementation of a tcg-based integrity
measurement architecture. In USENIX Security sym-
posium, volume 13, pages 223–238.

Sarkale, V. V., Rad, P., and Lee, W. (2017). Secure cloud
container: Runtime behavior monitoring using most
privileged container (mpc). In 2017 IEEE 4th Interna-
tional Conference on Cyber Security and Cloud Com-
puting (CSCloud), pages 351–356. IEEE.

Stopel, D., Levin, L., and Yankovich, L. (2020). Profiling
of container images and enforcing security policies re-
spective thereof. US Patent 10,586,042.

Sun, Y., Safford, D., Zohar, M., Pendarakis, D., Gu, Z., and
Jaeger, T. (2018). Security namespace: making linux

security frameworks available to containers. In 27th
{USENIX} Security Symposium ({USENIX} Security
18), pages 1423–1439.

Zhu, H. and Gehrmann, C. (2020). Lic-sec: an enhanced
apparmor docker security profile generator. preprint
on webpage at https://arxiv.org/abs/2009.11572.

AppArmor Profile Generator as a Cloud Service

55

