
Time and Processes: Towards Engineering Temporal Requirements

Johann Eder a, Marco Franceschetti b and Josef Lubas c

Department of Informatics-Systems, Universität Klagenfurt, Austria

Keywords: Requirements Engineering, Temporal Constraint, Controllability, Consistency, Process Model.

Abstract: Processes are ubiquitous for modeling dynamic phenomena in many areas like business, production, health
care, robotics etc. Many of these applications require to adequately deal with temporal aspects. Neverthe-
less, temporal aspects are not yet prominently treated in requirements engineering. Models for representing
requirements need to express temporal properties of the context resp. the environment, which have to be taken
into account for designing systems. And they need to express temporal conditions, which have to be satisfied
or which represent properties of goals that should be reached. Models, therefore, contain constructs for dura-
tions, temporal constraints like allowed time between events, and deadlines. Furthermore, these models need
a notion of correctness and we discuss different notions like satisfiability and controllability, and techniques,
which can be employed to check these properties of these models at design time.

1 INTRODUCTION

In the beginning there are requirements: every soft-
ware project starts with the elicitation, documenta-
tion and analysis of requirements (Van Lamsweerde,
2001; Macaulay, 2012; Laplante, 2017). As time is
an important property in most systems, requirements
for software systems frequently contain temporal as-
pects: from precedence relationships between activ-
ities or events to hard real-time thresholds between
the detection of events to effectiveness of a reaction.
Therefore, the representation and analysis of temporal
requirements ought to be an essential part of require-
ments models (Parent et al., 2006).

Temporal requirements can be descriptive. They
describe temporal properties of the environment, the
context, nature, which have to be taken into account
for constructing correct software. For an example,
Austrian law states that a customer may cancel any
online order within 2 weeks. Thus it is a time-related
requirement that order handling software has to ac-
cept cancellation requests in this time frame. Or Eu-
ropean regulation state that regular money transfer
within the European union may only last up to 4 days.
It is, therefore, a time-related requirement that any
system dealing with money transfers has to respect
this uncertainty, how long the transfer actually will

a https://orcid.org/0000-0001-6050-468X
b https://orcid.org/0000-0001-7030-282X
c https://orcid.org/0000-0002-2343-9863

take. On the other hand it can rely on the obligation
of the banking system to finish the transfer within 4
days.

Temporal requirements, on the other hand, can
be prescriptive stating temporal goals and objectives
for the design and implementation of a system which
should be reached. For an example, management re-
quests that a check for the creditworthiness of a po-
tential customer has to be provided within 2 hours.

Temporal requirements can be nonfunctional, for
an example, when an answer to a service request has
to be delivered within a certain time frame. There
are, however, also functional temporal requirements.
For an example, if the order has to be fulfilled within
2 days, an additional express fee is charged and the
payment is only possible by credit card. Nonfunc-
tional temporal requirements can evolve into func-
tional requirements, e.g. when reflection of the tem-
poral status is necessary (Pichler et al., 2009) or as a
consequence of the occurrence of temporal parame-
ters (Franceschetti and Eder, 2019).

How are temporal requirements represented in
typical models used for requirements engineering?
Basic temporal requirements in the sense of “be-
fore, after, concurrent with” are expressed in flow
models, activity charts, etc. More complex tempo-
ral requirements, like the one sketched above: either
in natural language, in some form of general con-
straint language, in temporal logic. For systems with
hard real-time requirements, different forms of repre-
sentation of temporal constraints in temporal logics

Eder, J., Franceschetti, M. and Lubas, J.
Time and Processes: Towards Engineering Temporal Requirements.
DOI: 10.5220/0010625400090016
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 9-16
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

9



of varying levels of expressiveness and complexity
are part of formal specification systems (Van Lam-
sweerde, 2001; Laplante, 2017). These languages
typically require expert’s training to use and compre-
hend. What seems to be missing is an easy-to-use and
easy-to-understand language for expressing temporal
constraints with popular notations for requirements,
which could foster the communication between re-
quirements engineers and stakeholders on one hand,
but nevertheless provide formal rigor for analyzing
temporal requirements on the other hand.

What are criteria for good requirements resp.
good representations of requirements. As elaborated
in (Young, 2004), among several other criteria, re-
quirements should be necessary, feasible and verifi-
able. (Young, 2004) also demands that requirements
are consistent, which means that a requirement is not
in conflict with other requirements.

This leads to the question of checking temporal
requirements. What are notions of correctness or
consistency of temporal requirements? How can we
check them, e.g., for contradictions, like we check
other requirements formally? There is surprisingly
little to be found apart from specialised approaches
for (hard) real-time systems (Koymans, 1990; Maler
et al., 2005) and general references to temporal logic
(Alur and Henzinger, 1994; Van Lamsweerde, 2001;
Laplante, 2017) and various forms of temporal au-
tomata these logics are mapped to (Wolper, 2000;
Zhou et al., 2016).

The purpose of this paper is to relate demands for
dealing with temporal requirements from the area of
requirements engineering with recent developments
of temporal constraint networks and recent advances
in representing and checking temporal constraints and
requirements of business processes. The aim is to
close the gap between requirements representation
supporting communication of requirements among
stakeholders and the formal treatment and analysis of
temporal requirements.

In particular, we present an extension of activity
charts with temporal constraints to express a wide
range of temporal requirements. We argue that ac-
tivity charts extended with controllable and uncon-
trollable duration constraints, upper-bound and lower-
bound constraints between events, are a proper way
to express temporal requirements such that require-
ment models are both easily understandable but nev-
ertheless formally grounded. For this approach we
adopt approaches developed for workflows and busi-
ness processes (Eder et al., 2013; Cheikhrouhou et al.,
2015; Wondoh et al., 2017; Eder and Franceschetti,
2020) and adjust them for the particularities of activ-
ity charts and requirements engineering.

For these requirement models we discuss different
notions of correctness or consistency and their prop-
erties. Finally, we indicate ways to check temporal
requirement models for correctness, relating to rather
recently developed extensions of simple temporal net-
works (Combi et al., 2019; Zavatteri and Viganò,
2019) and efficient algorithms for checking their dy-
namic or conditional controllability based on con-
straint propagation or schedule computation (Huns-
berger and Posenato, 2020; Eder et al., 2020; Cairo
and Rizzi, 2019; Eder et al., 2019; Cimatti et al.,
2016). Without having the space for going into de-
tails, we give an overview which type formal tempo-
ral constraint network supports which types of tem-
poral control structures and which types of temporal
requirements.

2 ACTIVITY DIAGRAMS WITH
TEMPORAL CONSTRAINTS

Activity diagrams are a widespread technique for rep-
resenting requirements for software systems (Gross
and Doerr, 2009). They show basic (and implicit)
temporal relationships between actions, expressed in
form of a control flow and depicted by a solid arrow
pointing from action A to action B, meaning that B is
executed some time after A. We extend activity charts
with explicit temporal constraints such as action dura-
tions and minimum resp. maximum time frames be-
tween actions.

Temporal constraints (Eder et al., 2013) define
minimum (lower-bound constraints) or maximum
(upper-bound constraints) time spans between two
events. For an example, a lower-bound constraint
is the requirement that a patient tested positive on
COVID-19 has to stay at least 10 days in quarantine.
An example for an upper-bound constraint may state
that the same patient has corona antibodies for at most
6 month after the infection.

An upper-bound constraint (UBC) is depicted as
dotted line labeled with some value x and pointing
from action B to action A, formally giving the inequal-
ity B ≤ A+ x. A lower-bound constraint (LBC), is
also depicted by a dotted line, but points from A to B,
formally giving the inequality B≥ A+ x.

Duration constraints specify the minimum and
maximum duration of an action. Or in other words,
a duration describes the minimum and the maximum
time span between the start and the end of an action.

We therefore extend also the concept of actions
in activity diagrams with an explicit start resp. end
event. Graphically we associate an actions left outer
border with its start event and the right outer border

ICSOFT 2021 - 16th International Conference on Software Technologies

10



with its end event. A LBC with value x pointing from
the right outer border of action A to the left outer bor-
der of action B, therefore means that B starts at least
x time units after A has ended.

The duration of an action can either be contingent
or non-contingent. Non-contingent durations allow
to chose any value between minimum and maximum.
Contingent durations, however, can only be observed
and not controlled. This means contingent durations
represent uncertainties of the actual duration. For an
example, the duration of a regular bank transfer in the
European Union lasts between 1 and 4 days, and nei-
ther the sender nor the receiver can influence when the
transfer will be finished within these 4 days. For these
descriptive constraints, it is necessary that a complete
elicitation is carried out before the modeling phase of
a system, since a controller needs to ensure that it is
within their capabilities to react to the observation of
such properties of the environment/context.

Temporal constraints model temporal properties
about the environment which can be measured, or
temporal requirements which a controller needs to ac-
tively fulfill, e.g., during system operation. We call
the first type of constraints descriptive, since they pro-
vide a description of the properties of the environment
or a system. We call the second type of constraints
prescriptive, since they require the controller to oper-
ate in a way that obeys these constraints.

Figure 1 shows an example of an activity dia-
gram including temporal information. The example
describes a simplified and generic delivery service.
The activity starts when an order is received. The first
step is the processing of the order information (A1)
which is modeled as a non-contingent action, lasting
between 1 and 2 minutes. After that, the agent per-
forming the activity, decides whether all information
is complete or not (C1). If there is something missing,
the customer has to be contacted and then, the pro-
cessing of the order information has to be completed
(A2 and A3). However, there is an upper-bound con-
straint requiring that the completion has to be done
at most 5 minutes after the initial processing of the
order information has started. The next two actions
A4 “Prepare Order” and A5 “Create Receipt” are per-
formed in parallel. “Prepare Order” is modelled as a
contingent action, which means that the actual dura-
tion cannot be controlled by the agent, and “Create
Receipt” is another non-contingent action lasting for
1 to 2 minutes. In addition, there is a lower-bound
constraint stating that the next action (A6) “Deliver to
Customer” finishes at least 15 minutes after the order
has been prepared. The action “Deliver to Customer”
is, itself, again modelled as contingent action, and
completes the whole activity. Because of the activity

deadline (visualized as dotted line from start action to
end action), the completion of the whole activity has
to take at maximum 30 minutes.

3 TEMPORAL ACTIVITY
MODEL

3.1 Formalizing Activity Diagrams with
Temporal Constraints

For most general applicability, here we introduce a
minimal model for designing temporal activity dia-
grams, which is sufficient to capture the various tem-
poral information such as duration types and temporal
constraints.

We consider the most common control-flow pat-
terns: sequence, decisions, splits, and the correspond-
ing joins. We consider action durations, activity dead-
line, and upper- and lower-bound constraints between
actions (start and end of actions). We measure time
in chronons, representing, e.g., hours, days, ..., en-
coded as natural numbers forming a time axis starting
at zero. A duration is defined as the distance between
two time-points on the time axis.

We distinguish between non-contingent and con-
tingent actions. The duration of contingent actions
cannot be controlled; thus, it cannot be known when
they will actually terminate. The activity controller
may, however, control the duration of non-contingent
action at any time.

Definition 1 (Temporal Activity Model). An activity
A is a tuple (N,E,C,Ω), where:

• N is a set of nodes n with n.type ∈
{start,action,decision,split, join,end}. Each
n ∈ N is associated with n.s and n.e, the
start and end event of n. From N we derive
Ne =

⋃
{n.s,n.e|n ∈ N}.

• E is a set of edges e = (n1,n2) defining prece-
dence constraints.

• C is a set of temporal constraints:
– duration constraints d(n,nmin,nmax,dur) ∀n ∈

N, where nmin,nmax ∈ N, dur ∈ {c,nc}, stating
that n takes some time in [nmin,nmax]. n can be
contingent (dur = c) or non-contingent (dur =
nc);

– upper-bound constraints ubc(a,b,δ), where
a,b ∈ Ne, δ ∈ N, requiring that b≤ a+δ;

– lower-bound constraints lbc(a,b,δ), where
a,b ∈ Ne, δ ∈ N, requiring that b≥ a+δ.

• Ω ∈ N is the maximum activity duration.

Time and Processes: Towards Engineering Temporal Requirements

11



A1: Process Order
Information [1,2]

A5: Create Receipt
[1,2]

A4: Prepare Order
[3,5] contingent

A6: Deliver to Customer

[1,6] contingent

A2: Contact Customer
[1,2]

A3: Complete Order
Processing [1,2]

C1jC1: Information complete?S: Receive Order

yes

no

Ω 30

LBC 15

P1 P1j

E

UBC 5

Figure 1: Example of an activity diagram including temporal information.

3.2 Example Temporal Activity Model

Given the example described in section 2.1, we use
our model to formally describe the temporal require-
ments:

• N = {(S,start), (A1,action), (A2,action),
(A3,action), (A4,action), (A5,action),
(A6,action), (C1,decision), (C1 j, join),
(P1,split), (P1 j, join), (E,end)}

• E = {(S,A1), (A1,C1), (C1,A2), (C1,C1 j),
(A2,A3), (A3,C1 j), (C1 j,P1), (P1,A4),
(P1,A5), (A4,P1 j), (A5,P1 j), (P1 j,A6),
(A6,E)}

• C = {d(A1,1,2,nc), d(A2,1,2,nc),
d(A3,1,2,nc), d(A4,3,5,c), d(A5,1,2,nc),
d(A6,1,6,c), lbc(A4.e,A6.e,15),
ubc(A3.e,A1.s,5)}

• Ω = 30

It is easy to see that the formal model above cap-
tures the essence of the activity diagram. While the
activity diagram is much easier to communicate and
comprehend, the formal model is the basis for defin-
ing the temporal semantics of the model formally and
to check the consistency, or correctness of a model
automatically.

3.3 Semantics of Temporal Activity
Models

We define the temporal semantics of temporal activity
models by defining which scenarios are valid. A sce-
nario is an assignment of values to the events of the
activity model (starting and ending of actions), spec-
ifying when they occur. A scenario is valid, iff it sat-
isfies all temporal constraints.

Definition 2 (Valid Scenario). Let A(N,E,C,Ω) be
a temporal activity model. Let σ be a scenario for

A, assigning to each event e a value e. σ is a valid
scenario for P iff:

1. ∀(n1,n2) ∈ E, n1.e≤ n2.s;

2. ∀d(n,nmin,nmax, [c|nc]) ∈ C, n.s + nmin ≤ n.e ≤
n.s+nmax;

3. ∀ubc(a,b,δ) ∈C, b≤ a+δ;

4. ∀lbc(a,b,δ) ∈C, a+δ≤ b;

5. end.e≤ start.s+Ω.

It is easy to see that the scenario for the process
in Figure 1 given by: S.s = S.e = A1.s = 0, A1.e =
C1.s=C1.e=C1 j.s=C1 j.e=P1.s=A4.s=A5.s=
1, A5.e = 2, A4.e = 5, P1 j.s = P1 j.e = A6.s = 13,
A6.e = E.s = E.e = 19 is valid.

A valid scenario represents an assignment of val-
ues to events, which does not violate any temporal
requirements. In the next section we discuss various
notions for defining the avoidance of such violations.

4 CORRECTNESS OF
TEMPORAL REQUIREMENTS

4.1 Notions of Temporal Correctness

Engineering temporal requirements is not limited to
modeling temporal constraints. Indeed, a designer
must verify whether a set of temporal requirements
does not yield any contradictions, which would result
in the impossibility to fulfill all temporal constraints,
i.e. to temporal violations. So it is also part of the
requirements engineering the task of defining when a
set of temporal requirements yields no contradictions.
Absence of contradictions is also known as temporal
correctness, and various definitions for it have been
proposed. We list here the most frequently adopted
notions, giving examples for each of them.

ICSOFT 2021 - 16th International Conference on Software Technologies

12



• Satisfiability, also called consistency: it is the
most relaxed notion for temporal correctness. It
requires the existence of at least one valid scenario
satisfying all temporal constraints. However, it
admits the existence of other scenarios which are
not valid, i.e. for which some temporal constraint
is violated.
Example: the requirement “payment should be
completed within 2 days” for a money transfer
within the European Union is satisfiable, since it
is possible that the bank completes the transfer in
2 days; however, it is also possible that the trans-
fer is completed in 3 or 4 days.
The above example shows that a violation may
occur, due to neglecting the uncertainty from the
contingent duration of the money transfer. Indeed,
the limitation of satisfiability is that it does not
consider the possibility of uncontrollable (contin-
gent) durations, and assignments of conditions.
For this reason, satisfiability is regarded as a weak
notion for temporal correctness.

• Strong Controllability: often a system may re-
quire a scenario to be valid for all possible con-
tingencies and observed conditions, with the ad-
ditional requirement that the assignments of val-
ues to events for such a scenario are independent
of contingencies and observed conditions. If it is
possible to find such a valid scenario, then the sys-
tem is called strong controllable.
Example: the operations for a robot in a produc-
tion plan may need to be strictly scheduled in their
times of execution.
A scenario complying with strong controllability
may be, however, too restrictive and not always
be desirable, since it yields for all possible con-
tingent durations and observed conditions.

• Conditional controllability: it relaxes the require-
ment for a fixed scenario independent of contin-
gent durations and conditions. It requires the ex-
istence of a valid scenario for each possible val-
ues of observed conditions. Hence, conditional
controllability allows for less restrictive scenarios
than strong controllability.
Example: assembling a machine components
must start no later than 2 days after receiving
them. However, shipping may be done with high
priority, taking 1 day, or with low priority, tak-
ing 4 days; in both cases shipping starts on the
same day. The time for starting assembly cannot
be fixed independent of the shipping mode, other-
wise the constraint of starting within 2 days may
be violated.
Conditional controllability is less restrictive than

strong controllability. However, it may still re-
sult in too restrictive scheduling of events, or con-
straint violations, since it does not consider con-
tingent durations.

• Dynamic controllability: it requires the existence
of a scenario in which the values assigned to the
controllable time points may be based on smaller
assigned values, and that such a scenario is valid
for all possible contingent durations and observed
conditions.
Example: a Nucleic Acid Amplification Test
(NAAT) for SARS-CoV-2 may take from 1 hour
up to 24 hours to complete. Sending a SMS with
the NAAT result must be done at most 2 hours
after test completion. Clearly, the time for send-
ing the SMS cannot be fixed before the NAAT is
completed, and it depends on the NAAT time of
completion.

Each of these temporal correctness notions may
be the most adequate in a given context. So speci-
fying the required temporal correctness notion is part
of the requirements specification for a system. Next,
comes to problem of verifying whether such a require-
ment can be met, i.e. whether a corresponding valid
scenario can be achieved.

4.2 Checking Temporal Correctness

Major contributions to verifying temporal correct-
ness at system design time can be found in the ar-
eas of temporal logic (Alur and Henzinger, 1994;
Lamport, 1983) and Temporal Constraint Networks
(TCNs) (Dechter et al., 1991; Hunsberger, 2009).

Temporal logic focuses in particular on the tempo-
ral dependency relations such as before, during, and
after between events. TCNs, on the other hand, fo-
cus on the measured time distances between events
according to some time unit, which allows designers
a quantitative reasoning over temporal properties.

In essence, a TCN is a graph with nodes repre-
senting time points, and edges representing binary
constraints between time points in form of inequal-
ities. Reasoning approaches for checking temporal
correctness of TCNs are based on constraint propa-
gation, i.e. deriving implicit edges from the existing
ones, according to some rules. Deriving a negative cy-
cle (in the usual sense for graphs) through constraint
propagation signals the existence of a contradiction
between temporal constraints. On the other hand, if
constraint propagation for a TCN derives no negative
cycle, then the TCN yields no contradictions.

A broad number of TCN types have been pro-
posed and investigated, each offering a different level

Time and Processes: Towards Engineering Temporal Requirements

13



Table 1: Expressiveness comparison of various TCN types.

STN STNU CSTN CSTNU CSTNUD
non-contingent durations + + + + +
contingent durations + + +
parallel execution + + + + +
conditional alternative + + +
decisional alternative +
upper-bound constraints + + + + +
lower-bound constraints + + + + +

of expressiveness to meet different modeling require-
ments, and to support checking for different tempo-
ral correctness notions. We list here the major TCN
types:
• The Simple Temporal Network (STN) (Dechter

et al., 1991) is the simplest TCN type. In a STN all
time points can be assigned a value, and there are
no contingent durations or conditions. Thus, the
STN supports performing satisfiability checks.

• The STN with Uncertainty (STNU) (Vidal and
Fargier, 1997) increases the expressiveness of the
STN with the possibility to represent contingent
durations. The STNU supports checking for con-
trollabilities.

• The Conditional STN (CSTN) (Tsamardinos
et al., 2003) increases the expressiveness of the
STN with the possibility to represent observed
conditions. Thus, it supports checking for various
types of controllabilities.

• The Conditional STN with Uncertainty (CSTNU)
(Hunsberger et al., 2012) combines the CSTN
with the CSTNU, allowing for the representation
of both observed conditions and contingent dura-
tions. Like the CSTN and STNU, the CSTNU
supports controllabilities checking procedures.

• The Conditional STN with Uncertainty and De-
cisions (CSTNUD) (Zavatteri and Viganò, 2019)
augments the capabilities of the CSTNU by dif-
ferentiating between observed conditionals and
decisions which may be taken by a controller.
Controllability checks for the CSTNUD are sup-
ported.

Table 1 summarizes the expressiveness of the ma-
jor TCN types, indicating the support of each TCN
type for representing different temporal constraint and
duration types, and various control flow patterns.

Further research produced both additional TCN
types and extended process model with mappings to
TCNs, each catering for specific temporal require-
ments. Some examples of such extensions are:
• STNPSU (Lanz et al., 2015) to express partially

shrinkable uncertainty

• STNU with resources (Combi et al., 2019)

• STNU with temporal parameters (Franceschetti
and Eder, 2019)

• Activity models with temporal conditions for con-
trol structures (Pichler et al., 2017)

• Access controlled temporal networks ACTN
(Combi et al., 2017; Zavatteri et al., 2020)

• STNU with semi-contingent durations, i.e. dura-
tion can be controlled but only until an activity
starts (Franceschetti and Eder, 2021).

All these extensions to temporal constraint net-
works allow the extension of the modeling constructs
for extended activity diagrams without loosing the
possibility of checking the correctness of requirement
models.

For the example from Figure 1, an adequate
TCN for representing its temporal requirements is
the CSTNU, since it models contingent and non-
contingent durations, observed conditions, and upper-
and lower-bound constraints.

How can TCNs technically support checking tem-
poral correctness for a temporal activity model? Sev-
eral approaches make use of TCNs for checking tem-
poral correctness of process definitions, e.g., (Combi
and Posenato, 2009; Eder et al., 2019; Franceschetti
and Eder, 2019). These approaches are based on map-
ping rules which project the temporal requirements of
a process definition into a TCN. Basically, the rules
map each process event (start and end of tasks) into
a corresponding TCN node, and each temporal re-
quirement (durations, constraints) into a correspond-
ing TCN edge. Analogous mapping strategies can be
defined for mapping the temporal requirements of a
temporal activity model into a TCN.

The resulting TCN subsumes the same set of sce-
narios subsumed by the temporal requirements of the
original process definition, i.e. they are temporally
equivalent. Thus, checking temporal correctness for
such a TCN realizes a check for temporal correctness
for the original process definition or activity model.

The algorithms for checking dynamic controlla-
bility have quite different complexity for the different

ICSOFT 2021 - 16th International Conference on Software Technologies

14



types of TCNs. Therefore, general checking proce-
dures first analyze which concepts are used in a model
and then apply the appropriate checking algorithm.

Details of the different temporal constraint net-
works, the mapping of activity diagrams to the net-
works and the algorithms for checking dynamic con-
trollability of the networks and thus checking the cor-
rectness and consistency of the temporal requirements
are beyond the scope of this paper. We are only able
to give an overview about the different temporal con-
straint networks and which type of network supports
which type of control structures and temporal require-
ments together with pointers to the literature where
each of these networks and the algorithms are de-
scribed in detail.

5 CONCLUSIONS

Temporal constraints, goals and request are important
aspects in requirements engineering. Time-related
requirements have to be adequately elicitated, col-
lected, documented and represented in requirements
models and analyzed for correctness, consistency and
feasibility. We propose extensions of well-known
modeling techniques like UML activity charts with
rather intuitive concepts for expressing temporal re-
quirements. Recent advances in temporal constraint
networks allow mapping these models into different
kinds of temporal constraint networks, depending on
the features used in the requirements model. These
formal representations can apply recently developed
algorithms for checking correctness, consistency and
feasibility of temporal requirements.

We argue that this approach helps to close the gap
between popular modeling notations, which allow ex-
pressing only very basic temporal relationships and
the elaborated systems of temporal logic and temporal
automata for formally specifying temporal require-
ments which are often shunned by practitioners be-
cause of their formal challenges. Easily understand-
able and usable notions and their representation of
temporal requirements without losing the power and
rigor of reliable formal analysis of the properties of
requirements models is the goal of this research.

Here we only discussed core concepts of such ex-
tensions, but several other more advanced concepts
like temporal variables and parameters, temporal con-
ditions in control structures are available to further in-
crease the expressiveness of requirements models.

The integration of systems for representing re-
quirements with notions for representing temporal
constraints together with their formal apparatus will
open promising ways for managing temporal require-

ments and support improvements in addressing tem-
poral requirements throughout the software life cycle.

REFERENCES

Alur, R. and Henzinger, T. A. (1994). A really temporal
logic. Journal of the ACM (JACM), 41(1):181–203.

Cairo, M. and Rizzi, R. (2019). Dynamic controllability
of simple temporal networks with uncertainty: Sim-
ple rules and fast real-time execution. Theor. Comput.
Sci., 797:2–16.

Cheikhrouhou, S., Kallel, S., Guermouche, N., and Jmaiel,
M. (2015). The temporal perspective in business pro-
cess modeling: a survey and research challenges. Ser-
vice Oriented Computing and Applications, 9(1):75–
85.

Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., and
Roveri, M. (2016). Dynamic controllability via timed
game automata. Acta Informatica, 53(6-8):681–722.

Combi, C. and Posenato, R. (2009). Controllability in tem-
poral conceptual workflow schemata. In International
Conference on Business Process Management, pages
64–79. Springer.

Combi, C., Posenato, R., Viganò, L., and Zavatteri, M.
(2017). Access controlled temporal networks. In In-
ternational Conference on Agents and Artificial Intel-
ligence, volume 2, pages 118–131. SciTePress.

Combi, C., Posenato, R., Viganò, L., and Zavatteri, M.
(2019). Conditional simple temporal networks with
uncertainty and resources. J. Artif. Intell. Res.,
64:931–985.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal con-
straint networks. Artificial intelligence, 49(1-3):61–
95.

Eder, J. and Franceschetti, M. (2020). Time and Busi-
ness Process Management: Problems, Achievements,
Challenges . In Muñoz-Velasco, E., Ozaki, A., and
Theobald, M., editors, 27th International Symposium
on Temporal Representation and Reasoning (TIME
2020), volume 178 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 3:1–3:8, Dagstuhl,
Germany. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik.

Eder, J., Franceschetti, M., and Köpke, J. (2019). Control-
lability of business processes with temporal variables.
In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, pages 40–47.

Eder, J., Franceschetti, M., and Lubas, J. (2020). Con-
ditional schedules for processes with temporal con-
straints. SN Computer Science, 1(4):1–18.

Eder, J., Panagos, E., and Rabinovich, M. (2013). Workflow
time management revisited. In Seminal contributions
to information systems engineering, pages 207–213.
Springer.

Franceschetti, M. and Eder, J. (2019). Checking temporal
service level agreements for web service compositions
with temporal parameters. In 2019 IEEE International

Time and Processes: Towards Engineering Temporal Requirements

15



Conference on Web Services (ICWS), pages 443–445.
IEEE.

Franceschetti, M. and Eder, J. (2021). Semi-contingent task
durations: Characterization and controllability. In Ad-
vanced Information Systems Engineering, 33rd Inter-
national Conference, CAiSE 2021, Melbourne, Aus-
tralia, 2021. In print.

Gross, A. and Doerr, J. (2009). Epc vs. uml activity dia-
gram - two experiments examining their usefulness for
requirements engineering. In 2009 17th IEEE Interna-
tional Requirements Engineering Conference, pages
47–56.

Hunsberger, L. (2009). Fixing the semantics for dynamic
controllability and providing a more practical charac-
terization of dynamic execution strategies. In 2009
16th International Symposium on Temporal Represen-
tation and Reasoning, pages 155–162. IEEE.

Hunsberger, L. and Posenato, R. (2020). Faster dynamic-
consistency checking for conditional simple temporal
networks. In Beck, J. C., Buffet, O., Hoffmann, J.,
Karpas, E., and Sohrabi, S., editors, Proceedings of
the Thirtieth International Conference on Automated
Planning and Scheduling, Nancy, France, October 26-
30, 2020, pages 152–160. AAAI Press.

Hunsberger, L., Posenato, R., and Combi, C. (2012). The
dynamic controllability of conditional stns with uncer-
tainty. arXiv preprint arXiv:1212.2005.

Koymans, R. (1990). Specifying real-time properties with
metric temporal logic. Real-time systems, 2(4):255–
299.

Lamport, L. (1983). What good is temporal logic? In IFIP
congress, volume 83, pages 657–668.

Lanz, A., Posenato, R., Combi, C., and Reichert, M. (2015).
Simple temporal networks with partially shrinkable
uncertainty. In International Conference on Agents
and Artificial Intelligence, volume 2, pages 370–381.
SCITEPRESS.

Laplante, P. A. (2017). Requirements engineering for soft-
ware and systems. CRC Press.

Macaulay, L. A. (2012). Requirements engineering.
Springer Science & Business Media.

Maler, O., Nickovic, D., and Pnueli, A. (2005). Real time
temporal logic: Past, present, future. In Interna-
tional Conference on Formal Modeling and Analysis
of Timed Systems, pages 2–16. Springer.

Parent, C., Spaccapietra, S., and Zimányi, E. (2006). Con-
ceptual modeling for traditional and spatio-temporal
applications: The MADS approach. Springer Science
& Business Media.

Pichler, H., Eder, J., and Ciglic, M. (2017). Modelling
processes with time-dependent control structures. In
International Conference on Conceptual Modeling,
pages 50–58. Springer.

Pichler, H., Wenger, M., and Eder, J. (2009). Composing
time-aware web service orchestrations. In Advanced
Information Systems Engineering, 21st International
Conference, CAiSE 2009, Amsterdam, The Nether-
lands, June 8-12, 2009. Proceedings, pages 349–363.

Tsamardinos, I., Vidal, T., and Pollack, M. E. (2003). Ctp:

A new constraint-based formalism for conditional,
temporal planning. Constraints, 8(4):365–388.

Van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: A guided tour. In Proceedings fifth IEEE
international symposium on requirements engineer-
ing, pages 249–262. IEEE.

Vidal, T. and Fargier, H. (1997). Contingent durations
in temporal csps: from consistency to controllabili-
ties. In Proceedings of TIME’97: 4th International
Workshop on Temporal Representation and Reason-
ing, pages 78–85. IEEE.

Wolper, P. (2000). Constructing automata from tempo-
ral logic formulas: A tutorial. In School organized
by the European Educational Forum, pages 261–277.
Springer.

Wondoh, J., Grossmann, G., and Stumptner, M. (2017).
Dynamic temporal constraints in business processes.
In Proceedings of the Australasian Computer Science
Week Multiconference, pages 1–10.

Young, R. R. (2004). The requirements engineering hand-
book. Artech House.

Zavatteri, M., Combi, C., Rizzi, R., and Viganò, L. (2020).
Consistency checking of stns with decisions: Manag-
ing temporal and access-control constraints in a seam-
less way. Information and Computation, page 104637.

Zavatteri, M. and Viganò, L. (2019). Conditional sim-
ple temporal networks with uncertainty and decisions.
Theor. Comput. Sci., 797:77–101.

Zavatteri, M. and Viganò, L. (2019). Conditional sim-
ple temporal networks with uncertainty and decisions.
Theoretical Computer Science, 797:77–101.

Zhou, Y., Maity, D., and Baras, J. S. (2016). Timed au-
tomata approach for motion planning using metric in-
terval temporal logic. In 2016 European Control Con-
ference (ECC), pages 690–695. IEEE.

ICSOFT 2021 - 16th International Conference on Software Technologies

16


