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Abstract: This study aims to validate a construction methodology of a device able to estimate the cognitive state of an 
operator in real time.  
The SUaaVE project (SUpporting acceptance of automated VEhicle) studies the integration of an intelligent 
assistant in a level 4 autonomous car. The aim of our work is to model the cognitive state of the driver in real 
time and for all situations. The cognitive state is a natural state that alters or preserves the operator's ability to 
process information and to act. 
Based on a literature review we identified the cognitive functions used by the driver and the factors influencing 
them. Different cognitive components emerged from this synthesis: engagement (Witmer & Singer, 1998), 
fatigue (Marcora and al. 2009) and vigilance (Picot, 2009).  
Eye-tracking is a technique used to determine the orientation of the gaze in a visual scene. According to the 
literature the general dynamics of a visual behavior is characterized by metrics: number of fixations, duration 
of fixation, gaze dispersion... These dynamics are altered unconsciously due to fatigue (Faber, Maurits, & 
Lorist, 2012) or hypovigilance (De Gennaro et al., 2000, Bodala et al., 2016); and consciously due to 
engagement in driving (Freydier et al., 2014; Neboit, 1982).  
We carry out a phase of experimentation in a naturalistic situation (driving simulator) in order to collect data 
for each cognitive state. Realistic scenarios are constructed to induce cognitive states. The model’s estimation 
is compared to the real cognitive state of the driver measured by behavioral monitoring (eye-tracking).  
The model is a CARt (Breiman & Ihaka, 1984) decision tree: Classification And Regression Trees. The CARt 
aims at building a predictor. The interest is to facilitate the design of the tool as well as its future 
implementation in real time. We illustrate the construction methodology with an example the results obtained. 

1 RESEARCH PROBLEM 

The SUaaVE project studies the integration of an 
intelligent assistant in a level 4 autonomous car. This 
assistant will provide a set of services to enhance the 
user experience in the vehicle, based on of an 
assessment of the driver state. In this context, the aim 
of our work is to model the cognitive state of the 
driver in real time and for all situations.  

2 OUTLINE OF OBJECTIVES 

This study aims to validate a device (ALFRED) able 
to estimate the cognitive state of an operator.  

The cognitive model we propose informs 
ALFRED of the operator's state in real time. The 
cognitive state is a natural state that alters or preserves 
the operator's ability to process information and to 
act. In real time and in a car cockpit, cognitive states 
are difficult to observe. Their measurement/detection 
is done in a dynamic, uncontrolled environment 
(changing luminosity) which is limiting the use of 
certain sensors. These constraints lead us to choose a 
specific sensor and tolerant to the effect of the 
environment: occulometry sensor.  

The cognitive model we propose is based on 
different dimensions: engagement (interest for the 
road situation, Witmer & Singer, 1998), 
hypovigilance (Picot, 2009), fatigue (Marcora et al., 
2009). Each dimension is discriminated by specific 
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ocular behaviors, measurable with an eye-tracker 
(fixations and saccades). 

Each behavior must be coded and integrated into 
the ALFRED cognitive module. To do so, it is 
necessary to validate the instrumental efficiency of 
the eye-tracking data processing for each of the 3 
selected dimensions. The results will allow the 
selection of the most interesting dimension(s) and 
will guide the development of a real time data 
processing solution.  

3 BACKGROUND 

3.1 Definition 

A cognitive state is a psycho-physiological state that 
alters or not the cognitive capacities of the operator. 
A cognitive state is composed of a set of cognitive 
dimensions: cognitive load, physical fatigue, 
expertise in the task, attention, etc. Each cognitive 
dimension has its own characteristics:  
- Role: alert, maintenance, information collection.  
- Mechanisms: different levels or phases 

throughout the day/week/month; regulation by 
positive or negative feedback, by reaction. 

- Effects on the operator's cognitive capacities: 
induced failures, maintained capacities. 
In addition, the cognitive dimensions have 

interactions between them. There are as many 
cognitive states as there are possible crossings 
between the different levels of the cognitive 
dimensions. 

3.2 Constraints 

All sensors are not necessarily operational in our 
context. Indeed, we are confronted with several 
constraints :   
- Tolerance to "noise": ability of an instrument to 

provide a measurement resistant to undesirable 
parameters (lighting variations...)   

- Portability: ability to be easily transported  
- Acceptability: degree of user's acceptance to wear 

or use the measurement device.  
- Ease of implementation: cost, complexity of 

implementation. 
According to the constraints, the sensor must be 

portable, non-intrusive and noise tolerant. The 
measurements of the dimensions are behavioral. 
These measurements must have a sufficient level of 
acceptability (non-intrusive) and noise tolerance. The 
operator must not be interrupted.  

All these constraints have reduced the field of 
possibilities. The following cognitive dimensions 
satisfy these constraints.  

3.3 Cognitive Dimensions 

Three cognitive states were identified in a literature 
review:  

Engagement in the driving task is a psychological 
state. It is the consequence of focusing our energy and 
attention on a coherent set of stimuli and related 
events (Witmer & Singer, 1998). 

Hypovigilance corresponds to the transition 
between alertness and sleep during which the 
organism's observation and analysis faculties are 
reduced (Picot, 2009): decreased attention, increased 
information processing and decision making time, 
etc.  

Cognitive fatigue is a psychological condition 
caused by prolonged periods of demanding cognitive 
activity (Marcora et al., 2009). Cognitive fatigue 
decreases the individual's ability to perform a task by 
altering states of alertness and focused attention 
(Thiffault & Bergeron, 2003). 

3.4 Ocular Behavior 

Eye-tracking trajectories are composed of fixations 
and saccades. When a human being focuses on a point 
of interest, the gaze moves around this area (see 
Figure 1). The eyes are always moving in our visual 
environ-ment in order to allow an active vision of the 
reality around us. This is why a fixation, when we 
analyze an element, never has a single position of the 
gaze.  

Between two fixations, we make quick 
movements called saccades. They allow us to position 
our gaze on the object of interest.  

 
Figure 1: Representations of gaze positions according to the 
type of ocular event. 

3.5 Eye-tracking 

 Interest of eye-tracking 
Eye-tracking is a technique used to determine the 
orientation of the gaze in a visual scene. According to 
the literature the general dynamics of a visual 
behavior is characterized by the following metrics: 
number of fixations, duration of fixation, gaze 
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dispersion, distance between two saccades, saccade 
speed, saccade amplitude, and eye deflection angle. 
These dynamics are altered unconsciously due to 
fatigue (Faber, Maurits, & Lorist, 2012) or 
hypovigilance (De Gennaro et al., 2000, Bodala et al., 
2016); and consciously due to engagement in driving 
(Freydier et al., 2014; Neboit, 1982). 

 Area of Interest (AOI) 
Eye-tracking allows us to identify the elements and 
areas that the driver looks at. The areas of interest 
(AOI) represent the regular fixation points of a driver 
(Neboit, 1982 and Freydier, 2014) (Cf Figure 2): 
- Interior and exterior mirrors - 3 AOI: "Left 

mirror", "Right mirror", "Center mirror" ; 
- Vehicle Controls - 2 AOI: "GPS", "Steering 

Wheel" ; 
- Speedometer - 1AOI: "Speedometer". 

The fixations in the far forward area represent an 
attention disengagement fixation area: 1 AOI - 
"Horizon. 

 
Figure 2: Spatial representation of the areas of interest on 
the reference image of the participants' full visual field. 

The cockpit areas do not change location despite 
the movement of the vehicle. Their static position 
allows for automated image processing to identify the 
position of the gaze throughout the experiment. This 
automated processing requires a reference image (see 
Figure 2) where all the areas of interest are indicated. 

4 METHODOLOGY 

The instrumental validation regarding the detection of 
the cognitive state is based on induction and 
observation: induction of the operator's cognitive 
state by the experimental conditions, observation of 
the ocular behavior. The study of the cognitive model 
is based on different realistic scenarios constructed to 
induce cognitive states which will be detailed. 

The induction was operationalized on the basis of 
3 test scenarios of driving an autonomous vehicle in 

a simulator, one scenario per induced cognitive 
dimension: engagement, hypovigilance, fatigue. This 
induction is based on the information provided by the 
literature and the adapted environment.  

The data associated with the cognitive states are 
collected during experimental tests in simulation with 
the objective of collecting oculometric data. The 
objective is to associate each cognitive state of 
interest with a typical visual behavior detectable by 
the oculometric data.  

4.1 Participants 

40 participants were recruited. Thirty-three 
participants completed the entire experiment.  

Recruitment was done mostly by email via the 
campus lists of the University of Talence at the 
following institutions: IMS Laboratory, Bordeaux-
INP, INRIA, University of Bordeaux. All of the 
volunteers were offered a 20 € gift card to participate 
in this experiment. All gave free and informed 
consent. 

The inclusion criteria for the panel (see A.1) 
targeted experienced participants, preferably with 
regular driving experience. The native language must 
be French to avoid bias in the understanding of the 
questionnaires. The exclusion criteria (cf. A.2) 
exclude participants with potential problems of 
immersion in a virtual reality: epileptic, 
claustrophobic, cybersickness, etc.  

The initial sample included an equitable 
distribution of gender and age. However, senior 
adults are more susceptible to simulator sickness (a 
syndrome closely related to motion sickness), making 
recruitment more difficult. Table 1 shows the 
complete study sample. 

Table 1: Characteristics (age and gender) of participants. 

Age / Sexe Man Woman Total 

- 45 years old 21 8 29 

+ 45 years old 3 1 4 

Total 24 9 33 

Our population is 27% female and 73% male, 
with 88% 45 years old and 12% over 45. Our 
population is essentially made of men under 45 years 
old with a proportion of 64% against 9% of men over 
45 years old; 24% of women under 45 years old and 
3% of women over 45 years old.  
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4.2 Material 

4.2.1 Simulator 

- A neutral and silent experiment room (about 8m²), 
- Driving seat: ATGP Playseat, 
- Logitech G27 driver's station with steering wheel, 

pedals and gear shift lift, 
- Computer with simulation software, 
- Simulation software: A.V. Simulation (formerly 

Oktal) SCANeR Studio™, version 1.8, 
- Three high-resolution 32-inch screens (2560 x 

1440 pixels). These screens have been aligned to 
offer an immersion adapted to the 3D scene of the 
simulation (alignment of lines crossing several 
screens), and thus reduce the risk of 
cybersickness. 

4.2.2 Sensor 

The eye-tracker used is a Tobii Pro Glasses 2 
(200Hz): eye-tracker worn binocular. These eye-
trackers is worn by the operators as glasses. The 
binocular eye-trackers is equipped with three 
cameras: 2 cameras capture the images of the eyes 
and one camera, called scene camera, captures the 
visual field of the operator. The scene camera records 
the video of the environment on which the fixations 
will be affixed in order to visualize the visual 
behavior. The horizontal field of view of the scene 
camera is 60◦.  

The glasses are connected to a recording unit via 
a cable in Micro USB. With an autonomy of 105 
minutes the storage media is equipped with an SD 
card. The unit is connected to the local network via an 
Ethernet cable. 

4.3 Measurement 

4.3.1 Independent Variables - Controlled 

Cognitive states were considered known and 
indicated in the data by the variable 
"Characterization": a categorical variable with three 
levels, 1 for engagement, 2 for hypovigilance and 3 
for fatigue.  

4.3.2 Dependent Variables – Observed 

The values of the visual metrics depending on the 
cognitive state are unknown. These are the dependent 
variables of the model. 
Each metric is represented by a numerical variable. 
They are calculated thanks to the eye-tracker data: 
position of the gaze in the experimental environment.   

Eleven metrics have been identified through a 
literature search (table 2). A metric is calculated over 
a 20 second window. This window is sliding of one 
second which makes 11 data per second.  

Table 2: List of dependent variables calculated according to 
the associated cognitive state. 

Engagement1 Hypovigilance² Fatigue3 

Fixation 
frequency in AOI 

Fixation 
frequency in the 
horizon 

Fixation duration 
in AOI 

Gaze dispersion 

Gaze dispersion 
in AOI 

Distance 
between two 
saccades 

Saccade speed 

Fixation frequency 

Fixation duration 

Eye deflection angle 

Saccade speed  

Saccade amplitude 

1 Freydier and al., 2014; Neboit, 1982 
² De Gennaro and al., 2000, Bodala and al., 2016 
3 Silvagni and al., 2020; Yonggang Wang and Ma, 2018; 
Hjälmdahl and al., 2017 

4.3.3 Link between Test and Model 

The final cognitive model can be written in the form 𝑌 ~ 𝛽଴ + 𝛽ଵ. 𝑥ଵ + ⋯ + 𝛽௡. 𝑥௡ + 𝜀. 
The oculometric data or visual metrics are the 

dependent variables of the experimental tests: 
observed variables. In the final model they are the 
input data: explicative variables 𝑥  explicatives, 
independent variable of the model. 

The known cognitive state is the independent 
variable of the experimental tests: controlled variable. 
In the final model it is the output data: explained 
variable Y, dependent variable of the model.  

4.4 Procedure 

After a presentation of the study and a first 
cybersickness questionnaire, the participant is 
installed at the driving station. The experimenter 
presents the controls and indicators of the dashboard, 
then installs and calibrates the eyetracker. Then the 
participant carries out the 4 driving scenarios: 1 
familiarization scenario in autonomous and manual 
mode, 3 tests in 100% autonomous. After each 
scenario, the participant answers questionnaire 
relating to the cybersickness (Kennedy et al. 1993). If 
the cybersickness score is suitable (score below 8) 
then the participant may continue. Before launching 
the next scenario, the experimenter suggests taking a 
break. Finally, the participant fills in the socio-
demographic questionnaire before being thanked. 
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4.5 Scenario Setup 

The participants' cognitive states are induced by the 
experimental conditions: environment and cognitive 
task. 4 test scenarios were constructed: (1) 
Familiarization with the simulator and autonomous 
mode; (2) Engagement phase; (3) Hypovigilance 
phase; (4) Fatigue phase. 

 Familiarization with the simulator and 
autonomous mode 

This phase is necessary to avoid learning bias by 
familiarizing the participant with the automatic car 
controls and the virtual environment. It is carried out 
before the experimental scenarios. 

After explanations on how the simulator works, 
the participants performes a driving task lasting 
approximately 15 minutes. In this scenario, the 
participants drive on all three types of roads for 5 
minutes each: city, outskirts and motorway. On the 
outskirts and the motorway participants are asked to 
switch on/off the autonomous mode. Using the 
manual mode allows the user to familiarize himself 
with the simulator by transposing his driving 
automatisms.  

At the end of the training phase, the participant is 
able to control the vehicle correctly. Getting back in 
control, checking the deviation from the axis and 
checking the indicators remains the usual three points 
of difficulty.  

 Engagement phase 
This phase has been designed to record the driver's 
reference eye behavior while engaged in 100% 
autonomous driving. The scenario presents a variety 
of road situations and events: other cars, more or less 
steep country roads, varied landscapes, etc. 

 Hypovigilance phase 
Hypovigilance is characterized by a loss of attention 
to elements of the situation. It is induced here by a 
monotonous driving situation (McBain, 1970; 
Wertheim, 1991), in which the user's attention is little 
solicited by new events. This scenario is 
characterized by the following parameters: 
- A repetitive environment (Thiffault & Bergeron, 

2003): flat terrain; the pines on each side of the 
road at a frequency of 2 per second, at a speed of 
80 km/h; the pines are visible up to the horizon. 

- A 15-minute driving task poor in event. The driver 
has to follow a lane at a constant speed (80 km/h), 
without changing gears, changing lanes and 
without using car features (e.g. turn signals, 
mirrors). 

- Few variations in road infrastructure (Larue et al., 
2011): no red lights, no stopping, little traffic; no 
T or perpendicular bends, the road is essentially 
straight with few curves.  

 Fatigue phase 
The driving scenario is similar to that of the 
engagement phase. The objective is not to observe 
hypovigilance but a state of fatigue despite an 
engaging environment. A constant cognitive load for 
more than 10 minutes causes cognitive fatigue 
(Borragán et al., 2016). Cognitive fatigue is induced 
by performing a difficult n-back task for 15 minutes. 
Once the 15 minutes of mental effort are passed, the 
driver checks the trajectory of the car during the 
remaining 5 minutes, as in the previous stage. This 
makes it possible to collect ocular data on fatigue. 

5 BEHAVIOUR PROCESSING 
ALGORITHMS  

5.1 Pre-Processing of Raw Data 

Each cognitive dimension is discriminated by a set of 
visual metrics calculated from the raw data. The 
metrics are associated with areas of interest in the 
environment. To calculate these metrics, several 
processes are necessary. The first one consists in a 
filter to detect fixations and saccades, the second one 
in a mapping to detect events in the areas of interest. 
The visual metrics are calculated on these mapped 
data.  

5.1.1 Raw Data 

The output data of an eye-tracker is presented in an 
Excel sheet with 200 observations per second. In 
general, each observation is composed of:  
- a timestamp: time in millisecond;  
- the direction in x, y and z of the right and left eyes; 
- the validity of the detection of the eyes position of 

the gaze in x and y; 
- the frame index of the closest video. 

5.1.2 Filtered Data 

The offline processing of the raw data is done by the 
software associated with the eye-tracker: Tobii Pro 
Lab. The processing is a classification filter for the 
type of event associated with the gaze position: 
fixation or saccade. The filter settings are the 
following: 
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Table 3: Value of the settings of the filter for the detection 
of fixations and saccades. 

Fixation-Saccade detection filter 
settings Parameter values

Max gap length (ms) 150
Noise reduction moving median, 

window size 
(samples): 3

Velocity calculator - window length 
(ms)  20 

I-VT classifier - Threshold (°/s) 35
Merge adjacent fixation  
- max time between fixations (ms) 
- max angle between fixation (°) 

true 
60 

0.25
Discard short fixation - Minimum 
fixation duration (ms) 200 

The output data is called filtered data and is 
associated with an image from the scene camera 
video. The gaze position is superposed on this video 
providing a clear replay of the participant's visual 
trajectories. The filtered data are composed of : 
- The position of the gaze: x,y;  
- The index of the closest video frame; 
- The type of event: fixation, saccade, unclassified; 
- The duration of the event in milliseconds; 
- The index of the type of eye movement: represents 

the order in which an eye movement was 
recorded. The index is an auto-incrementing 
number starting with 1 for each eye event type. 

5.1.3 Mapped Data 

Offline processing of the filtered data is also done by 
the Tobii Pro Lab software. The processing is a 
mapping detecting the areas of interest in the video 
images. The objective is to identify the events in the 
areas of interest.  The mapping is performed on a 
reference image (see Figure 2). This reference image 
includes all the areas of interest unlike the scene 
camera which does not have a sufficient field of 
view. The result of this processing is gaze data 
mapped on this reference image. The mapped data is 
composed of:    
- The presence of the gaze or not in an area of 

interest: 0 (absence) or 1 (presence). One 
variable per area of interest; 

- The coordinates of the eye position, x,y on the 
reference image;  

- Confidence score of the mapping: validity score 
of the mapped gaze points; 

- The type of event: fixation, saccade, 
unclassified; 

- The duration of the event in milliseconds; 
- The index of the type of eye movement. 

A selection of mapped data is applied including a 
removal of bad mapped events and a removal of 
outliers. The quality of the mapping is indicated by a 
confidence score. If the confidence score is less than 
0.4, the data is deleted. Beyond this threshold, the loss 
of data is more than 20%. This adjustment is coherent 
with respect to the literature (Lemercier and al., 2015; 
Winn, Wendt, Koelewijn, & Kuchinsky, 2018). 
Saccades not surrounded by fixation and far from the 
mean visual field are suppressed. No interpolation 
was done to avoid adding non-existent information 
and altering the calculation of metrics.  

5.2 Visual Metrics Calculation 

Visual behavior metrics are calculated from the 
mapped and corrected data. Our hypothesis is that the 
metrics vary with the participant's cognitive state.  
The calculated metrics are the dependent variables of 
the experimental tests. They will be the inputs to our 
detection model.   Eleven metrics were identified as 
markers of specific cognitive states (Table 2) : 

 Engagement: 3 discrete variables in the integer 
space 

1. Frequency of fixation in areas of interest; 
2. Fixation frequency at the horizon.  
The frequencies are the sum of the number of 
fixations in the areas of interest over a 20 second 
window.  
3. Fixation duration in the areas of interest: average 
duration of fixations in the areas of interest over a 20-
second window. 

 Hypovigilance: 4 continuous variables in the 
space of positive reals 

1. Dispersion of the gaze in the visual field; 
2. Gaze dispersion in the areas of interest. 
Dispersions are the average Q3-Q1 interquartile 
range of the spatial distance between each gaze point 
(in the AOI) and the median gaze point over a 20-
second window. 50% of the observations are 
concentrated between Q1 and Q3. 
4. Distance between two saccades: average of the 
distances between the end of one saccade and the 
beginning of another over a 20 second window. 
5. Saccade speed: average speed of saccades over a 
20-second window. 

 Cognitive fatigue: 5 variables 
1. Fixation frequency: sum of the number of fixations 
over a 20 second window; discrete variable in an 
integer space. 
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2. Fixation duration: average duration of fixations 
over a 20-second window; discrete variable in an 
integer space. 
3. Eye deflection angle: average of the angle between 
two vectors formed by the X and Y directions of the 
eyes over a 20 second window; continuous variable 
in positive real space. 
4. Saccade speed: average speed of saccades over a 
20-second window; continuous variable in positive 
real space. 
5. Saccade amplitude: average of the distances 
between the beginning and the end of the same 
saccade over a 20 second window; continuous 
variable in the space of positive reals.  

All metrics were calculated over the three phases 
of the scenario: engagement, hypovigilance and 
fatigue. Each metric is calculated over a 20-second 
window. This 20 second window slides by one second 
which makes 11 observations per second per phase 
per participant.  

It is necessary to know the behavior of the metric 
on all phases to characterize differences between 
phases. 

6 FIRST RESULTS 

The model is a CARt decision tree built on the data 
set. The set of independent variables of an individual 
classifies him in a cognitive state.  

6.1 Method of Analysis 

The Classification And Regression Trees - CARt 
(Breiman & Ihaka, 1984) are supervised learning 
methods. The tree tries to solve a classification 
problem. Mathematically speaking, the method 
performs a binary recursive partitioning by local 
maximization of the heterogeneity decrease.   

The CARt aims at building a predictor: predicting 
the values taken by our dependent variable Y 
(cognitive state) as a function of the independent 
variables X (visual metrics).  

This prediction is based on a tree where each node 
corresponds to a decision about the Y value. This 
decision is made according to the value of one of the 
Xs. At each node, the tree splits the data of the current 
node into two child nodes. The individuals are 
divided into the two most homogeneous subsets (Gini 
diversity index) possible in terms of Y. The first 
nodes use the most important variables. Not all 
metrics are necessarily used in the construction of the 
tree. A significant variable is not used if another is 

highly correlated with it. The terminal leaves give the 
predictions of Y.   

The independent and dependent variables can be 
quantitative or qualitative. Here the independent 
variables are quantitative. The dependent variable is 
categorical at three levels: 1 for engagement, 2 for 
hypovigilance and 3 for fatigue. 

6.2 Dataset 

3 recordings corresponding to the 3 tests scenarios are 
associated with each participant. The scenarios are 
divided into two periods. The first provokes the 
desired cognitive state, which is observed during the 
second. The first period provokes a cognitive state 
that is under-adjusted due to the chosen 
environmental conditions. The second period is the 
moment when the participant is actually in the desired 
cognitive state. The learning phase is not included in 
these two periods. The periods of interest occur at 
different times (minutes) depending on the scenario: 
- Scenario 1: observation of an engaged 

participant during the next 3 minutes of the 
scenario. 

- Scenario 2: induction of hypovigilance during 
the first 15 minutes of the scenario; observation 
of a hypovigilant participant during the next 3 
minutes of the scenario. 

- Scenario 3: Induction of fatigue during the first 
15 minutes of the scenario; observation of a tired 
participant during the next 3 minutes of the 
scenario. 

Metrics calculation are done on the second 
periods of the scenarios. A data is composed of the 
value of the 11 metrics for one second for a 
participant. This makes a total of 17,820 data: 33 
participants, 3 test scenarios, 180 seconds. The data 
does not have to be normalized. All these data are the 
dataset for the construction of the CARt. 

6.3 Decisional Tree  

The decision tree (Figure 3) was built with the rpart 
package. First, the tree was built on all the data with 
the tree building function rpart() of the package. We 
keep the default parameters. The learning error is 
48%.  

In figure 3, we can read the tree as follows. At the 
root of the tree there is a node that splits into two 
branches: branch 1 on the left and branch 2 on the 
right. Branch 1 corresponds to the participants' data 
such that the “number of fixations on the horizon” 
exceeds the threshold of 11.5 fixations / 20 seconds.  
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Figure 3: First version of the CARt for the detection of the cognitive state of the operator, construction of the data set. 

Branch 1 splits into two end leaves: leaf 1 on the 
left and leaf 2 on the right. Leaf 1 corresponds to the 
data of participants such that the "gaze dispersion" 
exceeds the threshold of 126.1 pixels / 20 seconds. In 
this leaf 1 the cognitive state detected is engagement.  

The 3 indicators under the end leaf indicate the 
distribution of the participants' data classified in this 
leaf according to their actual cognitive state: engaged/ 
hypovigilant / tired. 

1183 data from engaged participants are classified 
as engaged; 610 data from hypovigilant participants 
are classified as engaged; 105 data from tired 
participants are classified as engaged. Here the 
number of correct classifications prevails by 62%.  

Leaf 2 corresponds to the data from participants 
such that the gaze dispersion does not exceed the 
threshold of 126.1 pixels / 20 seconds. In this leaf 2 
the cognitive state detected is hypovigilance. 142 data 
from engaged participants were classified as 
hypovigilant; 302 data from hypovigilant participants 
are correctly classified as hypovigilant; 29 data from 
fatigued participants are classified as hypovigilant. 
The number of correct classifications prevailed by 
63%. 

The determination of the operator's cognitive state 
stops when the reading of the model results in a 
terminal leaf. The model always determines an 
output. If the operator is not in one of these three 
states the model returns the closest cognitive state. 

6.4 Predictive Quality Validation 

The cross-validation method (Mosteller & Tukey, 
1968) partitions the data into 3 subsets. Each subset 
is successively used as a test sample, the rest as a 
learning sample: 2/3 for learning and 1/3 for testing. 

The tree, our estimator, is computed on the training 
data. The prediction error is calculated on the test 
data. At the end of the procedure, we obtain 3 
performance scores: percentage of error. The mean 
and the standard deviation of the 3 scores respectively 
estimate the percentage of error and the variance of 
the validation performance.  

The three performance scores obtained are: 65%, 
67% and 67%. This makes an average of 66% and a 
standard deviation of 0.0011. We find that, as it 
stands, the model does not perform well enough to 
accurately predict the values of the cognitive state 
variable Y. 

In order to improve our model, as we explain in 
paragraph 7, a descriptive study of the data is in 
progress. Our objective is to identify possible outliers 
that would decrease the performance of the model.  

7 EXPECTED OUTCOME  

The objective of our approach is the construction of 
an efficient detector tree with a test error of about 
20%.  

Analyses are in progress and will allow the 
realization of a satisfactory predictive tree. New data 
sets are built from existing data such as the 
exploration of the variations of visual metrics. The 
variations are calculated in points and in percentages 
for each individual. If the percentage variations are 
significant, the intra-individual difference is 
important. The realization of a single tree per operator 
is considered.  

Automatic classification of a group of individuals 
for each cognitive state is planned. The objective is to 
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identify groups of individuals and operator profiles. 
The hypothesis is that the inter-individual difference 
is too important for the realization of a general model 
for all operators.  

A sub-model of fatigue will be developed to 
enable the concomitance of several cognitive states to 
be addressed.  

8 CONCLUSION  

Our research aims at defining a method to design a 
predictor of the cognitive state of operators based on 
their visual behavior. The interest is to facilitate the 
design of the tool as well as its future implementation 
in real time. In this paper, we present the 
methodology for the conception of the predictor and 
illustrate with an example the results obtained. Our 
objective is twofold. The first one is the development 
of a performant predictor; the second one is the 
application of this method on future eye-tracking 
data. In the second case, it will allow the 
improvement of the predictor by the integration of 
new data for the detection of other cognitive states: 
physical fatigue, mental load, attention.  
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APPENDIX 

A.1 The Inclusion Criteria Were: 
- Possession of a driver's license for at least 2 years 

and 2500 km driven. 
- Regular driving preferred 
- Native French speaker 
- Normal vision, or corrected by lenses (not corrected 

by glasses) 

A.2 The Exclusion Criteria Were: 
- Heart problems, people with epilepsy/ 

photosensitivity/ claustrophobia/ balance problems, 
history of neurological or psychological problems 

- Taking medication or drugs that affect the sleep-
wake cycle. 
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