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Abstract: Coughing and shortness of breath are typical symptoms in people suffering from COPD, asthma, and COVID-
19 conditions. Separate studies have shown that coughing and respiratory health parameters, respectively, can 
be sensed from a conversational speech recording using deep learning techniques. This paper looks into joint 
sensing of coughing events and the breathing pattern during natural speech. We introduce an algorithm and 
demonstrate its performance in realistic recordings. We observed sensitivity of 92.4% and 91.6% for cough 
detection and breath event detection, respectively. 
Clinical Relevance: Joint sensing of coughing events and respiratory parameters gives a more holistic picture 
of the respiratory health of a patient which can be very useful for future telehealth services. 

1 INTRODUCTION 

The importance of respiratory sensing and cough 
monitoring needs little justification, especially in 
home monitoring of patients suffering from 
respiratory conditions. The COVID-19 pandemic 
demonstrated the necessity of remote digital health 
assessment tools for telehealth services. This is 
particularly pertinent for elderly and vulnerable 
populations who already have a chronic disease. Post-
covid patients may suffer from respiratory symptoms 
for several months after a severe form of COVID-19 
disease and separate telehealth services are being 
developed for these patients. 

Speech is a good indicator of the pathological 
condition of a person (Alireza A. Dibazar, et al., 
2002), especially for respiratory conditions like 
COPD, asthma, and COVID-19. These conditions 
significantly influence the breathing capacity and 
cause vocal respiratory symptoms such as coughing 
or wheezing. 

We can hear when a person has breathing 
difficulties or coughing, but the automatic detection 
is a complex task. The breathing planning is complex 
process based on linguistic and prosodic factors 
(Marcin Włodarczak, et al., 2015) and the detection 
of breathing events from continuous speech is 
difficult. 

We have demonstrated recently that it is possible 
to use neural networks to estimate the breathing 
parameters from a speech audio signal (Venkata 
Srikanth Nallanthighal, et al., 2019; V. S. 
Nallanthighal, et al., 2020). Neural networks have 
also been used successfully for the detection of cough 
sounds from non-speech recordings (A. C. den 
Brinker, et al., 2021; Justice Amoh and Kofi Odame, 
2016; Yusuf A Amrulloh, et al., 2015; Hui-Hui 
Wang, et al., 2015). However, the current authors are 
not aware of an earlier studies on the simultaneous 
detection of coughs and respiratory behavior in 
conversational speech recordings. Obviously, 
speaking, breathing, and coughing are all functions of 
the lungs, and tightly interlinked, which makes the 
simultaneous sensing a challenging problem. One of 
the key questions is related to the causal relations and 
independence of different sensing targets. The results 
of this paper seem to indicate that holistic sensing of 
different aspects of respiratory health from a free 
speech data is possible using modern machine 
learning techniques. 

2 BACKGROUND 

The current research is related to the development of 
acoustic sensing technology for telehealth call 
services especially for patients with respiratory 
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symptoms. In this scenario a nurse, or an automated 
agent, has therapeutic conversations with the patient, 
collects information, and answers questions about the 
care or the symptoms. Breathing monitoring from 
telehealth customers’ speech conversations over 
multiple calls would give us the historical data of 
breathing parameters and help us compare and 
understand a person’s pathological condition, 
decline, or improvement over time and early 
detection of a condition. 

The breathing, speech, and coughing, are all 
functions closely related to the lungs, and influenced 
by the condition of the respiratory system. Based on 
physiological considerations, cough sounds are often 
considered as consisting of four different phases : 
inspiratory, contractive, compressive, and expulsive. 
The inspiratory phase is initiated by breathing in and 
is terminated by the closure of the glottis. In the 
contractive phase, groups of respiratory muscles 
contract, leading to a marked elevation of alveolar, 
pleural, and subglottic airway pressures. In the 
expulsive phase, the glottis opens quickly followed 
by rapid exhalation of air under a large pressure 
gradient.The rapid movement of air expelled from the 
lung generates the cough sounds with contributions 
coming from different areas of the respiratory system. 
The mechanism of cough sound production shares 
some similarities to that of speech production. The 
current authors are not aware of a previous work 
where the goal is simultaneous sensing of respiratory 
parameters such as respiratory rate and coughing 
activity and intensity from a conversational 
recording. 

In this paper we study joint detection of cough 
events and sensing of respiratory health parameters, 
such as breathing rate and tidal volume, from a 
conversational speech recording. We give an 
overview of the algorithms for cough detection and 
respiratory signal estimation and compare those to the 
corresponding state-of-the-art systems. Next, we 
evaluate their performance in a speech data where the 
goal is a joint sensing of the respiratory parameters, 
and detection of coughing during speech. The first 
results presented in this paper show that the two 
models can work relatively independently. In the 
discussion, we propose that joint sensing of breathing, 
speaking, and coughing can be potentially modeled 
using a holistic cardio-pulmonary speech model that 
also takes the linguistic context into account. 

Chronic obstructive pulmonary disease (COPD) 
is a progressive respiratory disease characterized by 
chronic inflammation of the lung airways which 
results in airflow limitation. This results in frequent 
shortness of breath (SOB) and coughing. SOB can be 

detected from one’s speech (Sander Boelders, et al., 
2020). Coughing is a prominent indicator of several 
problems such as COPD, and it is also the main 
reason for why patients seek medical advice. 
Frequent COPD exacerbations are associated with a 
high mortality and heavy use of healthcare resources. 
COPD patients with chronic cough and shortness of 
breath may represent a target population for whom 
specific respiratory sensing and cough monitoring 
strategies should be developed. 

3 METHODS 

3.1 Respiratory Sensing from Speech 

Both the rib cage and the abdomen can be used to 
modulate alveolar pressure and airflow during 
speech. Some speakers exhibit the stronger use of rib 
cage over abdominal contributions, and some 
speakers show a relatively equal contribution from 
both the rib cage and abdomen (Thomas J. Hixon, et 
al., 1976). When a known air volume is inhaled and 
measured with a spirometer, a volume-motion 
relationship can be established as the sum of the 
abdominal and rib cage displacements (K. Konno and 
J. Mead, 1967). 

The Philips read speech database was collected at 
Philips Research, Eindhoven, The Netherlands in 
2019, with the approval of the Internal Committee 
Biomedical Experiments (ICBE) of Philips Research. 
The data was collected using the following setup: two 
respiratory elastic transducer belts over the ribcage 
under the armpits and around the abdomen at the 
umbilicus level to measure the changes in the cross-
sectional area of ribcage and abdomen at the sample 
rate of 2kHz. These belts work on the principle of 
respiratory inductance plethysmography (RIP). 
Earthworks microphone M23 is used for recording 
high-quality speech at 48kHz. The microphone is 
placed at a distance of one meter from the speaker, 
and the data collection is conducted in a specialized 
audio room for noise-free and echo-free recordings. 
40 healthy subjects with no respiratory conditions(18 
female and 22 male with age group ranging from 21 
to 40 years old) are asked to read ”The Rainbow 
Paragraph”, a widely used phonetically balanced 
paragraph (G. Fairbanks, 1960). 

In our data collection two respiratory belts were 
placed around the rib cage under the armpits and 
around the abdomen at the level of the umbilicus, 
respectively. These belts work on the principle of 
respiratory inductance plethysmography (RIP). They 
consist of a sinusoidal wire coil insulated in elastic. 
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Dynamic stretching of the belts creates waveforms 
due to change in self-inductance and oscillatory 
frequency of the electronic signal and the electronics 
convert this change in frequency to a digital 
respiration waveform where the amplitude of the 
waveform is proportional to the inspired breath 
volume. Thus the sum of rib cage and abdomen 
expansions measured by the respiratory belt 
transducers is considered as the measure for the 
breathing signal. 

 
Figure 1: Schematic diagram for estimating respiratory 
signal using Deep Neural Network Model based on spectral 
features. 

Estimating breathing signals from the speech 
signal is a regression problem. The breathing signal is 
a quasi-periodic signal whose characteristics are 
dependent on the prosodic and linguistic content of 
the speech signal. This information of speech can be 
modeled using spectral features. Spectral features are 
based on a time-frequency decomposition of the 
speech signal. In this paper we use a linear 
spectrogram computed using short-time Fourier 
transform, and a nonlinear spectrogram with 
logarithmic magnitude values on a Melfrequency 
scale, i.e., log Mel spectrogram. 

The spectrogram and log Mel spectrogram of a 
speech signal of a fixed time window are mapped 
with respiratory sensor value at the endpoint of the 
time window with a stride of 10ms between windows 
for Philips database to train the neural network 
models as shown in Figure 1. These models will 
estimate the respiratory sensor values of a speech 
signal in real time to get the breathing pattern. 

Using spectral features as an input representation 
of speech signal, we implement convolutional neural 
network (CNN) and Long short-term memory 
recurrent neural network (RNNLSTM) models using 
the PyTorch software framework (Adam Paszke, 
2019). In the CNN model (Jürgen Schmidhuber, 
2015), the data is fed into a network of two 
convolutional layers with a single-channel and kernel  
 

 

CNN Model RNN Model 

Input: log Mel spectrogram Input: log Mel spectrogram

or spectrogram or spectrogram 

m: frames in time window m: frames in time window 

n : Mel filter banks n : Mel filter banks 

Matrix Xi(1 x m x n) Matrix Xi(1 x m x n) 

1 x conv3-1;s1 
Maxpooling 3x3 LSTM model 

1x conv5-1;s1 
Maxpooling 3x3 Layers =2 

3 Fully Connected layers Hidden size= 128 

OUTPUT: sensor value OUTPUT: sensor value 

Figure 2: Deep neural network configurations of the 
spectral based methods for sensor value prediction. 

size of 3 and 5 respectively for filtering operation to 
extract local feature maps. Max pooling is deployed 
to reduce the dimensionality of feature maps while 
retaining the vital information. The rectified linear 
unit activation function is applied to introduce non-
linearity into the feature extraction process for each 
convolutional layer, as shown in Figure 2. Batch 
normalisation is also applied on each convolution 
layer. This is followed by 3 fully connected layers 
with ReLU activation function. The Adam optimiser 
(Diederik P. Kingma and Jimmy Ba, 2015) with a 
weight decay of 0.001 is used as an optimization 
algorithm. 

In the RNN-LSTM model, the data is fed into a 
network of two LSTM layers with 128 hidden units 
and a learning rate of 0.001. The Adam optimizer is 
used as an optimization algorithm to update network 
weights iteratively based on training data (Diederik P. 
Kingma and Jimmy Ba, 2015). These 
hyperparameters for the network were chosen for 
estimation after repeated experimentation. 

As estimating breathing pattern from speech using 
neural networks is a regression problem, we use the 
following two metrics for evaluation and comparison: 
correlation and mean squared error(MSE) of 
estimated breathing signal and the actual respiratory 
sensor signal. Also, we compare the breathing 
parameters derived from the estimated and actual 
breathing signals. The model that estimates breathing 
signals with a higher correlation, lower MSE, and 
comparable breathing parameters would be 
considered best for our study. 
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Table 1: Philips Database (read speech protocol): The r, MSE and breathing parameters for systems using spectral based 
approach. 

    Breathing Parameters   

Models Loss 
Function r MSE 

Breathing Rate 

   prediction true error  
(breaths/min) (breaths/min) (%)  

Breath Event 

Sensitivity 

Tidal 
Volume 

error 
(%) 

Spectral Based Approach 

I/P: log Mel spec 
O/P: sensor 
Architecture: 
RNN 

MSE 
BerHu 

0.476 
0.482 

0.019 
0.039 

10.42 
10.98 

9.84 
9.84 

5.89% 
11.58% 

0.916 
0.902 

12.11%
16.24%

I/P: log Mel spec 
O/P: sensor 
Architecture: 
CNN 

MSE 
BerHu 

0.472 
0.462 

0.034 
0.042 

10.85 
11.78 

9.84 
9.84 

10.26% 
19.71% 

0.896 
0.821 

16.22%
18.84%

 

 
Figure 3: The predicted and ground truth for breathing 
signal Table I presents the performance of the systems 
trained and tested on the Philips database. 

3.2 Cough Monitoring 

Cough is an important clinical symptom in respiratory 
diseases, yet there is not any gold standard to assess 
it. The most common approach to addressing these 
challenges is to find features of the acoustic signal 
that offer good discrimination between coughs and 
non-cough sounds. Barry et al,. used Linear 
Predictive Coding and Mel-frequency Cepstral 
Coefficients (MFCC) to model the sound of coughs 
and used a Probabilistic Neural Network to classify 
time windows as containing a cough or not (Samantha 
J. Barry, et al., 2006). Other researchers have 
explored other features based on adaptations of 

speech recognition features (Thomas Drugman, et al. 
2011) and custom-designed handcrafted features 
(Eric C. Larson, et al., 2011). In this paper, we explore 
advanced machine learning algorithms like XGBoost 
models and deep learning algorithms for cough 
detection. 

The data of cough sounds is collected from a recent 
trial of COPD patients in their home environment. 
The data consist of one second audio snippets of 
night-time recordings in the vicinity of COPD 
patients, where the monitoring period ran over a 
period of 90 days. Part of this data has been annotated 
and is used in our study. 

1) XGBoost Models: 
In classical machine learning, a model is 
trained on features that are extracted from the 
signal. For each sound snippet, 12 MFCCs are 
extracted around the peak of the transient. 
Additionally, the sound levels just before and 
after the peak are extracted, as well as the 
number of acoustic transients in the 60 second 
interval centered on the time of the recorded 
snippet. An XGBoost (Tianqi Chen and Carlos 
Guestrin, 2016) model was trained on the 
features of the annotated snippets. 

2) Deep Learning Models: 
Convolutional and recurrent neural networks 
are used for cough detection. In the CNN, the 
input is a fixedsized image, a segment of the 
logMel spectrogram, and the output is a single 
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label. The RNN takes in a sequence of spectral 
frames and outputs a sequence of labels. 
The CNN architecture was inspired by the 
popular LeNet-5 architecture (Yann LeCun, et 
al., 2015) which yielded state-of-the-art 
performance on the MNIST handwritten digits 
dataset. Compared to other well-known 
architectures such as the AlexNet, LeNet-5 is a 
much smaller network and more suitable for 
smaller datasets. 
The RNN model consists of 6 layer encoder-
decoder architecture, which allows the 
network to process and classify input 
sequences of arbitrary length. The encoder is 
made up of 3 layers: 2 bidirectional recurrent 
layers with 128 and 64 units respectively and a 
unidirectional layer with 32 recurrent units. 
Our encoder is set up to process sequences of 
up to a certain maximum length we set 
depending on the experiment (see experiment 
section below). All recurrent neurons in the 
encoder are Gated Recurrent Units (GRU), 
which can identify longterm dependencies in a 
sequence of input data. The last layer of the 
encoder outputs a fixed representation (the 32 
activations) which is then used to initialize the 
decoder. The decoder is a single recurrent 
layer of 64 Long Short Term Memory (LSTM) 
units, combined with an attention mechanism. 
The attention mechanism enables the network 
to focus on salient parts of the input features 
and ultimately results in improved 
classification performance. Currently, our 
decoder is set up to output a single label for 
each input sequence. Following the decoder, 
we have a fully connected layer with 256 
ReLU neurons. Finally, the classification layer 
outputs a class label using the softmax 
function. 

Table 2: Comparison of cough detection models. 

Models AUC scores standard 
deviation

XGBoost Model 0.9040 0.0740
CNN (LeNet-5) 0.9116 0.0576
RNN(seq2seq) 0.9141 0.0502

4 EXPERIMENTS ON JOINT 
SENSING 

The goal of joint sensing of respiration and cough 
events is to verify if the models developed 

independently for respiratory sensing and cough 
detection can work together. The hypothesis to 
support this is that the two models are trained on two 
different datasets specific for respiratory sensing and 
cough detection, respectively. 

4.1 Joint Data Set 

We collected a database of speech recordings with 
coughs of 10 healthy volunteers(6 Male and 4 
Female) who were asked to read ”The Rainbow 
Paragraph”, a widely used phonetically balanced 
paragraph (G. Fairbanks, 1960). The participants 
were asked to voluntarily cough at random places 
while reading the paragraph. Each recording is about 
2 minutes long with at least five coughs. Cough 
events and breathing events were annotated manually 
by the authors for each of the ten subjects. We found 
and manually annotated a total of 54 cough events and 
103 breathing events for the ten recordings. This 
database is used for testing our models on cough 
monitoring and respiratory detection simultaneously. 

4.2 Results 

1) Performance of Respiratory Sensing: The pre-
trained deep learning model using RNN architecture 
is used to compute the estimated respiratory signal for 
each of the ten recordings. From these estimated 
respiratory signals, respiratory breathing events are 
identified using an Automatic Multiscale Peak 
Detection Algorithm (AMPD) (Felix Scholkmann, et 
al.,2012). These breath events computed from the 
estimated respiratory signal are compared with the 
manually annotated ground truth breath events, and 
the results are formulated in Table III 
2) Accuracy in Cough Detection: The RNN model 
described in the previous section is used for cough 
detection for each of the ten recordings. A total of 54 
cough events are present in these ten recordings. 
Actual cough events are compared against the 
detected cough events to measure precision and 
sensitivity and are reported in Table III. 

Table 3: Joint detection of cough events and respiratory 
events. 

Modality Total 
events

Precision Sensitivity

Cough detection 54 events 94,2% 92.4%
Breath event 
detection

103 events 89.6% 91.6% 

It is observed that joint sensing of cough and 
respiratory events is plausible by using pre-trained 
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models for individual tasks. We observed a precision 
of 94.2% and sensitivity of 92.4% for the 54 cough 
events and a precision of 89.6% and sensitivity of 
91.6% for breath event detection. 

5 CONCLUSIONS 

An extensive study on methods for using speech as a 
modality for respiratory sensing and cough 
monitoring is presented in this paper. These strategies 
are essential for patients suffering from respiratory 
conditions, especially in remote monitoring services. 
Our results evaluated on joint datasets of 10 healthy 
volunteers conclude that joint sensing of coughs and 
respiratory parameters is possible by training deep 
learning models on separate datasets specific to 
respiratory sensing and cough detection. However, 
evaluation of this strategy on speech recordings of 
patients suffering from respiratory conditions is 
essential and is the future scope of our work. 
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