
Systematic Analysis of Programming Languages and Their Execution
Environments for Spectre Attacks

Amir Naseredini1,3, Stefan Gast2,3, Martin Schwarzl3, Pedro Miguel Sousa Bernardo4, Amel Smajic3,
Claudio Canella3, Martin Berger1,5 and Daniel Gruss2,3

1University of Sussex, U.K.
2Lamarr Security Research, Austria

3Graz University of Technology, Austria
4Instituto Superior Técnico, Universidade de Lisboa, Portugal

5Turing Core, Huawei 2012 Labs, London, U.K.

Keywords: Speculative Execution, Spectre Attacks, Programming Languages, Execution Environment.

Abstract: In this paper, we analyze the security of programming languages and their execution environments (compilers
and interpreters) with respect to Spectre attacks. The analysis shows that only 16 out of 42 execution envi-
ronments have mitigations against at least one Spectre variant, i.e., 26 have no mitigations against any Spectre
variant. Using our novel tool Speconnector, we develop Spectre proof-of-concept attacks in 8 programming
languages and on code generated by 11 execution environments that were previously not known to be affected.
Our results highlight some programming languages that are used to implement security-critical code, but re-
main entirely unprotected, even three years after the discovery of Spectre.

1 INTRODUCTION

In conditional branch instructions, deciding whether
to branch or not requires evaluating the branch con-
dition, which can depend on a slow operation, such
as main memory access. In most programs, branches
are highly predictable from information available be-
fore the branch condition has been evaluated, pri-
marily past outcome of related conditional branches.
This predictability is exploited using branch predic-
tors, adaptively trained as the CPU executes, on
past branching behavior, see (Mittal, 2018) for an
overview. Branch prediction allows CPUs to execute
the predicted direction of the branch long before the
result of evaluating the branch condition is available.
If the prediction is wrong, the execution of the pre-
dicted branch is rolled back, and the other branch
is executed. Note that only the architectural state
is rolled back, but not the microarchitectural state,
which remains visible in contemporary CPUs. Spec-
tre exploits the mismatch between architectural and
microarchitectural state by mistraining branch predic-
tors, so victim code (called gadget) executes a mis-
predicted branch and then rolls back the architectural
state, but not the microarchitectural state. The gad-
get consists of a sequence of instructions, guarded by
a conditional branch, that encodes a secret from the
victim’s own address space into the microarchitec-
tural state, e.g., into the cache by making cache lines

cached or not. This encoded information remains ac-
cessible to attackers after the misprediction is rolled
back by the CPU.

Spectre attacks have so far been demonstrated in
JavaScript (Kocher et al., 2019), native code (Kocher
et al., 2019; Canella et al., 2019), Go (Duete, 2018)
and Rust (Chládek, 2020). Consequently, a vast va-
riety of mitigations have been proposed, and some of
them have been deployed in practice. While Melt-
down attacks are mainly mitigated in hardware or mi-
crocode, Spectre attacks mainly rely on mitigations
on the operating-system level, or in compilers and
JIT engines. Given the large number of mitigations
and programming languages with associated execu-
tion environments, it has become unclear which pro-
gramming languages, interpreters, compilers and JIT
engines, have working mitigations today and can se-
curely be used to implement security-critical code,
and which do not.

Spectre does not necessarily work in every single
execution environment. The possibility of being able
to pull off the attack depends on several factors in-
cluding (but not limited to) the runtime environment,
whether it is fast enough (e.g., interpreters might be
too slow for the attack to be pulled off), the com-
piler and the transformations that it enforces on the
code such as optimizations (e.g., whether it emits the
code that is efficient enough for this purpose), or the
language and its constructs (e.g., do branch-predicted

48
Naseredini, A., Gast, S., Schwarzl, M., Bernardo, P., Smajic, A., Canella, C., Berger, M. and Gruss, D.
Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks.
DOI: 10.5220/0010779300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 48-59
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

code sequences exit on the binary level). Hence, it
was not known which languages, compilers, and envi-
ronments need mitigations. We are the first to system-
atically study which languages, compilers, and exe-
cution environments need mitigations against Spectre
attacks. The result of this study helps developers of
languages, compilers, and environments to find out
whether or not they should implement mitigations.

In this paper, we systematically analyze the se-
curity against Spectre attacks, of the top 30 most-
popular programming languages1, which involves an
analysis of 42 compilers and execution environments.
We categorize the languages and their execution envi-
ronments into three different categories: interpreted,
compiled, and managed languages. We determine
for each of these languages, compilers and runtimes,
whether Spectre mitigations exist and are imple-
mented. The basis of this analysis is publicly avail-
able documentation and direct communication with
developers. We discover that only 16 of the analyzed
execution environments have mitigations for at least
one Spectre variant. Based on this initial analysis, we
perform a full-scale analysis of the existence of Spec-
tre gadgets for each of these languages and environ-
ments. To facilitate our analysis, we present a novel
method and tool, Speconnector. Speconnector allows
us to evaluate and exploit Spectre gadgets indepen-
dent of the programming language to validate leakage
without bi-directional interaction. We use Specon-
nector to develop Spectre proof-of-concept attacks for
16 programming languages, half of which were previ-
ously not known to be affected. Our results highlight
that programming languages and their execution envi-
ronments used to implement security-critical code re-
main entirely unprotected, even three years after the
discovery of the issue, and still continue to leak se-
crets.

To demonstrate the concrete security impact of our
results, we present two case studies that exploit secu-
rity libraries using Spectre attacks. First, we attack
the Alice crypto library, implemented in Java using
the OpenJDK compiler. We demonstrate that we can
leak the secret key used by Alice for encryption pur-
poses by exploiting a Spectre gadget in it. Second,
we attack cryptokit, implemented in OCaml using the
ocamlopt native compiler. In this case study, we show
that by exploiting a Spectre gadget, we can leak secret
data while it resides in memory.

Our work shows that there are still several crit-
ical security libraries implemented in programming
languages suffering from the lack of mitigations.
Security-critical code implemented in these languages
remains entirely unprotected against Spectre-type at-

1From https://github.com/madnight/githut.

tacks, even three years after the discovery of the is-
sue. We responsibly disclosed our findings to the
corresponding vendors and worked with them on so-
lutions. However, we emphasize that this problem
goes beyond these specific libraries and is a problem
that must be solved by the corresponding compiler,
runtime, or interpreter. Finally, until mitigations are
available in compilers and runtime environments, de-
velopers should be cautious using these programming
languages for security-critical code, and users should
also be alert using security applications implemented
in such languages.

Contributions. Our contributions are:
1. A systematic analysis of the security of program-

ming languages and their execution environments
with respect to Spectre attacks.

2. We introduce Speconnector, a novel tool to evalu-
ate and exploit Spectre gadgets independent of the
programming language.

3. We demonstrate the security impact with two case
studies of security-related libraries, and show that
we can leak secrets from them.

Outline. Section 2 provides background. Section 3
systematically analyzes programming languages for
Spectre mitigations. Section 4 presents our new
tool Speconnector and our threat model. Section 5
presents our systematic analysis of the Spectre sus-
ceptibility of environments using Speconnector. Sec-
tion 6 presents two case studies showcasing our re-
sults. We conclude in Section 7.

2 BACKGROUND

In this section, we provide background on speculative
and transient execution with a focus on Spectre-type
attacks, as well as interpreted, compiled, and man-
aged programming languages.

Speculative Execution. Because programs contain
conditional branching, CPUs often do not know
which instruction needs to be executed next. This oc-
curs, for instance, when the out-of-order execution
reaches a not yet completed conditional branch in-
struction which determines control flow. With spec-
ulative execution, the CPU can save the current reg-
ister state, predict the most likely outcome based on
similar events in the past, and speculatively execute
in the predicted direction. Once the predicted branch
instruction has completed execution and the correct
path is known, the CPU can decide what to do with
the speculatively executed instructions. In the case
of a correct prediction, the CPU simply commits (re-
tires) the instructions in the order of the instruction

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

49

1 if (x < length_of_data) {
2 tmp &= lookup_table[data[x] << 12];
3 }

Figure 1: An example of an index gadget.

stream, making the results visible on the architectural
level. However, if the prediction is not correct, the
CPU rolls back to the saved register state, discards the
result of the wrongly executed instructions, and con-
tinues with the execution of the correct path. The dis-
carded instructions are commonly referred to as tran-
sient instructions (Kocher, 1996; Lipp et al., 2018;
Canella et al., 2019). While the architectural state is
rolled back in the case of a wrong prediction, the mi-
croarchitectural state is not reverted, hence allows to
infer results and side effects of the transiently exe-
cuted instructions.

To make such predictions and maximize the per-
formance, CPUs utilize the Branch Prediction Unit
(BPU), which consists of different prediction mech-
anisms (Mittal, 2018). One such prediction mecha-
nism is the aforementioned conditional branch pre-
diction which is done by the Pattern History Table
(PHT) (Canella et al., 2019). Other mechanisms pre-
dict conditional and indirect jump targets (Kocher,
1996) or return addresses of functions (Maisuradze
and Rossow, 2018; Koruyeh et al., 2018). Indi-
rect jumps are predicted by the Branch Target Buffer
(BTB) (Lee et al., 2017; Evtyushkin et al., 2016;
Kocher et al., 2019), returns by the Return Stack
Buffer (RSB) (Maisuradze and Rossow, 2018; Ko-
ruyeh et al., 2018).

Branch-prediction logic, e.g., BTB and RSB,
is typically not shared across physical cores (Ge
et al., 2016), but sometimes among logical cores
(Maisuradze and Rossow, 2018). Therefore, the CPU
learns only from previous branches executed on the
same physical core.

Transient-Execution Attacks. While speculative and
out-of-order execution significantly increase the per-
formance of CPUs (Tomasulo, 1967), these features
also have a significant impact on the security of
software running on the CPU. So-called transient-
execution attacks (Canella et al., 2019) have demon-
strated that the effects of transient instructions can be
reconstructed on the architectural level as the microar-
chitectural effects are not reverted. To bring the ef-
fects to the architectural level, these types of attacks
leverage traditional side-channel attacks, e.g., cache
attacks. While the cache has been predominantly ex-
ploited for the transmission of the secret data (Kocher
et al., 2019; Canella et al., 2019; Maisuradze and
Rossow, 2018; Koruyeh et al., 2018), other channels

have also been shown to be effective, e.g., execution
port contention (Bhattacharyya et al., 2019).

Kocher et al. (Kocher et al., 2019) first discussed
transient-execution attacks (Canella et al., 2019) us-
ing speculative execution and demonstrated that con-
ditional branches and indirect jumps are potential el-
ements to be exploited to leak data. Subsequent
work has then shown that the idea can be extended
to function returns (Maisuradze and Rossow, 2018;
Koruyeh et al., 2018) and store-to-load forwarding
(Horn, 2018). Canella et al. (Canella et al., 2019) then
systematically analyzed the field and demonstrated
that the necessary mistraining can be done in the same
and a different address space due to some predictors
being shared across hyperthreads. Additionally, they
showed that many of the proposed countermeasures
are ineffective and do not correctly target the root
cause of the problem. More recent work (Canella
et al., 2020a) has then analyzed the commonalities of
these attacks instead of the differences (Canella et al.,
2019).

To mitigate all these attacks, various propos-
als have been made by industry and academia.
Canella et al. (Canella et al., 2020b) analyzed the
differences between countermeasures from academia
and industry, highlighting that academia proposes
more radical countermeasures compared to industry.
Proposed mitigations either require hardware changes
(Kiriansky et al., 2018; Yan et al., 2018; Khasawneh
et al., 2019), secret annotation (Schwarz et al., 2020;
Palit et al., 2019; Fustos et al., 2019), new data depen-
dencies (Oleksenko et al., 2018; Carruth, 2018b), or
reduced timer accuracy (Pizlo, 2018; The Chromium
Projects, 2018; Wagner, 2018).

Gadgets. In transient-execution attacks, a gadget is
a piece of code used to transfer the secret informa-
tion from the victim’s side into a covert channel from
which the attacker can then retrieve it. Kocher et al.
(Kocher et al., 2019) introduced the first Spectre gad-
get, which is shown in Figure 1. In such a gadget, se-
cret information is stored in memory following the ar-
ray data. A global variable tmp is used to prevent op-
timizing out the memory access. The attacker controls
the value of x, which allows mistraining the branch
for the length check, i.e., the attacker first supplies
values for x that are lower than length of data. After
mistraining the branch, the attacker supplies a larger
value, accesses the secret during transient execution,
and encodes it in lookup table, which is shared be-
tween victim and attacker. From there, the attacker
reads using a cache attack. Canella et al. (Canella
et al., 2020a) refer to such a gadget as an index gadget.

Compiled vs Interpreted vs Managed Program Ex-
ecution. An important distinction in program execu-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

50

Figure 2: Different categories of programming languages based on their translation process. In this figure, a Perl interpreter is
an example of an interpreter, GCC an example of a compiler, OCaml’s (ocamlc/ocamlrun) compiler process is an example of
a managed language with the translation process in Hybrid Compiler A and OracleJDK shows an example of the translation
process for Hybrid Compiler B.

tion is between interpretation and compilation. The
difference is in whether the program is executed di-
rectly using an interpreter, or with an intermediate
compilation stage where a compiler generates a new
program to be executed. A third option are hybrid
compilers where the resulting file of the compila-
tion is again interpreted, combining the other two ap-
proaches. We refer to this as managed program exe-
cution. We often speak of execution environment to
mean any of compilers, interpreters, or their hybrids.
Note that this distinction is orthogonal to program-
ming language choice: every language can be inter-
preted, compiled, and executed in hybrids.

All of these approaches to execute a program have
different advantages and disadvantages. For instance,
compiled languages only incur the overhead of trans-
lating the code once, while interpreted languages need
to translate it every time they are being run. Hence,
compilers can perform more sophisticated optimiza-
tions as the time needed for translation is less impor-
tant. LLVM (Lattner and Adve, 2004) is an example
of an optimizing compiler framework. C and C++ are
examples of programming languages that are usually
executed by compilation, although, in principle, they
can also be interpreted. An advantage of interpreted
languages is that they are more portable as only the
interpreter is platform specific. Another advantage is
that some security problems can be fixed simply by
updating the interpreter, whereas compiled binaries
remain vulnerable until recompiled individually. As
the interpreter needs to hold more information about
the run-time state of the application, interpreted ap-
plications typically require more memory during exe-
cution than compiled applications. Perl is an example
of a languages that is usually interpreted and not com-
piled.

Hybrid compilers seek to combine the advantages
of compiled and interpreted languages. We distin-
guish several variants of hybrid compilers: Figure 2
shows the two common variants. In the first vari-
ant, a compiler first translates the code into platform-

independent code, allowing for more sophisticated
optimizations, as well as allowing for portability.
When running the application, an interpreter executes
this platform-independent code. An example of such
a hybrid compiler is Ocaml when using ocamlc and
ocamlrun: ocamlc carries out the first part to com-
pile the code implemented by the developer, and then
ocamlrun interprets the code generated by ocamlc.
In the second variant, the compiler again generates
platform-independent code. In the second phase, the
JIT-compiler uses the platform-independent code to
produce the executable code which is interpreted by
the interpreter. The interpreter then provides feedback
to the JIT-compiler on how to improve the generated
code. An example of such hybrid compilers are Ora-
cleJDK and C# .NET. Figure 2 provides an illustration
of all four aforementioned cases.

3 SPECTRE MITIGATIONS BY
LANGUAGE AND RUNTIME

When it comes to mitigating Spectre-type attacks,
compilers and interpreters play a crucial role as they
generate the code that is exploited later on. In this
section, we investigate different compilers and inter-
preters to determine whether they provide methods to
mitigate such attacks. Our systematic analysis con-
siders 42 different execution environments which are
used to translate the top 30 most-popular program-
ming languages according to GitHub in the third quar-
ter of 2020. The languages encompass compiled, in-
terpreted, and managed languages.

Unfortunately, most of the investigated compilers
and interpreters do not provide any published infor-
mation on mitigations. Hence, as an additional source
of information, we contacted developers of the re-
spective compilers and interpreters. Our investiga-
tion showed that the majority of the investigated com-
pilers and interpreters did not provide any informa-

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

51

Table 1: Interpreted programming languages and their inter-
preters and which Spectre variants they can mitigate based
on the available documentation and direct responses from
interpreters’ developers. Symbols show whether Spectre
mitigations are not available based on the communication
with developers (), or it was unclear whether there are any
mitigations available ().

Attack
PLs Ru

by

(M
RI
)

PH
P Sh

el
l

(B
as
h)

Pe
rl Po

we
rS
he
ll

(p
ws
h)

TS
QL

Lu
a Vi

m

sc
ri
pt

Em
ac
s

Li
sp

Spectre-PHT 1 2

Spectre-BTB 1 2

Spectre-RSB 1 2

Spectre-STL 1 2

2 (support, 2020)

tion whether the lack of Spectre mitigations was be-
cause the developers believed their software was safe
against Spectre-type attacks. We defer a discussion of
the possibility of Spectre-type attacks to Section 5.

Also, based on our investigations, there are sev-
eral reasons that made the vulnerable execution envi-
ronments ending up not having any mitigations. One
of the main reasons is that language designers mostly
do not take Spectre attacks seriously and believe that
it is impossible to run the attack using their execu-
tion environment, such as in CPython and PyPy. An-
other reason is that language designers are not aware
of the problem in their product, such as in Groovy.
For some languages with several layers of compila-
tion, e.g., managed languages, the designers do not
believe that mitigations should be provided to soft-
ware developers on their layer and the problem should
be resolved in a another layer, e.g., the Clojure de-
signers believe that this problem should be addressed
in JVM. However, this is technically impossible for
Spectre-PHT, as the software developer has to ex-
plicitly define where to avoid speculation (cf. C’s
array index nospec). Ironically, the JDK develop-
ers confirm our view, that it is not possible to address
the problem in JDK itself (Gross, 2019) without in-
formation provided by the software developer in the
programming language and environment running on
top of JDK. This leaves us in the unfortunate situa-
tion that software developers have no possibility to
mitigate Spectre when choosing certain programming
languages and environments at all. Finally, some of
the designers also think that this problem should be
addressed at the kernel level, which again is not pos-
sible for Spectre-PHT.

Below, we briefly describe the process for each
category as well as the results of our systematic anal-
ysis in more detail, and we rely on the categoriza-
tion of Spectre-type attacks provided by Canella et al.
(Canella et al., 2020a).

Interpreted Languages. In this paper, we study 9 dif-
ferent interpreted programming languages and their
respective interpreters (Table 1). As a first step in our
analysis, we conducted a thorough survey of the pub-
licly available documentation of each interpreter. This
step showed that the documentation for 8 of the 9 an-
alyzed interpreters does not contain any information
regarding potential mitigations for Spectre. While the
documentation for TSQL (support, 2020) contained
some information regarding Spectre mitigations, it
was unclear whether any mitigations are implemented
and which Spectre variants are considered in potential
mitigations.

For a more thorough analysis, we analyzed com-
mits made since the public disclosure of Spectre for
any indication of available mitigation in the 8 inter-
preters that do not provide any public information.
Unfortunately, this step did not provide any additional
insights. Hence, to complete our investigation, we
contacted the developers of the respective interpreters
to ask for information about potentially implemented
mitigations.

In this step, the developers of Perl confirmed that
their interpreter does indeed not contain any mitiga-
tions for any variant of Spectre 1. For Ruby (MRI)
and PHP, we unfortunately were not able to discuss
the issue with the developers. Nevertheless, our re-
sults gathered in the first two steps show that we are
not aware of any mitigation in these two interpreters.
Our analysis for interpreters illustrates that it is un-
clear for 7 of the 9 analyzed interpreters if they have
mitigations implemented to mitigate Spectre attacks
Compiled Languages. Our analysis of compiled pro-
gramming languages shows a different result com-
pared to the analysis of interpreters. In this analy-
sis, we used the same approach as for the interpreted
languages and their interpreters, i.e., searched public
documentation, analyzed commits, and contacted the
developers.

Table 2 presents the results of our analysis. The
results show that 13 of the 15 considered compilers
provide information about Spectre, but only 12 of
them claim to have implemented mitigations for at
least one of the existing variants. While all 12 provide
mitigations against Spectre-PHT, only 10 provide
mitigations for Spectre-BTB. Interestingly, only Go
provides a mitigation for Spectre-RSB, while none of
the compilers document mitigations against Spectre-
STL. In a conversation, the developers of Microsoft’s
C/C++ compiler confirmed that, despite missing doc-
umentation, their compiler provides a Spectre-STL
mitigation. The developers of ocamlopt also con-
firmed in direct communication that their compiler

1Dan Book confirmed this via email

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

52

Table 2: Compiled programming languages and their compilers and which Spectre variants they can mitigate based on the
available documentation and direct responses from the respective compilers’ developers. Symbols show whether Spectre
mitigations are available based on the documentation () or communication with developers (), not available based on the
communication with developers (), or it was unclear whether there are any mitigations available ().

Attack
PLs

Go C+
+

(G
CC
)

C+
+

(M
S) C+

+

(I
nt
el
)

C+
+

(L
LV
M)

C
(G
CC
)

C
(M
S) C

(I
nt
el
)

C
(L
LV
M)

Ru
st

(L
LV
M)

Sw
if
t

(L
LV
M)

DM Ob
je
ct
iv
e-
C

(L
LV
M)

Ha
sk
el
l

(G
HC
)

OC
am
l

(o
ca
ml
op
t)

Spectre-PHT 3 5 8 10 12 5 8 10 12 12 12 12 14

Spectre-BTB 3 6 9 10 13 6 9 10 13 13 13 13 14

Spectre-RSB 3 7 9 11 7 9 11 14

Spectre-STL 4 9 11 9 11 14

3 (Munday, 2020)
4 (Randall, 2020)
5 (GCC.GNU.ORG, 2020)

6 (Lu, 2018)
7 (Biener, 2018)
8 (Pardoe, 2018)

10 (Jiang, 2018)
11 (Viet H Intel, 2020)
12 (Carruth, 2020)

13 (Carruth, 2018a)
14 (Bacarella, 2020)

does not provide any form of mitigation against any
Spectre variant. Unfortunately, we were not able to
get any information about the existence of mitigations
for the two remaining compilers, i.e., DM and Haskell
(GHC).

Based on our analysis, the Go compiler has the
best situation regarding its mitigations against Spec-
tre variants as it contains mitigations for 3 of the 4
Spectre variants discussed by Canella et al. (Canella
et al., 2020a).
Managed Languages. Table 3 shows the results of
our analysis of 13 programming languages and their
18 respective hybrid compilers. This analysis pro-
vides several interesting insights. For instance, except
for the JavaScript compilers SpiderMonkey (Wag-
ner, 2018; de Mooij, 2019), V8 (The Chromium
Projects, 2018; Mcilroy et al., 2019), Chakra (Mi-
crosoft, 2018), and the Java compiler GraalVM (Or-
acle, 2020), none of the other compilers for man-
aged languages provide any form of public documen-
tation of mitigations against at least one of the Spec-
tre variants discussed by Canella et al. (Canella et al.,
2020a). The first three mitigate Spectre-PHT and
Spectre-BTB while GraalVM only has mitigations for
Spectre-PHT. Similar to the previous case, we again
observe that the compilers that do have mitigations,
all mitigate Spectre-PHT. While we were able to find
documentation regarding Spectre for the Java com-
piler OpenJDK, the documentation indicates that no
mitigations are available.

To counteract the lack of publicly available infor-
mation on mitigations, we contacted the developers
of the PyPy, C#, Scala, Elixir and OCaml (ocamlc/o-

9Shayne Hiet-Block from Microsoft confirmed this via
email

23Maciej Fijalkowski confirmed this via email
26Eric Meadows-Jönsson confirmed this via email
28Ilya Pleskunin confirmed this via email
29Paul King confirmed this via email

camlrun) compilers to gather information on whether
they provide mitigations. In all 5 cases, this discus-
sion showed that none of them contain any mitiga-
tions. In addition, the documentation for OracleJDK
(Oracle, 2021) is hinting at Spectre mitigations, how-
ever, it is unclear if any mitigation is implemented and
which Spectre variants are the targets in the potential
mitigations. Unfortunately, the status of the remain-
ing 7 compilers from this category remain unclear as
we did not receive a response. These 7 compilers
are Dart, TypeScript, CoffeeScript, Clojure, CPython,
Groovy and Kotlin.

4 Speconnector

This part describes the goal, tasks, and advantages of
the Speconnector tool. Speconnector is written in C,
but works for any target language.30

The goal of Speconnector is to determine, easily
and independent from the target language, whether a
given execution environment is vulnerable to Spectre.
Note that we do not claim that Speconnector is com-
plete in that it detects all possible microarchitectural
attacks. Instead we give a lower bound on the lan-
guages and their execution environments that are still
vulnerable.

Threat Model. Speconnector demonstrates that an at-
tack is possible under a regular Spectre attack threat
model: The attacker is a co-located program running
under the same operating system and is able to exe-
cute arbitrary code on the victim machine. The victim
code has an interface that we can interact with, e.g., a
local API or local server can be a potential target code.
Whether an attack is possible under this threat model
only depends on whether the victim leaks. Therefore,
we focus on the illegal data leakage and use Specon-

30We plan to open source the tool.

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

53

Table 3: Managed programming languages and their compilers and which Spectre variants they can mitigate based on the
available documentation and direct responses from compilers’ developers. Symbols show whether Spectre mitigations are
available based on the documentation (), available but partially effective based on the documentation (), not available
based on the documentation () or communication with developers (), or it was unclear whether there are any mitigations
available ().

Attack
PLs

Da
rt Ja

va

(O
ra
cl
eJ
DK
)

Ja
va

(O
pe
nJ
DK
)

Ja
va

(G
ra
al
VM
)

Ja
va
Sc
ri
pt

(S
pi
de
rM
on
ke
y)

Ja
va
Sc
ri
pt

(V
8) Ja

va
Sc
ri
pt

(C
ha
kr
a)

Ty
pe
Sc
ri
pt

Co
ff
ee
Sc
ri
pt

Py
th
on

(P
yP
y)

Sc
al
a

C# El
ix
ir

Cl
oj
ur
e

Py
th
on

(C
Py
th
on
)

OC
am
l

(o
ca
ml
c/
oc
am
lr
un
)

Ko
tl
in

Gr
oo
vy

Spectre-PHT 15 16 17 18,19 20 22 23 24 25 26 27 28 29

Spectre-BTB 15 16 18,19 20,21 22 23 24 25 26 27 28 29

Spectre-RSB 15 16 23 24 25 26 27 28 29

Spectre-STL 15 16 21 23 24 25 26 27 28 29

15 (Oracle, 2021)
16 (Gross, 2019)
17 (Oracle, 2020)

18 (Wagner, 2018)
19 (de Mooij, 2019)
20 (The Chromium Projects, 2018)

21 (Mcilroy et al., 2019)
22 (Microsoft, 2018)
24 (Malak and nilskp, 2018)

25 (Tur, 2020)
27 (Bacarella, 2020)

nector to measure and evaluate the victim leakage.
While this shows that an attack is possible, crafting
a concrete end-to-end exploit for each language re-
quires further engineering steps.

Algorithm. One of the main tasks of Speconnec-
tor is to establish shared memory between itself and
the victim application. Hence, the target applica-
tion first allocates 256 pages of memory and fills it
with a known magic value while Speconnector also
allocates the same amount of memory in its own ad-
dress space, i.e., the lookup table. Then, Speconnec-
tor uses the /proc/[pid]/mem file of the victim to scan
for the pages that contain the magic value. Once it
finds them, Speconnector uses the the publicly avail-
able PTEditor (Schwarz et al., 2018) to set the victim
pages page frame numbers to the page frame num-
bers of its own lookup table, to establish shared mem-
ory between the two processes. As a result, any vic-
tim access to one of the now shared pages results in a
cache hit when Speconnector performs Flush+Reload
to distinguish between cached and uncached memory.

The advantage of this approach is simplicity: in-
stead re-implementing cache attacks in all program-
ming languages, we can rely on a well understood
primitive written in C, e.g., Flush+Reload. For the
analysis, the only part that needs to be done in the
victim is to implement a victim gadget and to allocate
256 pages and fill them with the known magic value.

5 ATTACK FEASIBILITY BY
LANGUAGE AND RUNTIME

In this section, we present the results of using Specon-
nector to determine whether we can establish a covert
channel and exploit speculative execution in our set of
selected programming languages and their execution
environments. To investigate the potential vulnera-

bilities, we first evaluate each compiler/interpreter to
determine whether we can establish a covert channel.
Such a covert channel is a necessary building block
for Spectre attacks as it gives the attacker the capabil-
ity of bringing secret data from the microarchitectural
state to the architectural level. To determine whether
we can establish a covert channel, Speconnector es-
tablishes shared memory between itself and the vic-
tim application. The victim then accesses the shared
lookup table in a known pattern which Speconnec-
tor tries to reconstruct. If Speconnector cannot re-
construct the pattern, then it is not possible for us
to establish a covert channel. One potential reason
for that can be that the target language uses a differ-
ent memory layout than C. Then, we evaluate each
compiler/interpreter to determine whether we can ex-
ploit speculative execution by adding a gadget, mis-
training the victim, and using Speconnector to leak
the victim’s secret data. Because of the nature of
the vulnerability and the attack, while a positive re-
sult for an execution environment in the experiments
shows that the corresponding execution environment
is vulnerable and exploitable, a negative result does
not guarantee the absence of the vulnerability nor the
exploitability.

The experiments were run using different ma-
chines for different programming languages and their
execution environments. We listed the CPU, the op-
erating system, and the execution environment ver-
sion for each language and its compiler/interpreter in
Appendix A. Table 4 shows the results of our anal-
ysis. For completeness, we performed the experi-
ments on the execution environments listed, even if
they were very similar, e.g., the both were using JVM
in their compilation. The reasoning behind this, is that
the construct of each language in its execution envi-
ronment should be protected against different Spec-
tre variants as well as the composition of different
constructs, as certain mitigations, e.g., for Spectre-

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

54

Table 4: Programming languages and their compilers/interpreters and the result whether they are vulnerable to at least one
variant of Spectre attack in practice. The first row (depends on settings) shows if compilers/interpreters are not vulnerable (∗)
or are vulnerable (-) if the existing best practices for them are followed.

Attack
PLs

Go C+
+

(G
CC

)
C+

+
(M

S)
C+

+
(I

nt
el

)
C+

+
(L

LV
M)

C
(G

CC
)

C
(M

S)
C

(I
nt

el
)

C
(L

LV
M)

Ru
st

(L
LV

M)
Sw

if
t

(L
LV

M)
DM Ob

je
ct

iv
e-

C
(L

LV
M)

Ha
sk

el
l

(G
HC

)
OC

am
l

(o
ca

ml
op

t)
Da

rt
Ja

va
(O

ra
cl

eJ
DK

)
Ja

va
(O

pe
nJ

DK
)

Ja
va

(G
ra

al
VM

)
Ja

va
Sc

ri
pt

(S
pi

de
rM

on
ke

y)
Ja

va
Sc

ri
pt

(V
8)

Ja
va

Sc
ri

pt
(C

ha
kr

a)
Ty

pe
Sc

ri
pt

Co
ff

ee
Sc

ri
pt

Py
th

on
(P

yP
y)

C# Sc
al

a
El

ix
ir

Cl
oj

ur
e

Py
th

on
(C

Py
th

on
)

OC
am

l
(o

ca
ml

c/
oc

am
lr

un
)

Ko
tl

in
Gr

oo
vy

Em
ac

s
Li

sp
Ru

by
(M

RI
)

PH
P

Sh
el

l
(B

as
h)

Pe
rl

Po
we

rS
he

ll
(p

ws
h)

TS
QL

Lu
a

Vi
m

sc
ri

pt

Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - - - - - ∗ ∗ ∗ ∗ -
Covert Channel ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗
Spectre Attack ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

PHT, can only be implemented on the language level.
Therefore, we need to take a look at the problem at
the language level.

We now discuss the results in the previously out-
lined categories of interpreted, compiled, and man-
aged languages individually.

Interpreted Languages. Using the approach dis-
cussed, we evaluate all our interpreted languages.
During this analysis, we were able to exploit Perl’s
interpreter, successfully demonstrating a covert chan-
nel and leaking data using a Spectre attack. The Perl
interpreter does not provide any mitigations (cf. Sec-
tion 3), making it infeasible to protect an application
against such attacks. Out of the 9 interpreters we an-
alyzed (cf. Table 4), only the Perl interpreter was
vulnerable to both establishing a covert channel and
a Spectre attack. A potential explanation is that the
speculation window might have been too small for
the other interpreters to fit the attack in it. In the
remaining 8 interpreters, we were still able to estab-
lish a cache covert channel in 5 of them even though
we were not able to exploit them with a Spectre at-
tack. We were not able to establish a covert channel
in TSQL, Shell (bash) and Vim script. However, this
does not mean that these interpreters are safe against
Spectre attacks nor against establishing a covert chan-
nel. In total, we were able to establish a covert chan-
nel in 67 % and exploit 11 % of the analyzed inter-
preters.

Compiled Languages. In our analysis of covert chan-
nels in compiled languages, we were able to estab-
lish a covert channel in 14 out of 15 (93 %) of the
analyzed combinations of languages and compilers.
12 out of the 15 (80 %) compilers generate code that
is vulnerable against a Spectre attack. This includes
languages and compilers that have been known to be
vulnerable but also ones that have so far not been ana-
lyzed. One example for such a never before analyzed
language and compiler is OCaml with the ocamlopt
compiler where we were able to demonstrate both a
covert channel and a Spectre attack. While we were

able to establish a covert channel in Swift (LLVM)
and Haskell (GHC), we were not able to exploit them
using a Spectre attack. Compilers annotated with a *
in Table 4 are not exploitable or at least less vulnera-
ble in case the available mitigations are used and best
practices are followed.

Managed Languages. For managed languages, we
were able to demonstrate a functioning covert channel
in all 18 cases (100 %). Out of the 18 language and
compiler combinations, we were able to demonstrate
a Spectre attack in 14 (78 %) of them. This includes
Dart, Java, C#, Scala Groovy, Kotlin and OCaml
(ocamlc/ocamlrun), which were so far not known to
be vulnerable, i.e., no Spectre attack on these has
been demonstrated before. Similar as to compiled
languages, there are several instances, again marked
with a * in Table 4, where the usage of the available
mitigations and following the best practices removes
or at least reduces the impact of the vulnerability.

Our investigation of all three language categories
provides several interesting insights. First, contrary
to interpreted and compiled languages, we were able
to establish a covert channel in all analyzed managed
languages and compilers, while in the others there
was at least one where we were not able to estab-
lish a covert channel. Second, compilers for com-
piled languages are the most vulnerable to Spectre
attacks if mitigations are not used and best practices
are not followed. Third, in all three categories, we
were able to extract data using a Spectre attack in at
least one instance. This further highlights that many
languages and their respective compilers/interpreters
have not considered Spectre attacks even 3 years after
they were introduced to the public.

6 CASE STUDIES

In this section, we present two case studies, each
using one of the vulnerable programming languages
taken from Table 4. For both, we demonstrate how a

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

55

Spectre attack can be used to leak secret information
from real-world libraries. Furthermore, we argue that
a mitigation at the compiler level prevents our attacks.

6.1 Alice - Java

In our first case study, we investigate Alice8, a crypto
library written in Java which provides encryption/de-
cryption with AES of byte arrays and files. Alice sup-
ports different key sizes, block modes and padding
schemes. Our goal is to find and exploit speculative
execution vulnerabilities to leak the secret key which
is being used to encrypt/decrypt the plaintext in Alice
encryption and decryption methods.

We first performed an in-depth assessment of this
library and the way that it should be used. The library
contains three main Java classes. Class Alice which is
the main API in the library for encryption purposes.
Class AliceContext which provides the context to be
passed to class Alice to create a new object of it. And
class AliceContextBuilder which is used to build the
context. More information about Alice library is pro-
vided on their publicly available documents.

Our attack uses three Java classes, Main, Enc and
Victim. The Main class is responsible for starting two
threads on the same physical core, one uses Enc while
the other uses Victim. Enc creates an instance of an
unmodified Alice and performs the encryption using
the context generated by AliceContextBuilder and the
password stored within Enc. Our Victim class con-
tains an index gadget (cf. Figure 1) mistrained and
used by the attacker to leak the secret information.

As a first step in our attack, our Main class starts
both the encryption and the victim containing the gad-
get. Once this is done, we use Speconnector (cf. Sec-
tion 4) simply to ease the exploitation, but note that
extracting the data is also possible directly in Java.
Speconnector establishes a shared memory with the
victim by allocating 256 pages and filling them with
the known magic value. The victim is mistrained to
perform the speculative out-of-bounds access which
causes a secret-dependent cache access on our shared
memory. To extract the password stored in Enc,
Speconnector constantly performs Flush+Reload on
the memory shared with the victim. As OpenJDK
does not contain any Spectre mitigations (cf. Table 3),
Speconnector can successfully extract the password,
compromising the whole encryption system.

6.2 Cryptokit - OCaml

Our second case study performs a thorough analy-
sis of cryptokit (Leroy, 2020), a widely used OCaml

8https://rockaport.github.io/alice/

crypto library. As Tables 2 and 3 show, the documen-
tation of OCaml already indicates that no mitigations
are available against Spectre attacks. It is an impor-
tant case study, as so far OCaml has not been shown
to be affected.

In this analysis, we encountered several factors
that complicate the analysis. First, OCaml can be
either compiled into native machine code using the
ocamlopt compiler, or it can be compiled into byte-
code using the ocamlc compiler, which is then exe-
cuted by the ocamlrun runtime. Depending on the
compiler being used, it can either be regarded as a
compiled or a managed language. Second, the en-
vironment is important as well since some gadgets
show themselves only in some particular configura-
tions. For example, while we could not cause any data
leakage with our Spectre index gadget when using the
ocamlc bytecode compiler and the ocamlrun runtime
on an older Intel Core2Duo T9600 CPU, the exact
same gadget worked well when run on a more modern
Intel Core I7-6700K CPU. When compiled to native
code using the ocamlopt compiler, the same source
code produces a gadget that works on both machines.
For best reproducibility, we therefore only used the
ocamlopt native compiler in the following case study.

The cryptokit library implements a variety of
cryptographic primitives for use in security-sensitive
applications, including symmetric-key ciphers, pub-
lic-key cryptography, and hash functions. Our manual
analysis has not shown an exploitable Spectre gad-
get within the library itself, but the possibility ex-
ists that the application that uses it leaks the sen-
sitive data processed by the library by executing a
gadget while this data is directly used or parts of
it remain in memory. For example, cryptokit has a
function transform_string t s, which applies the
given transform object t to the given string s. The
transform object itself describes the desired crypto-
graphic action, including its parameters. For AES
encryption, these include the key and the initializa-
tion vector (IV). After the transformation, the internal
state of the transform object t is wiped, but this does
not include the key and the IV. Furthermore, the string
s is not wiped, either. The reason is that, in OCaml,
strings are passed by reference across function calls.
This makes it unsafe for the library function to over-
write these strings as the calling code might still need
them. Therefore, the application itself is responsible
for wiping the key, the IV and the plaintext. How-
ever, it is worth noting that a direct hint about this is
missing in the current documentation (version 1.16.1)
of the library (Leroy, 2020) even though it offers a
function wipe_string s for this purpose. Further-
more, the official OCaml documentation even states

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

56

that strings should be treated as being immutable and
advises against overwriting them (Leroy et al., 2020).

To verify and substantiate this finding, we per-
formed the following experiment. Following a best-
practice example of using cryptokit, we wrote a proof-
of-concept application that encrypts user-provided
plaintext. Similar to the Java case study in the pre-
vious section, we allocate 256 contiguous pages us-
ing OCaml’s Array1 module and fill them with the
known magic value. Then we add a Spectre gadget to
the application. Using that gadget to perform specu-
lative out-of-bounds accesses on a string and connect-
ing Speconnector to it, we were able to successfully
reconstruct the original plaintext after encrypting it
and after the last reference to the plaintext went out of
scope. To find the actual location of the plaintext in
memory, we computed the required offset for the out-
of-bounds access in the proof-of-concept application
itself. This showed that the offset is the same each
time the program is run, making it predictable for the
attacker. Obtaining the key or the IV instead of the
plaintext should also be possible using the same ap-
proach. By this, we show that an OCaml application
can leak sensitive data via transient execution side-
channels as long as that data is in memory. As nei-
ther the native compiler (ocamlopt) nor the bytecode
compiler (ocamlopt) and runtime (ocamlrun) provide
any form of mitigations, it is the task of the applica-
tion developer to ensure that no Spectre gadget is exe-
cuted while sensitive data resides in memory. To wipe
sensitive data from memory, the programmer has to
overwrite strings which are otherwise considered to
be immutable by the language.

Furthermore, sensitive data can also remain in in-
ternal input or output buffers, which cannot be over-
written by the application developer. For example,
to read files, OCaml uses channel objects, which are
buffered (OCAML.ORG, 2021) yet provide no means
of wiping that buffer (Leroy et al., 2020). We veri-
fied that sensitive data can indeed be leaked from such
buffers by modifying our experiment to leak the data
directly from the input buffer of the standard input
channel. Again, we computed the offset for the out-
of-bounds access in the victim. We observed that Ad-
dress Space Layout Randomization (ASLR) leads to
different offsets each time the program is run, because
the channel buffer is stored in another memory map-
ping than the OCaml strings. However, the offset of
the buffer within its memory mapping itself is con-
stant. Turning off ASLR results in a constant offset
between the OCaml string and the channel buffer.

In conclusion, sensitive data might live longer in
memory than the developer might expect and, there-
fore, also be susceptible to Spectre attacks for quite

a long time. Hence, it is imperative that OCaml pro-
vides ways for a developer to either reliably remove
data from sensitive buffers or to hinder transient exe-
cution at all.

7 CONCLUSION

We presented a systematic analysis of different pro-
gramming languages and their respective compiler-
s/interpreters against Spectre attacks. Our analysis
uncovered Spectre attacks in 16 different program-
ming languages with 8 of them not investigated so
far and not known to be vulnerable. We also demon-
strated practical proof-of-concept attacks and eval-
uated their applicability to these programming lan-
guages and their respective execution environments.
With Speconnector, we presented a novel approach
and tool that can be used to quickly verify whether a
programming language and execution environment is
vulnerable to Spectre attacks. We further presented
two case studies of real world libraries in two differ-
ent programming languages, demonstrating that they
are susceptible to Spectre attacks. Our results indi-
cate that it is necessary to do more research into mit-
igations that target a wide range of programming lan-
guages and execution environments.

REFERENCES

Bacarella, M. (2020). Spectre mitigations in ocaml
compiler?! https://discuss.ocaml.org/t/spectre-
mitigations-in-ocaml-compiler/6718.

Bhattacharyya, A., Sandulescu, A., Neugschwandt ner, M.,
Sorniotti, A., Falsafi, B., Payer, M., & Kurmus, A.
(2019). SMoTherSpectre: exploiting speculative exe-
cution through port contention. In CCS.

Biener, R. (2018). GCC 7.3 released https://lwn.net/
Articles/745385.

Canella, C., Khasawneh, K. N., & Gruss, D. (2020a).
The Evolution of Transient-Execution Attacks. In
GLSVLSI.

Canella, C., Pudukotai Dinakarrao, S. M., Gruss, D., &
Khasawneh, K. N. (2020b). Evolution of Defenses
against Transient-Execution Attacks. In GLSVLSI.

Canella, C., et al. (2019). A Systematic Evaluation of Tran-
sient Execution Attacks and Defenses. In USENIX Se-
curity Symposium. Extended classification tree and
PoCs at https://transient.fail/.

Carruth, C. (2018a) https://reviews.llvm.org/D41723.
Carruth, C. (2018b). RFC: Speculative Load Hardening (a

Spectre variant #1 mitigation).
Carruth, C. (2020). Speculative load hardening https://llvm.

org/docs/SpeculativeLoadHardening.html.

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

57

Chládek, J. (2020). rust-spectre https://github.com/
movrsprbp/rust-spectre.

de Mooij, J. (2019). [Meta] Spectre JIT mitigations https:
//bugzilla.mozilla.org/show bug.cgi?id=1430049.

Duete, L. (2018). spectre-go https://github.com/lucasduete/
spectre-go.

Evtyushkin, D., Ponomarev, D., & Abu-Ghazaleh, N.
(2016). Jump over ASLR: Attacking branch predic-
tors to bypass ASLR. In MICRO.

Fustos, J., Farshchi, F., & Yun, H. (2019). SpectreGuard:
An Efficient Data-centric Defense Mechanism against
Spectre Attacks. In DAC.

GCC.GNU.ORG (2020). Other built-in functions provided
by gcc https://gcc.gnu.org/onlinedocs/gcc-10.2.0/gcc/
Other-Builtins.html#Other-Builtins.

Ge, Q., Yarom, Y., Cock, D., & Heiser, G. (2016). A Sur-
vey of Microarchitectural Timing Attacks and Coun-
termeasures on Contemporary Hardware. Journal of
Cryptographic Engineering.

Gross, A. (2019). Java and speculative execution vulner-
abilities https://mail.openjdk.java.net/pipermail/vuln-
announce/2019-July/000002.html.

Horn, J. (2018). speculative execution, variant 4: specula-
tive store bypass.

Jiang, J. L. (2018). Using intel® compilers to mit-
igate speculative execution side-channel issues
https://software.intel.com/content/www/us/en/
develop/articles/using-intel-compilers-to-mitigate-
speculative-execution-side-channel-issues.html.

Khasawneh, K. N., Koruyeh, E. M., Song, C., Evtyushkin,
D., Ponomarev, D., & Abu-Ghazaleh, N. (2019). Safe-
Spec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In DAC.

Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., &
Emer, J. (2018). DAWG: A Defense Against Cache
Timing Attacks in Speculative Execution Processors.
In MICRO.

Kocher, P., et al. (2019). Spectre Attacks: Exploiting Spec-
ulative Execution. In S&P.

Kocher, P. C. (1996). Timing Attacks on Implementations
of Diffe-Hellman, RSA, DSS, and Other Systems. In
CRYPTO.

Koruyeh, E. M., Khasawneh, K., Song, C., & Abu-
Ghazaleh, N. (2018). Spectre Returns! Speculation
Attacks using the Return Stack Buffer. In WOOT.

Lattner, C. & Adve, V. S. (2004). LLVM: A compilation
framework for lifelong program analysis & transfor-
mation. In IEEE / ACM International Symposium on
Code Generation and Optimization – CGO.

Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., & Peinado,
M. (2017). Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing. In USENIX
Security Symposium.

Leroy, X. (2020). cryptokit/cryptokit.mli at release1161
https://github.com/xavierleroy/cryptokit/blob/
release1161/src/cryptokit.mli#L148.

Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D.,
& Vouillon, J. (2020). The OCaml system release 4.11
– Documentation and user’s manual https://caml.inria.
fr/pub/docs/manual-ocaml/.

Lipp, M., et al. (2018). Meltdown: Reading Kernel Memory
from User Space. In USENIX Security Symposium.

Lu, H. (2018). x86: Cve-2017-5715, aka spectre
https://gcc.gnu.org/legacy-ml/gcc-patches/2018-
01/msg00422.html.

Maisuradze, G. & Rossow, C. (2018). ret2spec: Speculative
Execution Using Return Stack Buffers. In CCS.

Malak, M. & nilskp (2018). Meltdown/spectre https://users.
scala-lang.org/t/meltdown-spectre/2195.

Mcilroy, R., Sevcik, J., Tebbi, T., Titzer, B. L., & Ver-
waest, T. (2019). Spectre is here to stay: An
analysis of side-channels and speculative execution.
arXiv:1902.05178.

Microsoft (2018). Mitigating speculative execution
side-channel attacks in Microsoft Edge and Internet
Explorer https://blogs.windows.com/msedgedev/
2018/01/03/speculative-execution-mitigations-
microsoft-edge-internet-explorer/.

Mittal, S. (2018). A Survey of Techniques for Dynamic
Branch Prediction. arxiv:1804.00261 http://arxiv.org/
abs/1804.00261.

Munday, M. (2020). consider extending ’-spectre’ op-
tion to other architectures https://github.com/golang/
go/issues/38066.

OCAML.ORG (2021). File manipulation https://ocaml.org/
learn/tutorials/file manipulation.html.

Oleksenko, O., Trach, B., Reiher, T., Silberstein, M., & Fet-
zer, C. (2018). You Shall Not Bypass: Employing
data dependencies to prevent Bounds Check Bypass.
arXiv:1805.08506.

Oracle (2020). Oracle graalvm enterprise edition 20
guide https://docs.oracle.com/en/graalvm/enterprise/
20/docs/reference-manual/jvm/Options/.

Oracle (2021). Oracle JVM Security Enhance-
ments https://docs.oracle.com/en/database/oracle/
oracle-database/21/nfcon/oracle-jvm-security-
enhancements-274058639.html.

Palit, T., Monrose, F., & Polychronakis, M. (2019). Mitigat-
ing data leakage by protecting memory-resident sen-
sitive data. In ACSAC.

Pardoe, A. (2018). Spectre mitigations in msvc
https://devblogs.microsoft.com/cppblog/spectre-
mitigations-in-msvc/.

Pizlo, F. (2018). What Spectre and Meltdown mean for We-
bKit.

Randall, K. (2020). consider extending ’-spectre’ op-
tion to other architectures https://github.com/golang/
go/issues/38066.

Schwarz, M., Lipp, M., & Canella, C. (2018).
misc0110/PTEditor: A small library to mod-
ify all page-table levels of all processes
from user space for x86 64 and ARMv8
https://github.com/misc0110/PTEditor.

Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F.,
& Gruss, D. (2020). ConTExT: A Generic Approach
for Mitigating Spectre. In NDSS.

support, M. (2020). Kb4073225 - sql server guid-
ance to protect against spectre, meltdown

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

58

and micro-architectural data sampling vul-
nerabilities https://support.microsoft.com/en-
us/help/4073225/kb4073225-guidance-protect-
sql-server-against-spectre-meltdown.

The Chromium Projects (2018). Mitigating Side-
Channel Attacks https://www.chromium.org/Home/
chromium-security/ssca.

Tomasulo, R. M. (1967). An efficient algorithm for exploit-
ing multiple arithmetic units. IBM Journal of research
and Development, 11(1), 25–33.

Tur, J. (2020). Consider porting inter-
locked.speculationbarrier() from .net 4.8
https://github.com/dotnet/runtime/issues/31639.

Viet H Intel (2020). Spectre mitigations in intel c++
compiler https://community.intel.com/t5/Intel-
C-Compiler/Spectre-mitigations-in-Intel-C-
compiler/m-p/1227014.

Wagner, L. (2018). Mitigations landing for new class of
timing attack https://blog.mozilla.org/security/2018/
01/03/mitigations-landing-new-class-timing-attack/.

Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher,
C. W., & Torrellas, J. (2018). InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierar-
chy. In MICRO.

Attack
PLs

Go C+
+

(G
CC

)
C+

+
(M

S)
C+

+
(I

nt
el

)
C+

+
(L

LV
M)

C
(G

CC
)

C
(M

S)
C

(I
nt

el
)

C
(L

LV
M)

Ru
st

(L
LV

M)
Ko

tl
in

Sw
if

t
(L

LV
M)

Gr
oo

vy
DM Ob

je
ct

iv
e-

C
(L

LV
M)

Ha
sk

el
l

(G
HC

)
OC

am
l

(o
ca

ml
op

t)
Da

rt
Ja

va
(O

ra
cl

eJ
DK

)
Ja

va
(O

pe
nJ

DK
)

Ja
va

(G
ra

al
VM

)
Ja

va
Sc

ri
pt

(S
pi

de
rM

on
ke

y)
Ja

va
Sc

ri
pt

(V
8)

Ja
va

Sc
ri

pt
(C

ha
kr

a)
Ty

pe
Sc

ri
pt

Co
ff

ee
Sc

ri
pt

Py
th

on
(P

yP
y)

C# Sc
al

a
El

ix
ir

Cl
oj

ur
e

Py
th

on
(C

Py
th

on
)

OC
am

l
(o

ca
ml

c/
oc

am
lr

un
)

Em
ac

s
Li

sp
Ru

by
(M

RI
)

PH
P

Sh
el

l
(B

as
h)

Pe
rl

Po
we

rS
he

ll
(p

ws
h)

TS
QL

Lu
a

Vi
m

sc
ri

pt

Source of attack
Depends on setting ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ - ∗ - - ∗ - - - - - ∗ ∗ ∗ ∗ - - - - - - - - - - - - - - - - - -

C
PU

i7-2630QM - ✓ - - - ✓ - - - - ✓ - ✓ - - ✓ - - ✓ ✓ ✓ - - - - - - - ✓ - ✓ - - - - - - ✓ - - - -
i5-6200U - ✓ - ✓ ✓ ✓ - ✓ ✓ - ✓ - ✓ - ✓ ✓ - - ✓ ✓ ✓ - - - - - - - ✓ - ✓ - - - - - - - - ✓ - -
i7-6700K - - - - - - - - - - - ✓ - - - - ✓ ✓ - - - - - - - - ✓ - - ✓ - ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓

Xeon Silver 4208 - ✓ - - - - - - - - - - ✓ - - -

O
S Ubuntu 20.4 LTS - ✓ - ✓ ✓ ✓ - ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E
nv

ir
on

m
en

t

gcc 9.3.0 - ✓ - - - ✓ - - - - - - - - ✓ -
IntelCompiler 2021.1.2 - - - ✓ - - - ✓ -

clang 12.0.0 - - - - ✓ - - - ✓ -
kotlinc-jvm 1.4.20 (JRE 11.0.9.1) - - - - - - - - - - ✓ -

Swift 5.3.1 - - - - - - - - - - - ✓ -
Groovy 3.0.4 - - - - - - - - - - - - ✓ -
GHC 8.6.5 - - - - - - - - - - - - - - - ✓ -

ocamlopt 4.08.1 - - - - - - - - - - - - - - - - ✓ -
Dart SDK version: 2.10.5 (stable) - - - - - - - - - - - - - - - - - ✓ -

JAVA 11.0.9 - - - - - - - - - - - - - - - - - - ✓ ✓ -
GRAALVM 20.3.0 - ✓ -

PyPy 7.3.1 - ✓ - - - - - - - - - - - - - - -
.Net Core (dotnet) 5.0.100 - ✓ - - - - - - - - - - - - - -

Scala 2.13.4 - ✓ - - - - - - - - - - - - -
Elixir - IEx 1.9.1 - ✓ - - - - - - - - - - - -

Clojure 1.10.1 - ✓ - - - - - - - - - - -
CPython 3.8.2 - ✓ - - - - - - - - - -

ocamlc/ocamlrun 4.08.1 - ✓ - - - - - - - - -
GNU Emacs 26.3 - ✓ - - - - - - - -

ruby 2.7.0 - ✓ - - - - - - -
PHP 7.4.3 - ✓ - - - - - -

bash 5.0.17(1)-release - ✓ - - - - -
perl v5.30.0 - ✓ - - - -

PowerShell 7.1.0 - ✓ - - -
SQL Server Command Line Tool Version 17.6 - ✓ - -

Lua 5.4.1 - ✓ -
vim 8.1-2269 - ✓

APPENDIX

A EXPERIMENT SETUP

The table below summarizes the programming lan-
guages and their compilers/interpreters and the CPU,
operating system, and the execution environment
which we used for our experiments. The first row
(source of attack) shows if we have performed the
attack (), we have not tried but other have done it
(), we were not able to perform the attack (). The
next row (depends on settings) shows if compilers/in-
terpreters are not vulnerable (∗) or are vulnerable (-)
if the existing best practices for them are followed.
A checkmark (✓) shows that it was used for an ex-
periment while a dash (-) indicates that the respective
language was not tested on this CPU or OS. For the
execution environment, the dash (-) indicates that it
does not apply to the respective language and compil-
er/interpreter.

Systematic Analysis of Programming Languages and Their Execution Environments for Spectre Attacks

59

