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Abstract: Even though deep neural networks succeed on many different tasks including semantic segmentation, they
lack on robustness against adversarial examples. To counteract this exploit, often adversarial training is used.
However, it is known that adversarial training with weak adversarial attacks (e.g. using the Fast Gradient
Sign Method) does not improve the robustness against stronger attacks. Recent research shows that it is
possible to increase the robustness of such single-step methods by choosing an appropriate step size during
the training. Finding such a step size, without increasing the computational effort of single-step adversarial
training, is still an open challenge. In this work we address the computationally particularly demanding
task of semantic segmentation and propose a new step size control algorithm that increases the robustness
of single-step adversarial training. The proposed algorithm does not increase the computational effort of
single-step adversarial training considerably and also simplifies training, because it is free of meta-parameter.
We show that the robustness of our approach can compete with multi-step adversarial training on two popular
benchmarks for semantic segmentation.

1 INTRODUCTION

Due to their great performance, deep neural networks
are increasingly used on many classification tasks.
Especially in vision tasks, like image classification
or semantic segmentation, deep neural networks have
become the standard method. However, it is known
that deep neural networks are easily fooled by ad-
versarial examples (Szegedy et al., 2014), i.e. very
small perturbations added to an image such that neu-
ral networks classify the resulting image incorrectly.
Interestingly, adversarial examples can be generated
for multiple machine learning tasks, including im-
age classification and semantic segmentation, and the
perturbations are most of the time so small that hu-
mans do not even notice the changes (e.g. see fig. 1).
This phenomenon highlights a significant discrepancy
of the human vision system and deep neural net-
works, and highlights a possibly crucial vulnerability
of the latter. This fact should be taken into consid-
eration, especially in safety critical applications like
autonomous driving cars (Willers et al., 2020).

To increase the robustness of deep neural net-
works, progress along two different lines of research
could be observed in the last years: provable robust-
ness and adversarial training. Provable robustness

has the goal to certify that the prediction does not
change in a local surrounding for most inputs. This
approach has the advantage of yielding robustness
guarantees, but it is not that scalable to complex deep
neural networks yet (Wong and Kolter, 2018; Raghu-
nathan et al., 2018), or it severely affects the infer-
ence time (Cohen et al., 2019) which is problematic
for many applications. In contrast to this theoretical
viewpoint, the idea of adversarial training is more em-
pirically driven: create adversarial examples during
training and use them as training data (Goodfellow
et al., 2015; Madry et al., 2018), this procedure can
be interpreted as an efficient realization of a robusti-
fied loss function which minimizes the error simulta-
neously for potentially disturbed data (Shaham et al.,
2016). Adversarial training has the advantage that it
is universally applicable, and often results in high ro-
bustness albeit this holds empirically and w.r.t. a spe-
cific norm. Only reject options have the potential to
improve the robustness w.r.t. different norms (Stutz
et al., 2020).

An optimization of the inner loop of the adver-
sarial loss function is often addressed by numeric
methods which rely on an iterative perturbation of the
input in the direction of its respecting gradient. But
this leads to multiple forward and backward passes
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(a) Clean image from Cityscapes (Cordts et al., 2016).
.

(b) Prediction of the clean image.
.

(c) Adversarial example created with the Basic Iterative
Method (ε = 0.03).
.

(d) Prediction of the adversarial example.

.Figure 1: Predictions for a clean input and an adversarial example produced by a deep neural network for semantic segmen-
tation. The two inputs in (a) and (c) look the same for a human observer, but the predictions of the clean image and the
adversarial example shown in (b) and in (d), respectively, are completely different.

through the deep neural network and therefore highly
increases the training time. To reduce the computa-
tional effort of adversarial training Goodfellow et al.
(2015) used the information of just a single gradient
for computing the adversarial examples. But this kind
of single-step adversarial training can be too weak and
it has been observed that overfitting can take place,
i.e. the specific adversarial is classified correctly, but
not its immediate environment. In particular, it is
not robust against multi-step attacks (Madry et al.,
2018). Recent research discovered that this overfit-
ting is caused by using a static step size while creating
the adversarial examples for adversarial training (Kim
et al., 2020). To overcome this, Kim et al. (2020) pro-
pose a method to find an ideal step size by evaluating
equidistant points in the direction of the gradient. But
this algorithm is in worst case as expensive as multi-
step adversarial training.

Differently to most of the previous research on
adversarial robustness, we will focus on adversar-
ial training for semantic segmentation in this work.
The task of semantic segmentation is to assign every
pixel of the input image a corresponding class. Be-
cause semantic segmentation needs to address local-
ization and semantic simultaneously, it is a more com-
plicated task than image classification (Long et al.,
2015). Consequently, the models for semantic seg-

mentation are generally complex, and therefore the
computational effort to train such models is in prin-
cipal very high. Since adversarial training also neg-
atively affects the training time, our goal is to find a
computationally efficient method which at the same
time increases the robustness of semantic segmenta-
tion models effectively.

For this purpose, we extend the idea of robust
single-step adversarial training. On the one hand,
we investigate single-step adversarial training for se-
mantic segmentation as a relevant and challenging ap-
plication problem for deep learning, and we demon-
strate that it shares the problem of overfitting and lim-
ited robustness towards multi-step attacks with stan-
dard classification problems. On the other hand, we
demonstrate that a careful selection of the step size
can mitigate this problem insofar as even random step
sizes improve robustness. We propose an efficient pa-
rameterless method to choose an optimum step size,
which yields robustness results which are compara-
ble to multi-step adversarial training for two popu-
lar benchmarks from the domain of image segmen-
tation, while sharing the efficiency of single-step ap-
proaches.
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2 BACKGROUND AND RELATED
WORK

2.1 Adversarial Training

Adversarial training for a classical image classifi-
cation task tries to solve the following robust op-
timization problem (Shaham et al., 2016): given a
paired sample (x,y) consisting of an input sample
x ∈ X ⊂ [0,1]H×W×C and an associated label y ∈ Y ⊂
{1, . . . ,M}, where H, W , C and M are the height, the
width, the number of color channels and the num-
ber of classes, respectively, let ` denote the loss func-
tion of a deep neural network fθ : X → [0,1]M , robust
learning aims for the weights θ with

min
θ

E(x,y)∈(X ,Y )

(
max

δ∈B(0,ε)
`( fθ(x+δ),y)

)
, (1)

where E and B(0,ε) denote the expected value and
a sphere at origin with radius ε, respectively. The
sphere is dependent on a chosen distance metric. In
the context of adversarial examples most often L0, L2
and L∞ are considered. In this paper we focus only on
L∞.

Because the loss function is highly nonlinear and
non-convex even solving the inner maximization in
eq. (1) is considered intractable (Katz et al., 2017;
Weng et al., 2018). Therefore, the maximization
problem is often approximated by crafting adversar-
ial examples, such that the optimization of adversarial
training changes to

min
θ

E(xadv,y)∈(Xadv,Y ) `( fθ(xadv),y), (2)

where the adversarial examples xadv ∈ Xadv ⊂
[0,1]H×W×C are generated by a chosen adversarial at-
tack, such that ‖x− xadv‖∞ ≤ ε holds. To guarantee
the classification accuracy on the original clean sam-
ples usually xadv is randomly set to be a clean sample
or an adversarial example. For crafting adversarial
examples while training, most often gradient based
methods, like the Fast Gradient Sign Method or the
Basic Iterative Method, are used.

2.1.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is a single-
step adversarial attack which is a particularly easy
and computationally cheap gradient based method,
because it uses just a single gradient for calculating
the adversary noise (Goodfellow et al., 2015). If a
step size ε is given, an adversarial example is deter-
mined by

xadv = x+ ε · sign(∇x`( fθ(x),y)). (3)

Notice, while generating adversarial examples the
color channels of the resulting images can leave their
value range of [0,1]. To prevent the values of leav-
ing the interval, they are throughout this work always
clipped into the allowed range.

2.1.2 Basic Iterative Method

The Basic Iterative Method (BIM) is a multi-step gen-
eralization of the FGSM (Kurakin et al., 2016). In-
stead of evaluating just one gradient, the BIM uses
n gradients iteratively, to reach a stronger adversarial
example. Given a maximum perturbation ε, a num-
ber of iterations N and a step size α, an adversarial
example created with BIM is given iteratively by

x0 = x,
xi+1 = Πx,ε (xi +α · sign(∇x`( fθ (xi) ,y))) ,
xadv = xN .

(4)

Where the function p̃ = Πx,ε(p) projects p into the
ε-neighbourhood of x, such that ‖p̃− x‖∞ ≤ ε.

2.2 Restrictions of Single-step
Adversarial Training

To generate adversarial examples while train-
ing, Goodfellow et al. (2015) chose the FGSM as a
computationally cheap adversarial attack. But it was
shown that models trained with such a single-step ad-
versarial training are not robust against multi-step at-
tacks (Madry et al., 2018). Therefore, to train robust
models, multi-step adversarial training is commonly
used. Since multi-step approaches require multiple
forward and backward passes through the deep neural
network, training a robust model becomes computa-
tionally very intensive.

To minimize the computational effort while train-
ing, one line of work tries to increase the robust-
ness of single-step adversarial training. Wong et al.
(2020) analyzed the robustness of single-step adver-
sarial training epoch-wise and observed that the ro-
bustness against BIM increases in the beginning dur-
ing training, but decreases after some epochs. This
observation is called catastrophic overfitting. To over-
come this phenomenon Wong et al. (2020) added ran-
dom noise to the input before using the FGSM for
adversarial training and also added early-stopping by
tracking the multi-step robustness of small batches. A
few further approaches follow this line of research (Li
et al., 2020; Andriushchenko and Flammarion, 2020).

Because these methods need to calculate more
than one gradient at some point, they are computa-
tionally inefficient. Kim et al. (2020) showed empiri-
cally that the static step size for generating the adver-
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Figure 2: Sketch: The static step size of single-step adversarial training as reason for catastrophic overfitting. (a) After initial
single-step adversarial training the adversarial example is classified correctly. (b) Further training reduces the loss of the
adversarial example in fixed distance to the original sample even more, but in between the loss increases resulting in a region
of incorrect predictions.

sarial examples constitute a reason why single-step
adversarial training is not robust. Single-step adver-
sarial examples which are generated by a fixed step
size have a fixed distance from their original data
points. When training on such samples as well as on
the original data points, the loss at these points be-
comes very low, but there is no incentive to reduce
the loss between these extremes or to provide a mono-
tonic output in this region. This can lead to catas-
trophic overfitting as displayed in fig. 2, i.e. the pre-
diction of the neural network at the original data and
the adversarial examples are correct, but in between
there is a region where the prediction of the network
becomes incorrect. Multi-step adversarial attacks it-
eratively use small step sizes, and therefore are able to
find these areas of non-monotonicity, such that single-
step adversarial training is not robust against multi-
step attacks.

To overcome this problem, Kim et al. (2020) pro-
posed to test a range of different step sizes by equidis-
tant sampling in the direction of the gradient and to
choose the smallest step size which leads to an incor-
rect prediction. Since this approach aims for a mini-
mum step size to generate an adversarial sample, we
can expect monotonicity of the network output in be-
tween, at least it is guaranteed that no closer adver-
sarials can be found in the direction of the gradient.
Hence overfitting seems less likely in such cases, as
is confirmed by the experimental finding presented
in (Kim et al., 2020).

Yet, the sampling strategy which is presented
in (Kim et al., 2020) requires several forward passes
through the network and is thus in worst case as de-
manding as multi-step approaches. Additionally, the
strategy is not well suited for semantic segmentation,
because on semantic segmentation it is not defined

whether an adversarial example leads to a false pre-
diction or not. In the following, we propose an ap-
proximate analytic solution how to compute a clos-
est adversarial, which leads to an efficient implemen-
tation of this robust step size selection strategy and
which can be utilized for the task of semantic seg-
mentation.

3 METHODS

3.1 Choosing the Step Size for Image
Classification

To explain the idea behind our step size control al-
gorithm, we first start looking at image classifica-
tion. We are interested in an efficient analytic approx-
imation which yields in the direction of the gradient
the closest adversarial example, i.e. a closest pattern
where the classification changes.

The deep neural network is given as a function
fθ : X → [0,1]M , where the output of the deep neural
network fθ(x) is computed using the softmax func-
tion. The inputs to the softmax z(x) are called logits.
We define the gain function g : X×Y → R as

g(x,y) = zy(x)−max
i6=y

zi(x), (5)

where zi(x) is the logit value of class i. The gain func-
tion in eq. (5) has the property that

g(x,y)
{

> 0 if argmax fθ(x) = y
≤ 0 else . (6)

For given (x,y) a close adversarial example can be
found at the decision boundary between a correct and
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an incorrect prediction, which holds if

g(xadv,y) = 0. (7)

Using the update rule of the FGSM in eq. (3) on the
gain function, we create an adversarial example by

xadv = x− ε · sign(∇xg(x,y)). (8)

For estimating the step size ε, we linearly approxi-
mate the gain function g with a Taylor approximation

g(xadv,y)≈ g(x,y)+(xadv− x)T ·∇xg(x,y). (9)

Combining eq. (7), eq. (8) and eq. (9) results in

0 = g(x,y)− ε · sign(∇xg(x,y))T ·∇xg(x,y), (10)

which we can solve for the step size ε:

ε =
g(x,y)

∇xg(x,y)T · sign(∇xg(x,y))

=
g(x,y)

‖∇xg(x,y)‖1
.

(11)

Notice, the idea of the above step size control is the
same as doing one step of Newton’s approximation
method for finding the zero crossings of a function.
We therefore call our approach Fast Newton Method.

Contrary to the classical solution of robust opti-
mization, we use an approximation of the closest ad-
versarial example for training. This has two effects:
on the one hand, we expect monotonicity of the pre-
diction in between, or a sufficient distance from 0.
Hence a network which classifies x and the closest ad-
versarial correctly likely classifies the enclosed inter-
val in the same way, avoiding catastrophic overfitting.
On the other hand, we do not consider any predefined
radius; rather we use the smallest radius that includes
an adversarial example. Using these adversarial ex-
amples for training, iteratively increases the radius of
the sphere, and consequently the distance where ad-
versarials can be found.

3.2 Robust Semantic Segmentation

The above mentioned results were presented in the
context of image classification. In this work we want
to concentrate on semantic segmentation. It is al-
ready known that deep neural networks for seman-
tic segmentation are also vulnerable against adversar-
ial examples (Xie et al., 2017; Metzen et al., 2017),
but only few approaches address the question how to
efficiently implement robust training for image seg-
mentation tasks. As far as we know, there is only
one work investigating the impact of multi-step ad-
versarial training on semantic segmentation (Xu et al.,
2020).

First, we formalize the learning objective for ro-
bust semantic segmentation. Because semantic seg-
mentation determines the class of each single pixel
of an image, semantic segmentation could be inter-
preted as multiple pixel-wise classifications. To pre-
dict all the pixels at the same time the deep neu-
ral network function fθ : X → [0,1]H×W×M has in-
creased output dimension. The set of labels are given
by Y ⊂ {1, . . . ,M}H×W . Robust learning on semantic
segmentation tries to optimize

min
θ

E(x,y)∈(X ,Y )

(
max

δ∈B(0,ε)

1
HW

HW

∑
j=0

`( fθ, j(x+δ),y j)

)
(12)

for the weights θ, where fθ, j(x) and y j are the predic-
tion and the label of the j-th pixel, respectively. To
find the weights for all the pixel-wise predictions si-
multaneously, the losses of the pixel-wise predictions
are averaged.

Adversarial training on semantic image segmenta-
tion approximates the min-max loss by the following
term:

min
θ

E(xadv,y)∈(Xadv,Y )
1

HW

HW

∑
j=0

`( fθ, j(xadv),y j), (13)

where xadv ∈ Xadv constitutes a suitable image with
‖x−xadv‖∞≤ ε, which plays the role of an adversarial
in the sense that it leads to an error of the segmented
image for a large number of pixels. Yet, unlike for
scalar outputs, it is not clear what exactly should be
referred to by an adversarial: we can aim for an in-
put xadv such that all output pixels change, or, alter-
natively, approximate this computationally extensive
extreme by an efficient surrogate, as we will introduce
in the following.

3.3 Choosing the Step Size for Semantic
Segmentation

Initially, we treat each pixel as a separate output. An
adversarial corresponds to an input such that one spe-
cific output pixel changes. For this setting, the gain
function from eq. (5) becomes:

g j(x,y j) = z j,y j(x)−max
i6=y j

z j,i(x), (14)

for j ∈ {1, . . . ,HW}, where z j,i(x) is the logit value
of the j-th pixel of class i. To find a close adversar-
ial example xadv which changes all (or a large num-
ber of) pixels, each pixel-wise output should be at the
boundary between a correct and an incorrect predic-
tion. This holds if

g j(xadv,y j) = 0, ∀ j ∈ {1, . . . ,HW}. (15)
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Using our results from sec. 3.1, we obtain a differ-
ent step size ε j for every pixel, hence a possibly dif-
ferent adversarial x( j)

adv for each pixel-wise prediction.
A common adversarial example xadv which approxi-
mately suits for all pixel-wise predictions in the same
time, could be chosen as the average term

xadv =
1

HW

HW

∑
j=1

x( j)
adv. (16)

But this procedure requires the computation of HW
different gradients ∇xg j(x,y j) for j = 1, . . . ,HW
which is computational too expensive to work with.

As an alternative, we can refer to adversarial
examples as images for which a number of pixels
change the segmentation assignment. In this case
we consider the pixel-wise predictions at the same
time from the beginning by using the average of the
gain functions (rather than the average of the specific
pixel-wise adversarials). A close adversarial example
in this sense is then given if

1
HW

HW

∑
j=1

g j(xadv,y j) = 0. (17)

Defining the averaged gain function as ḡ(x,y) =
1

HW ∑
HW
j=1 g j(x,y j) and using our method from sec. 3.1

results in a single step size

ε =
ḡ(x,y)

‖∇xḡ(x,y)‖1
, (18)

such that the update rule for finding an adversarial ex-
ample becomes

xadv = x− ḡ(x,y)
‖∇xḡ(x,y)‖1

· sign(∇xḡ(x,y)). (19)

Of course using the averaged gain function for calcu-
lating the step size ε in eq. (18) leads to a more loose
approximation, but as a trade off this method does not
increase the computational effort compared to adver-
sarial training with the FGSM considerably, because
we also calculate just one gradient.

4 EXPERIMENTS

4.1 Implementation

4.1.1 Datasets

To evaluate our approach, we use the datasets
Cityscapes (Cordts et al., 2016) and PASCAL
VOC (Everingham et al., 2015). Cityscapes con-
tains 2975, 500 and 1525 colored images of size

1024× 2048 for training, validation and testing, re-
spectively. The labels assign most pixels one of 19
classes, where some areas are not labeled.

PASCAL VOC originally includes 1464, 1499 and
1456 differently sized images for training, validation
and testing, respectively. Later the training set was
increased to 10582 images (Hariharan et al., 2011).
Including the background class, the pixels are labeled
as one of 21 classes. Like in Cityscapes there are also
some areas not labeled, such that we limit our loss and
gain function for both datasets to the labeled pixels.
We always normalise the color channels in the range
of [0,1].

4.1.2 Model

As base model we chose the popular PSPNet50 archi-
tecture from (Zhao et al., 2017) with a slight modifi-
cation. Instead of using ResNet50 we work with the
improved ResNet50v2 as fundamental pretrained net-
work (He et al., 2016). For the training parameters
we follow the paper (Zhao et al., 2017) using SGD
with a momentum of 0.9. The learning rate decays
polynomially with a base learn rate of 0.01 and power
0.9. We use a batchsize of 16 and also include L2
weight decay of 10−4. However, for a better compari-
son to different models, we do not apply the auxiliary
loss from (Zhao et al., 2017). To further increase the
variation of the dataset, the data is randomly horizon-
tally flipped, resized between 0.5 and 2, rotated be-
tween−10 and 10 degrees, and additionally randomly
blurred. Afterwards, we randomly crop the images to
a size of 712×712 and 472×472 for Cityscapes and
PASCAL VOC, respectively. For evaluation, we will
compare the robustness of the following models:

• The Basic Model without using any adversarial
examples in training,

• The FGSM Model trained with FGSM at ε= 0.03,

• The random FGSM Model trained with FGSM at
ε∼U(0,0.03) chosen uniformly,

• The BIM Model trained with BIM (α = 0.01, ε =
0.03, N = 3),

• Fast Newton Method trained with our algorithm,

where the parameters of the BIM Model are taken
from (Xu et al., 2020). For adversarial training the
input is randomly chosen either a clean data sample
or an adversarial example, each with probability of
0.5.

4.1.3 Evaluating the Robustness

We measure the performance on the clean and
the adversary data with the mean Intersection over
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Figure 3: Robustness curves on the Cityscapes dataset.

Table 1: Additional training time on Cityscapes shown as percentage compared to the training time of the Basic Model.

Method Basic Model FGSM Model random FGSM Model Fast Newton Method BIM Model
Additional time 0.00% 12.52% 12.34% 11.98% 45.92%

Unit (IoU) (Everingham et al., 2015). The mean IoU
is a standard measure for semantic segmentation. It is
used over the standard accuracy per Pixel, because it
better represents the desired accuracy in case of dif-
ferently sized objects.

For the empirical robustness evaluation we at-
tack each model with FGSM and BIM. The adversar-
ial examples are generated by maximizing the cross-
entropy loss. For both attacks we vary the attack ra-
dius ε from 0 to 0.04, such that we receive one ro-
bustness curve for each model and attack. As trade
off between computational time and attack strength,
we use BIM with N = 10 iterations. We chose the
step size α as small as possible, such that the maxi-
mum perturbation rate of ε = 0.04 is still reachable.
Hence, we use α = 0.004 as step size for BIM.

4.2 Results on Cityscapes

4.2.1 Single-step Robustness

In fig. 3(a) are the summarized results regarding the
FGSM shown. We see that the mean IoU of all mod-
els except the FGSM Model and the random FGSM
Model decrease with increased attack strength ε,
whereas the performance of the BIM Model and our
Fast Newton Method decrease slower. The BIM
Model shows slightly better robustness than ours, but
the FGSM Model and the random FGSM Model per-
form even better. Looking closer to the robustness
curve of the FGSM Model, we observe that the model
is most robust to adversarial examples with attack
strength ε = 0 and ε = 0.03. For the other val-
ues of ε the robustness decreases. This observation
matches with the phenomenon of catastrophic over-

fitting shown in fig. 2. The model is most robust ex-
actly against the adversarial examples it was trained
for. For the values between ε = 0 and ε = 0.03 the
nonlinear character of deep neural networks leads to
a drop in the robustness.

4.2.2 Multi-step Robustness

Fig. 3(b) shows the robustness of the trained models
against attacks with BIM. As can be seen, all models
perform significantly worse against this attack. Be-
cause the robustness is defined as the performance
under the worst case attack, this evaluation represents
the real robustness of the models far better. We can
see that the Basic Model and FGSM Model drop very
fast with increased attack strength ε. So we can con-
firm that the FGSM Model overfits. Even though the
Fast Newton Method and the random FGSM Model
are also single-step adversarial training models, they
perform significantly better under the attack with BIM
than the FGSM Model. That shows that the idea of
controlling the step sizes of adversarial attacks makes
single-step adversarial training more effective. The
performance of our Fast Newton Method compared
to the FGSM models shows the importance of choos-
ing the correct step size for creating adversarial exam-
ples during training. Additionally, our Fast Newton
Method shows for small ε even better robustness than
the more sophisticated BIM model, and is for larger ε

equally robust while being significantly less compu-
tational expensive (see table 1).
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Figure 4: Robustness curves on the PASCAL VOC dataset.

Table 2: Additional training time on PASCAL VOC shown as percentage compared to the training time of the Basic Model.

Method Basic Model FGSM Model random FGSM Model Fast Newton Method BIM Model
Additional time 0.00% 31.76% 34.71% 31.18% 98.24%

4.3 Results on PASCAL VOC

4.3.1 Single-step Robustness

The robustness curves against the FGSM for models
trained on PASCAL VOC are shown in fig. 4(a). We
observe that the attack is not as effective on the Basic
Model as on Cityscapes. We think that this is mainly
reasoned in the characteristic of the dataset with its
dominant background class. It seems difficult for the
attack to switch the class of the whole background
area. But as we already mentioned, the robustness is
better represented by a strong multi-step attack. Our
focus here lays again in the curve course of the FGSM
Model. Like on Cityscapes the FGSM Model is most
robust against the adversarial examples it was trained
for (ε = 0 and ε = 0.03). So we see again an indicator
for catastrophic overfitting.

4.3.2 Multi-step Robustness

Looking in Fig. 4(b) on the robustness of the trained
models against the BIM, we can observe very sim-
ilar results like on Cityscapes. Both, the Basic and
the FGSM Model, perform much worse than the other
models. So we can clearly say that the FGSM Model
overfits to adversarial examples it was trained with.
However, even if the random FGSM Model and the
Fast Newton Method are trained with single-step ad-
versarial examples, too, they perform significantly
better than the FGSM Model. Thus, we can confirm
that varying the step size increases the robustness of
such models. Because the Fast Newton Method out-
performs the random FGSM Model, we conclude that

our proposed step size is more superior than determin-
ing the step size randomly. Additionally, even if our
Fast Newton Method is less computational expensive
than the BIM Model (see table 2), their robustness is
very similar.

5 CONCLUSION

The research community focused so far on improv-
ing the robustness of deep neural networks for im-
age classification. We on the other hand concentrate
on semantic segmentation. We showed that single-
step adversarial training for semantic segmentation
underlies the same difficulties regarding the robust-
ness against multi-step adversarial attacks. One rea-
son for that non-robustness of single step adversarial
training is the static step size for finding the adver-
sarial examples while training. Therefore, we pre-
sented a step size control algorithm which approxi-
mates an appropriate step size for every input such
that the robustness of single-step adversarial training
increases significantly. As our method approximates
the best step size based on the gradient, which needs
to be calculated anyway for adversarial training, our
method does not considerably increase the computa-
tional effort while training a significantly more robust
model. In addition, our approach is easy to use, be-
cause it is free of any parameter. Finally, we showed
on the datasets Cityscapes and PASCAL VOC, that
our method equals in performance with the more so-
phisticated and the more computationally expensive
multi-step adversarial training.
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