chard, B., Raja, C., and Francisco, H., (2020). Explain-
able  Artificial  Intelligence  (XAI):  Concepts,  taxono-
mies, opportunities and challenges toward responsible 
AI,  Information Fusion, volume 58, pages 82-115. 
Bahdanau, D., Cho, K., and Bengio, Y., (2015). Neural ma-
chine translation by jointly learning to align and trans-
late, in ICLR, San Diego, CA, USA. 
Bratko I., (1990). Prolog Programming for Artificial Intel-
ligence. 2nd ed., Addison-Wesley Publishing Company, 
USA, pages 597. 
Brockman,  G.,  Cheung,  V.,  Pettersson,  L.,  Schneider, 
Schulman,  J.,  Tang,  J.,  J.,  and  Zaremba,  W.,  (2016). 
Openai gym, arXiv preprint arXiv: 1606.01540. 
Cingillioglu,  N.  and  Russo,  A.,  (2018).  DeepLogic:  To-
wards  end-to-end  differentiable  logical  reasoning, 
arXiv preprint arXiv: 1805.07433. 
Cohen, W., (2016). Tensorlog: A differentiable deductive 
database, arXiv preprint arXiv: 1605.06523. 
Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowe, A., Mil-
ler, T., Weber, R., and Magazzeni, D., (2019). Distilling 
deep  reinforcement  learning  policies  in  soft  decision 
trees, in Proc. of the IJCAI 2019 Workshop on Explain-
able Artificial Intelligence, pages 1-6. 
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D., 
(2019). Neural logic machines, in Proc. of International 
Conference on Learning Representations, New Orle-
ans, Louisiana, USA. 
Fukuchi,  Y.,  Osawa,  M.,  Yamakawa,  H.,  and  Imai,  M., 
(2017). Autonomous selfexplanation of behavior for in-
teractive reinforcement learning agents, in Proc. of the 
5th International Conference on Human Agent Interac-
tion - HAI ’17. ACM Press. 
Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., 
and Bengio, Y., (2013). Maxout networks, in Proc. of 
the 30th International Conference on Machine Learn-
ing, Atlanta, Georgia, USA. 
Hado,  H.,  Arthur,  G.,  and  David,  S.,  (2016).  Deep  rein-
forcement  learning  with  double  Q-learning,  Thirtieth 
AAAI Conference on Artificial Intelligence, volume 30, 
number 1. 
Hochreiter,  S.  and  Schmidhuber,  J.,  (1997).  Long  short-
term memory, Neural Computation, volume 9, number 
8, pages 1735-1780. 
Honda, H. and Hagiwara, M., (2019). Question answering 
systems with deep learning-based symbolic processing, 
in IEEE Access, volume 7, pages 152368-152378. 
Honda, H. and Hagiwara, M., (2021). Analogical Reason-
ing  With  Deep Learning-Based  Symbolic  Processing, 
in IEEE Access, volume 9, pages 121859-121870. 
Kingma, D. and Ba, J., (2014). Adam: A  method for  sto-
chastic optimization, arXiv preprint arXiv: 1412.6980
. 
Lee, J. H., (2019). Complementary reinforcement learning 
towards  explainable  agents,  arXiv preprint arXiv: 
1901.00188. 
Likert, R., (1932). A technique for the measurement of atti-
tudes, Archives of Psychology, volume 140, number 55. 
Lipton, Z.C., (2018). The mythos of model interpretability, 
Communications of the ACM, volume 61, number 10, 
pages 36-43. 
Madumal,  P.,  Miller,  T.,  Sonenberg,  L.,  and  Vetere,  F., 
(2019).  Explainable  reinforcement  learning  through  a 
causal lens, arXiv preprint arXiv: 1905.10958. 
Minervini, P., Bosnjak M., Rocktschel, T., and Riedel, S., 
(2018). Towards neural theorem proving at scale, arXiv 
preprint arXiv: 1807.08204. 
Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., and 
Rocktäschel, T., (2020). Learning Reasoning Strategies 
in  End-to-End  Differentiable  Proving,  in Proc. of the 
37th International Conference on Machine Learning, 
PMLR 119, pages 6938-6949. 
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Anto-
noglou,  I.,  Wierstra,  D.,  and  Riedmiller,  M.  (2013). 
Playing Atari with deep reinforcement learning, arXiv 
preprint arXiv:1312.5602. 
Montavon, G., Samek, W., and Muller, K.R., (2018) Meth-
ods for interpreting and understanding deep neural net-
works, Digital Signal Processing, volume 73, pages 1-
15. 
Osgood, C. E., Suci, G., and Tannenbaum, P., (1957). The 
measurement of meaning, Urbana, IL: University of Il-
linois Press. 
Osgood,  C.  E.,  May,  W.  H.,  and  Miron,  M.  S.,  (1975). 
Cross-Cultural  Universals  of  Affective  Meaning,  Ur-
bana, IL: University of Illinois Press. 
Rocktaschel, T. and Riedel, S., (2017). End-to-end differ-
entiable proving, in Proc. of the NIPS 30, pages 3788-
3800. 
Sequeira, P. and Gervasio, M., (2019). Interestingness ele-
ments  for  explainable  reinforcement  learning:  Under-
standing agents, capabilities, and limitations, arXiv pre-
print arXiv: 1912.09007. 
Serani, L. and d'Avila Garcez, A. S., (2016). Logic tensor 
networks:  Deep  learning  and  logical  reasoning  from 
data and knowledge, in Proc. of the 11th International 
Workshop on Neural-Symbolic Learning and Reason-
ing (NeSy’16) co-located with the Joint Multi-Confer-
ence on Human-Level Artificial Intelligence (HLAI 
2016), New York City, NY, USA. 
Sourek, G., Aschenbrenner, V., Zelezny, F., and Kuzelka, 
O., (2015). Lifted relational neural networks, in Proc. 
of the NIPS Workshop on Cognitive Computation: Inte-
grating Neural and Symbolic Approaches co-located 
with the NIPS 29, Montreal, Canada. 
Vaswani,A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A., Kaiser, L., and Polosukhi, I., (2017). At-
tention Is All You Need, in Proc. of the NIPS 31
, pages 
5998–6008. 
Waa, J., Diggelen, J., Bosch, K., and Neerincx, M., (2018). 
Contrastive explanations for reinforcement learning in 
terms  of  expected  consequences, IJCAI-18 Workshop 
on Explainable AI (XAI), volume 37. 
Deep-Learning-based Fuzzy Symbolic Processing with Agents Capable of Knowledge Communication