Florack, L., ter Haar Romeny, B., Koenderink, J., and
Viergever, M. (1993). Cartesian differential invariants
in scale-space. Journal of Mathematical Imaging and
Vision, 3:327–348.
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Gian-
notti, F., and Pedreschi, D. (2018). A survey of meth-
ods for explaining black box models. ACM Comput.
Surv., 51(5).
Henriksen, J. J. (2007). 3d surface tracking and approxima-
tion using gabor filters. pages 5–8. South Denmark
University. https://www.yumpu.com/en/document/
view/44234347/ [Online; accessed 23-07-2021].
Hildreth, E. C. (1983). The detection of intensity changes
by computer and biological vision systems. Comput.
Vis. Graph. Image Process., 22(1):1–27.
Humeau-Heurtier, A. (2019). Texture feature extraction
methods: A survey. IEEE Access, 7:8975–9000.
Islamic Manuscripts (2021). https://www.
islamic-manuscripts.net/receive/IslamHSBook
islamhs 00000626 [Online; accessed 23-07-2021].
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
agenet classification with deep convolutional neural
networks. Commun. ACM, 60(6):84–90.
Lee, T. S. (1996). Image representation using 2d gabor
wavelets. IEEE Trans. Pattern Anal. Mach. Intell. ,
18(10):959–971.
Likforman-Sulem, L., Zahour, A., and Taconet, B. (2007).
Text line segmentation of historical documents: a sur-
vey. International Journal of Document Analysis and
Recognition (IJDAR), 9(2):123–138.
Lindeberg, T. (1990). Scale-space for discrete signals. IEEE
Trans. Pattern Anal. Mach. Intell., 12(3):234–254.
Liwicki, F. S. and Liwicki, M. (2020). Deep learning for
historical document analysis. In Handbook of Pattern
Recognition and Computer Vision, chapter 2.6, pages
287–303.
Lombardi, F. and Marinai, S. (2020). Deep learning for his-
torical document analysis and recognition—a survey.
Journal of Imaging, 6(10).
Lopresti, D. P. and Nagy, G. (2011). When is a problem
solved? In 2011 International Conference on Docu-
ment Analysis and Recognition, ICDAR 2011, Beijing,
China, September 18-21, 2011, pages 32–36. IEEE
Computer Society.
Manmatha, R. and Srimal, N. (1999). Scale space technique
for word segmentation in handwritten documents. In
Nielsen, M., Johansen, P., Olsen, O. F., and Weickert,
J., editors, Scale-Space Theories in Computer Vision,
pages 22–33, Berlin, Heidelberg. Springer Berlin Hei-
delberg.
Mechi, O., Mehri, M., Ingold, R., and Amara, N. E. B.
(2021). A two-step framework for text line seg-
mentation in historical arabic and latin document im-
ages. International Journal on Document Analysis
and Recognition (IJDAR) volume, 24(3):197–218.
Mehri, M., H
´
eroux, P., Gomez-Kr
¨
amer, P., and Mullot, R.
(2017). Texture feature benchmarking and evaluation
for historical document image analysis. International
Journal on Document Analysis and Recognition (IJ-
DAR), 20.
Neumann, H. and Stiehl, H. S. (1987). Toward a testbed for
evaluation of early visual processes. Proceedings of
the 2nd International Conference on Computer Analy-
sis of Images and Patterns (CAIP’87), pages 256–263.
OpenCV (2021a). Open source computer vision li-
brary. https://github.com/opencv/opencv/blob/master/
modules/imgproc/src/gabor.cpp [Online; accessed 23-
07-2021].
OpenCV (2021b). Open source computer vision library
- function connected components with stats. https:
//docs.opencv.org/3.4/d3/dc0/group imgproc shape.
html#ga107a78bf7cd25dec05fb4dfc5c9e765f [On-
line; accessed 25-11-2021].
Pandey, P. S., Rajan, V., Stiehl, H. S., and Kohs, M. (2020).
Visual programming-based interactive analysis of an-
cient documents: The case of magical signs in jewish
manuscripts. In et al., A. D. B., editor, Pattern Recog-
nition. ICPR International Workshops and Challenges
- Virtual Event, January 10-15, 2021, Proceedings,
Part VII, volume 12667 of Lecture Notes in Computer
Science, pages 156–170. Springer.
Saabni, R., Asi, A., and El-Sana, J. (2014). Text line extrac-
tion for historical document images. Pattern Recogni-
tion Letters, 35:23–33. Frontiers in Handwriting Pro-
cessing.
Sehad, A., Chibani, Y., Hedjam, R., and Cheriet, M. (2019).
Gabor filter-based texture for ancient degraded docu-
ment image binarization. Pattern Analysis and Appli-
cations, 22(1):1–22.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. A. (2015). Striving for simplicity: The all
convolutional net. In Bengio, Y. and LeCun, Y., ed-
itors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings.
Subramani, N., Matton, A., Greaves, M., and Lam, A.
(2020). A survey of deep learning approaches
for OCR and document understanding. CoRR,
abs/2011.13534.
Thacker, N. A., Clark, A. F., Barron, J. L., Beveridge, J. R.,
Courtney, P., Crum, W. R., Ramesh, V., and Clark,
C. (2008). Performance characterization in computer
vision: A guide to best practices. Comput. Vis. Image
Underst., 109(3):305–334.
Tilemahos Efthimiadis (2010). Egyptian antiquities - clay
magic bowl with aramaic writing. national archaeo-
logical museum, athens, greece. https://www.flickr.
com/photos/telemax/4334582134/ [Online; accessed
23-07-2021].
Yuille, A. L. and Liu, C. (2021). Deep nets: What have they
ever done for vision? Int. J. Comput. Vis., 129(3):781–
802.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and un-
derstanding convolutional networks. In Fleet, D. J.,
Pajdla, T., Schiele, B., and Tuytelaars, T., editors,
Computer Vision - ECCV 2014 - 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part I, volume 8689 of Lecture Notes in
Computer Science, pages 818–833. Springer.
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
212