Blum, C. and Roli, A. (2003). Metaheuristics in combi-
natorial optimization: Overview and conceptual com-
parison. ACM computing surveys (CSUR), 35(3):268–
308.
Carbonnel, C. and Cooper, M. C. (2016). Tractability
in constraint satisfaction problems: a survey. Con-
straints, 21(2):115–144.
Dechter, R., Cohen, D., et al. (2003). Constraint processing.
Morgan Kaufmann.
Do, M. B. and Kambhampati, S. (2001). Planning as
constraint satisfaction: Solving the planning graph
by compiling it into csp. Artificial Intelligence,
132(2):151–182.
Fornarelli, G. (2012). Swarm intelligence for electric and
electronic engineering. IGI Global.
Galinier, P. and Hao, J. (1997). Tabu search for maximal
constraint satisfaction problems. In Smolka, G., ed-
itor, Principles and Practice of Constraint Program-
ming - CP97, Third International Conference, Linz,
Austria, October 29 - November 1, 1997, Proceedings,
volume 1330 of Lecture Notes in Computer Science,
pages 196–208. Springer.
Glover, F. W. and Kochenberger, G. A. (2006). Handbook of
metaheuristics, volume 57. Springer Science & Busi-
ness Media.
Goradia, H. J. (2013). Ants with limited memory for solv-
ing constraint satisfaction problems. In 2013 IEEE
Congress on Evolutionary Computation, pages 1884–
1891. IEEE.
Gutin, G. and Yeo, A. (2012). Constraint satisfaction prob-
lems parameterized above or below tight bounds: A
survey. In The Multivariate Algorithmic Revolution
and Beyond, pages 257–286. Springer.
Hmer, A. and Mouhoub, M. (2016). A multi-phase hybrid
metaheuristics approach for the exam timetabling.
Int. J. Comput. Intell. Appl., 15(4):1650023:1–
1650023:22.
Jussien, N. and Lhomme, O. (2002). Local search with con-
straint propagation and conflict-based heuristics. Ar-
tificial Intelligence, 139(1):21–45.
Kennedy, J. and Eberhart, R. (1995). Particle swarm opti-
mization. In Proc. IEEE Intl. Con on Neural Networks
(Perth, Australia), pages 1942–1948. IEEE.
Korani, W. and Mouhoub, M. (2020). Discrete mother tree
optimization for the traveling salesman problem. In
International Conference on Neural Information Pro-
cessing, pages 25–37. Springer.
Korani, W. and Mouhoub, M. (2021). Review on Nature-
Inspired Algorithms. SN Operations Research Forum,
2(3):1–26.
Korani, W., Mouhoub, M., and Spiteri, R. J. (2019). Mother
tree optimization. In 2019 IEEE International Confer-
ence on Systems, Man and Cybernetics (SMC), pages
2206–2213. IEEE.
Kumar, V. (1992). Algorithms for constraint-satisfaction
problems: A survey. AI magazine, 13(1):32–32.
Liang, Y., Wan, Z., and Fang, D. (2017). An improved ar-
tificial bee colony algorithm for solving constrained
optimization problems. International Journal of Ma-
chine Learning and Cybernetics, 8(3):739–754.
Minton, S., Johnston, M. D., Philips, A. B., and Laird,
P. (1992a). Minimizing conflicts: a heuristic re-
pair method for constraint satisfaction and scheduling
problems. Artificial intelligence, 58(1-3):161–205.
Minton, S., Johnston, M. D., Philips, A. B., and Laird,
P. (1992b). Minimizing conflicts: a heuristic re-
pair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58(1):161–205.
Mitchell, M. (1996). An introduction to genetic algorithms
mit press. Cambridge, Massachusetts. London, Eng-
land, 1996.
Mouhoub, M. (2004). Systematic versus non systematic
techniques for solving temporal constraints in a dy-
namic environment. AI Commun., 17(4):201–211.
Mouhoub, M. and Jafari, B. (2011). Heuristic techniques for
variable and value ordering in csps. In Proceedings of
the 13th annual conference on Genetic and evolution-
ary computation, pages 457–464.
Othman, H. B. and Bouamama, S. (2019). A new template
concept guided honey bee optimization for max-csps.
Procedia Computer Science, 159:2154–2161.
Roos, N., Ran, Y., and Van Den Herik, J. (2000). Com-
bining local search and constraint propagation to find
a minimal change solution for a dynamic csp. In
International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, pages 272–
282. Springer.
Rossi, F., van Beek, P., and Walsh, T., editors (2006). Hand-
book of Constraint Programming. Elsevier.
Roussel, O. and Lecoutre, C. (2009). Xml representation of
constraint networks: Format xcsp 2.1. arXiv preprint
arXiv:0902.2362.
Ruttkay, Z. (1998). Constraint satisfaction-a survey. CWI
Quarterly, 11(2&3):123–162.
Shil, S. K., Mouhoub, M., and Sadaoui, S. (2013). Win-
ner determination in combinatorial reverse auctions.
In Contemporary challenges and solutions in applied
artificial intelligence, pages 35–40. Springer.
Talbi, E.-G. (2009). Metaheuristics: from design to imple-
mentation, volume 74. John Wiley & Sons.
Tsang, E. P., Wang, C. J., Davenport, A., Voudouris, C., and
Lau, T. L. (1999). A family of stochastic methods for
constraint satisfaction and optimization. In The First
International Conference on the Practical Application
of Constraint Technologies and Logic Programming
(PACLP), London, pages 359–383.
Xu, K. and Li, W. (2000). Exact phase transitions in random
constraint satisfaction problems. Journal of Artificial
Intelligence Research, 12:93–103.
Yong, K. W. and Mouhoub, M. (2018). Using conflict and
support counts for variable and value ordering in csps.
Appl. Intell., 48(8):2487–2500.
Zhang, J. and Zhang, H. (1996). Combining local search
and backtracking techniques for constraint satisfac-
tion. In AAAI/IAAI, Vol. 1, pages 369–374.
Zouita, M., Bouamama, S., and Barkaoui, K. (2019). Im-
proving genetic algorithm using arc consistency tech-
nic. Procedia Computer Science, 159:1387–1396.
Discrete Mother Tree Optimization and Swarm Intelligence for Constraint Satisfaction Problems
241