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In this paper, we investigate an inclusion problemrfmted labeled caterpillars (resp., caterpillars, for short),

which we call acaterpillar inclusion. The caterpillar inclusion is to determine whether or ntexacaterpillar

T achieves to pattern caterpillar P by deleting vertices iif . Then, we design the algorithm of the caterpillar
inclusion forP andT in O((h+ H)o) time, whereh is the height ofP, H is the height ofT ando is the
number of labels occurring iR andT. Also we give experimental results for the algorithm by gsieal data

for caterpillars.

1 INTRODUCTION

several algorithms to compute unordered tree inclu-
sion have been designed as the exact exponential al-

The pattern matching for tree-structured data such gorithms (Akutsu et al., 2021; Kilpelainen and Man-

as HTML and XML documents for web mining or
DNA and glycan data for bioinformatics is one of the
fundamental tasks for information retrieval or query
processing. As such pattern matching footed la-
beled unordered trees, anunordered tree inclusion (an
inclusion, for short) is the problem of determining
whether or not an unordered tr€ecalled apattern
tree is included in an unordered trée called atext
tree, that is, T achieves tdP by deleting vertices in
T. However, the inclusion is known to be intractable,
that is, NP-complete (Kilpelainen and Mannila, 1995;
MatouSek and Thomas, 1992).

In order to overcome such intractability, several

researches have developed the tractable variations of

the inclusion such as tp-down inclusion (Shamir
and Tsur, 1999), @ottom-up inclusion (Valiente,
2002), arCA-preserving inclusion (Valiente, 2003)
and anisolated-subtree inclusion (Hokazono et al.,

nila, 1995).

Note that the proof of NP-completeness for the
inclusion implies the structural restriction of the
tractability for the inclusion that the height of a text
tree is at most 2 or the degree of a text tree is bounded
by some constant (Kilpelainen and Mannila, 1995;
MatouSek and Thomas, 1992). In this paper, we give
another structural restriction providing the limitation
of the tractability for the inclusion as eooted la-
beled caterpillar (a caterpillar, for short) €f., (Gal-
lian, 2007)). The caterpillar is an unordered tree
transformed to a rooted path after removing all the
leavesin it.

The caterpillar provides the structural restriction
of the tractability of computing thedit distance for

unordered trees (Muraka et al., 2018). It is known
that the problem of computing the edit distance be-
tween unordered trees is MAX SNP-hard (Zhang and

2012). The first three variations are formulated by Jiang, 1994). This statement also holds even if two
restricting the scope of the deletion of vertices to {rees are binary, the maximum height is at most 3
just leaves, just roots and just either leaves or ver- OF the cost fun_ctlon is the unit cost function (Akutsu
tices with one child, respectively. Also the top-down et al., 2013; Hirata et al., 2011). On the other hand,
(resp., bottom-up) inclusion coincides with the top- We can compute the edit distance between caterpil-
down (respli bottom_up) unordered subtree isomor- lars in O(hz)\a) time in the genel’al cost function and

phism €., (Valiente, 2002)). On the other hand, the O(h*\) time under the unit cost function, whehds
the maximum height of the two caterpillars ahds

Iwhile Valiente (Valiente, 2005) has called itcan-
strained inclusion, the definition of (Valiente, 2005) is cor-

responding to an LCA-preserving distance or a degree-2

distance (Zhang et al., 1996). Hence, we call itL&A-
preserving inclusion.

the maximum number of leaves in the two caterpil-
lars (Muraka et al., 2018)

2This time complexity is different from the result in
(Muraka et al., 2018), because it contains some errors. See
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Hence, in this paper, we investigatecater pil-
lar inclusion of determining whether or not a pat-
tern caterpillarP is included in a text caterpillaF.
Then, we design the algorithma€INc of determin-
ing whether or noP is included inT in O((h+H)o)
time, whereh is the height ofP, H is the height ofT
ando is the number of labels occurring PandT.
Also, we give experimental results for the algorithm
CATINC by using real caterpillar data.

2 PRELIMINARIES

A treeis a connected graph without cycles. For a tree
T = (V,E), we denote/ andE by V(T) andE(T).

We sometimes denotec V(T) by ve T. A rooted
tree is a tree with one vertex chosen as itsoot,
which we denote by(T).

For each vertew in a rooted tree with the root
r, let UP,(v) be the unique path fromito r. The
parent of v( r) is its adjacent vertex obP, (v) and
the ancestors of v(= r) are the vertices obP; (v) —
{v}. We denoteu < v if v is an ancestor ofi, and
we denoteu < v if eitheru < voru=v. The parent
and the ancestors of the raotre undefined. Also we
say thatw is theleast common ancestor of u andy,
denoted byLlv, if u<w, v< wand there exists ¢/
suchthau <w,v<w andw <w. We say thatiis a
child of vif vis the parent ofi, andu is adescendant
of v if vis an ancestor ofl. We denote the set of
all children ofv by ch(v). Two vertices with the same
parent are calledblings. A leaf is a vertex having no
children and we denote the set of all the leave¥ in
by Iv(T). We call a vertex that is neither the root nor
a leaf aninternal vertex. Theheight h(v) of a vertexv
is defined asUP; (v)| — 1 and theheight h(T) of T is
the maximum height for every vertexc T.

We say that a rooted tree @dered if a left-to-
right order among siblings is givelinordered other-
wise. For a fixed finite alphab&t we say that a tree
is labeled over % if each vertex is assigned a symbol
from . We denote the label of a verteby I (v), and
sometimes identify with 1 (v). In this paper, we call
a rooted labeled unordered tree oXeatree, simply.
Definition 1 (Isomorphic trees) Let T; and T, be
trees. Then, we say thay and T, are isomorphic,
denoted byT; 2 T, if there exists a st C V(T1) x
V (T,) satisfying the following conditiors
1. WeV(Ty)3weV(To)

((ww) e F)AIW) =1w))).

(Ukita et al., 2021) in more detail.

3In this definition, we use the notion like a Tai mapping
as Definition 4.

(inclusion condition)

2. YweV(T)IveV(T)
((ww) €F) A (W) =1w))).
(exclusion condition)

3. V(V]_,Wl), (V2,W2) cF
((vl =Vy) < (W= W2)>.
(one-to-one condition)

4, V(Vl,Wl), (Vz,Wz) cF
((vl <vp) = (W < W2)>.
(ancestor condition)

As the restricted form of trees, we introduce a
rooted labeled caterpillar (caterpillar, for short) as
follows.

Definition 2 (Caterpillar) We say that a tree is a
caterpillar (cf. (Gallian, 2007)) if it is transformed to

a rooted path after removing all the leaves in it. For a
caterpillarC, we call the remained rooted pathack-
bone of C and denote it byb(C).

It is obvious thatr(C) = r(bb(C)) andV(C) =
V(bb(C))Ulv(C) for a caterpillacC, that is, every ver-
tex in a caterpillar is either a leaf or an element of the
backbone.

3 TREEINCLUSION

In this section, we formulate a tree inclusion.
Throughout of this paper, we just deal with an-
ordered tree inclusion, that is, the tree inclusion be-
tween unordered trees. Hence, we calluaordered
treeinclusion aninclusion simply.

For a treelT and a vertex € T, thedeletion of v
in T is to delete a non-root vertaxn T with a parent
v/, making the children of become the children of
V' that are inserted in the place whs a subset of the
children ofv'. We denote the result of the deletion of
vin T by delete(T,v). See the following figure.

delete(T,v)

Definition 3 (Inclusion) Let P andT be trees. We
sometimes calP a pattern tree andT a text tree.
Then, we say thdP is aninclusion of T, denoted by
PLC T, if eitherP= T or there exists a sequence of
verticesvy,...,w in T such thaflp = T, Ty 2 P and
Tit1 = delete(Ti, vit1) (0<i <k-1).
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We can characterize the tree inclusion by using the Note thaiS; \ S, = $\ S 1S, For a seV of vertices,

following inclusion mapping (Hokazono et al., 2012),

which is a variant of a Tai mapping in the tree edit

distance (Tai, 1979).

Definition 4 (Inclusion mapping) Let P and T be
trees. Then, we say that the trip(¢,P,T) is an
(unordered) inclusion mapping from P to T if | C
V(P) xV(T) satisfies the conditions 1, 3 and 4 in Def-
inition 1, that is:

1. WweVP)aweV(T)
(((v,w) eNA((V) = |(w))).
(inclusion condition)
2. V(Vl,Wl), (V2,W2) el
(Vi=V2) < (w1 = W2)>.
(one-to-one condition)
3. V(Vl,Wl), (V2,W2) el
(Vi <) <= (W < W2)>.
(ancestor condition)

We will usel instead of I, P, T) when there is no con-
fusion.

It is obvious thatP C T if and only if there exists
an inclusion mapping frorR to T, andP = T if and
onlyif PCT andT C P.

Theorem 1. (Kilpelainen and Mannila, 1995for
treesP and T, the problem of determining whether or
not P C T is NP-complete. This statement also holds
even if the maximumheight of T isat most 3.

4 CATERPILLAR INCLUSION

In this section, we investigatecaaterpillar inclusion
as the inclusion such that both a pattern tee@nd a
text treeT are caterpillars.

Let P and T be caterpillars such thai{P) = v;
andr(T) = wz. Then, we denotbb(P) = [v1,..., V]
for (vi,viy1) € E(P) and bb(T) = [wy,...,Wn] for
(wj,wji1) € E(T). AlsoL; (resp., M;) denotes the set
of leaves that are children gf(resp., wj) for L<i<n
(resp,, 1< j<m).

In this section, we usemultiset of labels in order
to compare two sets of vertices. rultiset on X is
a mappingS: Z — N. For a multiseSon %, we say
thata € X is anelement of Sif S(a) > 0. An empty
multiset is a multiseS such thatS(a) = 0 for every
a € X and denote it by (like as a standard set). Let
S, andS; be multisets oix. Then, we define thiter-
section S, MS; and thedifference S, \ S as multisets
satisfying that(S; M $)(a) = min{S,(a),$(a)} and
(S\S)(a) =max{Si(a) — S(a),0} foreveryac %.
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we denote the multiset of labels occurringMrby V.
Then, we design the algorithmaCINC in Algo-
rithm 1.

procedure CATINC(P,T)

/ P : caterpillar,bb(P) = [v1,...,Vn] /
/T : caterpillarbb(T) = [wy, ..., W] /
1 if n> mthen return “No”; halt;
2 else
3 j <1
4 fori=1tondo
5 while | (v;) # | (w;j) do
6 if j <mthen j++;
7 else return“No”; halt;
T1(vi) =1 (w;) /
8 N« L\ Mj;
o while ((i <nandN; # 0) or
(i=nandNy\ {Wj 1} # 0)) do
10 if j <mthen
11 Lj++§ﬂi<—’\~li\Mj;
12 else return“No”; halt;
13 L jH+;
14 | return “Yes”,

Algorithm 1: CaTINC.

Example 1. Consider a pattern caterpillRrand a text
caterpillarT in Figure 1, wherebb(P) = [v1,V2, V3]
andbb(T) = [wi,...,wg]. Also we denote a multiset
as a string, that is, we denote a multi¢ata, b, c,c}
as a string?bc?, for example. Then, we run the algo-
rithm CATINC(P T).

First, the algorithm @GTINC(P, T) findsw; such
thatl(v1) = I(wj). Then, it sets) = 1 and computes
L3\ M1 = bc\ b2 =c=Ny. SinceN; # 0, after in-
crementingj as 2 it computel; \ M, = ¢\ ¢2 = 0,
which is set toN;. SinceN; = 0, the algorithm
CATINC(P, T) incrementsg as 3 and as 2.

Secondly, the algorithm &' INC(P, T) finds w;
such that (v2) = I(w;) for j > 3. Then, it set§ =3
and computed, \ Mz = b2\ b%c = 0 = N,. Since
Nz = 0, the algorithm @TINC(P,T) incrementsj as
4 andi as 3.

Finally, the algorithm @TINC(P, T) findsw; such
thatl(v3) = [(w;) for j > 4. Then, it set§ =4 and
computed 3\ Mg = c3\ b%c = ¢ = N3. SinceNs #
0, after incrementing as 5 it computes\s \ Ms =
¢2\ ¢ = ¢, which is set toN3. SinceNs # 0, after
incrementingj as 6 it computeds \ Mg = ¢\ bc =
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centering

Figure 1: The pattern caterpill&; the text caterpilla and the inclusion mappingfrom Pto T in Example 1.

0, which is set toNs. SinceNs = 0, the algorithm
CATINC(P, T) returns “Yes”.

We can obtain the inclusion mappihdrom P to
T consisting of the pairé/i,w ), (vV2,ws), (va,Wy) for
backbones such thatvi) = I(w;) at line 5, the cor-
respondences betwe&nandM; in line 8 such that
Li 1M; and the correspondences betwégrandM;

in line 10 such thaNi M. Figure 1 illustrates the
inclusion mappind as the dashed line obtained by
applying the algorithm &TINC(P,T).

Then, we can obtain the following main theorem
of this paper.

Theorem 2. Let P and T be caterpillars, where h =
h(P), H =h(T) and o = |Z|. Then, we can determine
whether or not PC T in O((h+H)o) time.

Proof. First, we show the correctness of the algorithm
CATINC. Leti be acurrentindex in the for-loop of the
algorithm CaTINC. Also suppose thdtis a mapping
from P to T implicitly obtained by @QTINC returned
to “Yes.”

Then, QTINC first finds j such that (vi) = 1(w;)
for vi € bb(P) andw; € bb(T), which implies that
(vi,wj) € I. Next, fori andj, CATINC corresponds
the leaves irL; to the leaves iM; as possible, where
the corresponding paiv,w) € L; x Mj are added to

until N is empty, QTINC increments] and finds the
corresponding leaves in the next 84t of leaves inT

to Ni, where the found paifv,w) € N; x Mj is added
to |. Finally, wheni = n, the condition in while-loop

is changed thal, U {m} is empty. This means

that, whenN, # 0 andN, \ {wj 1} = 0, at most one
vertexw;j1 € bb(T) is corresponding to a leafe Ly,
and(v,wj;1) is implicitly added tal. In this case, the
algorithm GaTINC finishes and there exists no pair
(v,w) € | such thaiv is a descendant a¥;_ 1.

For the obtained mappirigoy the algorithm G-
INC, it is obvious thatl satisfies the inclusion con-
dition and the one-to-one condition. Also, for pairs
(Vi,Wj), (Vi+1,Wk) € | such thatvi,vi;1 € bb(P) and
Wi, Wi € bb(T) (1<i<n-1,1<j<k<m),every
leaf inL; is corresponding to aleaf Mj U- - - UM_1.

In other words, there exist no paifgw), (V,w) € |
suchthav € Lj,we Mj,V €Ly, W € My, i <i"and
j" < j. Furthermore, foi = n, letl, = {(v,w) €1 |
v € Ln}. Note that at most one vertex 1 € bb(T)
is corresponding to a leaf ibn. If such awj 1 ex-
ists, then there exists no paw,w) € I, such thatw
is a descendant afij1. This implies that neithew
is an ancestor of’ norw is an ancestor ol for ev-
eryw andw’ such thatv # w' and(v,w), (V, W) € I.
Then,| satisfies the ancestor condition. Henlcis,an

I, and then store the remained (non-mapped) labels ofinclusion mapping fronP to T.

leaves irL; asN;, which is realized as the line 8. Then,

Next, we show the time complexity of the algo-
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rithm CATINC. By using the hash table df, we versity (refer to University) from UW XML Reposi-

can proces$ « L \ Mj andN; « N, \ M; in O(c) tory. Table 1 illustrates the information of such cater-
time. Also we can determine whether or gt 0 pillars. Here, #n, d, h, A andp are the number of

in O(0) time. Furthermorej changes from 1 tenin caterpillars, the average number of vertices, the aver-
the for-loop whilei changes from 1 ta in CATINC. age degree, the average height, the average number of
Sincen = h andm = H, the algorithm GTINC runs leaves and the average number of labels.

in O((h+H)o) time. O

Table 1: The information of caterpillars.

. Theorem 2 also cla_ims that .thg s.tructural restric- data # n d h A B
tion of caterpillars provides the limitation of tractabil-
ity of the tree inclusion problem. We say that a tree N-glycans 514 6.40 1.84 422 218 4.50
is a generalized caterpillar if it is transformed to a  @ll-glycans 7,984 4.74 1.49 3.02 1.72 2.84
caterpillar after removing all the leaves in it. Then, CSLOGS 41,592 5.84 3.052.20 3.64 5.18

Theorem 1 implies the following theorem. dblpo1g 5,154 41.74 40.73 1.01 40.73 10.61
N ) SwissProt 6,804 35.10 24.96 2.00 33.10 16.79
Theorem 3. (Kilpelainen and Mannila, 1999)et P TPC-H, 8 863 7.63 1.00 7.63 8.63
bea caterpillar and T ageneralized caterpillar. Then, Auction™ 259 4.29 3.00 0.71 3.57 4.29
the problem of determining whether or not PC T is Nasa 33 7.27 5.15 1.64 5.64 3.18
NP-CompIete. This statement also holds even if the Proteirg 5150 4,97 3.63 1.16 3.81 4.57
maximum height of T is at most 3. University 26 1.35 0.35 0.19 1.15 1.35
Theorem 3 is similar that the structural restriction
of caterpillars provides the limitation of tractability We compare all the paird® T) in the caterpillars

of computing the edit distance. Whereas the prob- in Table 1. The number of pairs is>#(#— 1), and
lem of computing the edit distance between caterpil- Table 2 summarizes such number as #pairs.

lars is tractable as stated in Section 1, the problem

of computing the edit distance between generalized Table 2: The number (#pairs) of all the pairs in caterpillars
caterpillars is MAX SNP-hard. This statement also in Table 1.

holds even if the maximum height is at most 3 or the

cost function is the unit cost function (Muraka et al., dai@ CHBlGE \aie Hipails

2018). N-glycans 263,682TPC-H, 56
all-glycans  63,736,27Auction” 66,822
CSLOGS 1,729,852,87Rlasa 1,056
dblpo.19 26,558,562Proteir;, 26,517,350

5 EXPERIMENTAL RESULTS SwissProt 46,287,61»niversity; 650

In this section, we give the experimental results of
computing @QTINC. Here, the computer environment
is that OS is Ubuntu 18.04.4, CPU is Intel Xeon E5-
1650 v3(3.50GHz) and RAM is 3.8GB.

We deal with caterpillars for N-glycans and all-
glycans from KEG@, CSLOGS, the largest 5,154
caterpillars (0.1%) in dbfp(refer to dblp 10), Swis-
sProt and non-isomorphic caterpillars in TPC-H (re-  Table 3 shows that Auctionhas the largest ra-
fer to TPC-H) from UW XML Repository. Also tio of 13.95% in all the data, and the ratio of Nasa
we deal with caterpillars obtained by deleting the root is also more than 10%. One of the reason is that their
in Auction (refer to Auction) and non-isomorphic  data are obtained by deleting the root and the caterpil-
caterpillars obtained by deleting the root in Nasa (re- lars as the children of the root have similar structures.

fer to NASA,), Protein (refer to Proteir) and Uni- On the other hand, Table 3 also shows that Swis-

sProt has the largest average running time in all the
data, which is more than twice to the average running
time of the other data. Also, diypy, has the sec-

Table 3 illustrates the number (#pairs) of pairs
(P, T) such thatP C T with its ratio (%) in all the
pairs, and the total and average running time. Note
that we just apply the algorithm ATINC to all the
pairs without pruning by the number of vertices, and
SO on.

4Kyoto Encyclopedia of Genes and Genomes,
http:/iwww.kegg.jp/
Shitp://www.cs.rpi.edu/~zakiwww-

new/pmwiki.php/Software/Software ond largest average running time. One of the reason
Shttp://dblp.uni-trier.de/ that the caterpillars in SwissProt and dpip, have
"http://aiweb.cs.washington.edu/research/projectisktm  the larger degree and the larger number of leaves than
xmldata/wwwi/repository.html the other data.
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Table 3: The number (#pairs) of pai® T) such thaPC T
with its ratio (%) in all the pairs, the total running time ¢3e
and average running time (msec).

Table 4: The histograms df_inc(k,D) with maxinc(D),
pat(D) and ratio(D) (%) for N-glycans, all-glycans and
CSLOGS.

data #pairs % total  ave. N-glycans all-glycans CSLOGS
(sec) (msec) k h.inc(k,D) k hinc(k,D) Kk h.inc(k,D)
N-glycans 8,773 3.33 15.980 0.0603 1 69 1 681 1 4,772
all-glycans 704,521 1.11 2,252.321 0.0353 2 33 2 462 2 2,377
CSLOGS 2,070,110 0.12 83,961.780 0.0485 3 20 3 370 3 1524
dblp1s 1,855,880 6.99 2,045.844 0.0770 4 22 4 275 4 1,038
SwissProt 1,400,455 3.03 7,440.401 0.1607 5 11 5 184 5 884
TPC-H, 0 0 0.004 0.0714 6 16 6 209 6 641
Auction™ 9,324 13.95 1.728 0.0259 7 16 7 154 7 534
Nasg 108 10.23 0.030 0.0284 8 16 8 167 8 454
Proteiry 3,701 0.01 587.739 0.0222 9 8 9 119 9 429
University, 1 0.15 0.006 0.0092 10 9 10 127 10 330
>11 174 >11 4,105 >11 13,215
Nex;, we investigate how many caterpillars are in- 220 maxinc 2,938 maxinc 1,702 maxinc
cluded in another caterpillar in the set of caterpillars. 394 pat 6853 pat 26198 pat

Let D be the set of caterpillars. FBre D, we call the
number of text caterpillars i which includesP the
inclusion number of P in D and denote it byncp (P).

Furthermore, we define the following formulas.

hinc(k,D) = [{P €D |incp(P) =Kk}|,

76.65ratio (%) 85.83ratio (%) 62.99 ratio (%)

Table 5: The histograms df_inc(k,D) with maxinc(D),
pat(D) and ratio(D) (%) for dblp 10, SwissProt and
Proteiry .

maxinc(D) = maxinco(P) | P € D}, dblpo.19 SwissProt Protein
oat(D) — ”BX%C(D) hinc(k.D). k hinckD) k hinc(kD) k h.inc(k D)
‘§[=I:__l) 1 42 1 361 1 494
ratio(D) — L) > 38 2 250 2 43
DI 3 32 3 202 3 28
Since every pattern caterpill& having T € D 4 29 4 166 4 26
such thatP C T is counted just once ipat(D) for S5 34 5 133 > 17
D, pat(D) is the number of caterpillars id included 6 26 6 141 6 12
in some caterpillar (without themselves)in Then, 727 7 101 7 16
ratio(D) is the ratio of such caterpillars . 8 26 8 98 8 15
Tables 4, 5 and 6 illustrate the histograms of 9 25 9 85 9 10
h_inc(k,D) with maxinc(D), pat(D) and ratio(D) 10 19 10 116 10 8
for every D. Here, since Auction, Nasg and >11 4,794 >11 4488 >11 93
University, have particular distributions, we summa- 1,939 maxinc 5,666 maxinc 149 maxinc
rize them as Table 6. 5092 pat 6,161 pat 762  pat

Tables 4 and 5 (except Table 6) show that Swis-
sProt has the largest value wbxinc in all the data.
Also, all-glycans has the larger value afaxinc
than CSLOGS and dblpw, whereas all-glycans
has the much smaller value of “#pairs” in Table 3
than CSLOGS and dbdpo,. Furthermore, whereas
CSLOGS has the largest value mdt, it also has the

98.80ratio (%) 90.55ratio (%) 14.80ratio (%)

Finally, we give the examples of a pattern cater-
pillar P and a text caterpillaF such thatncp(P) = 1.

for several dat®.

Figure 2 illustrates an example®f= G00954 and

largest value of “#” in Table 1 and “#pairs”in Table 3. T = G04792 in N-glycans. Also Figure 3 illustrates
On the other hand, dbjpos has the largest value of ~@n example o = G10338 andl' = G10334 in all-
ratio and SwissProt has the second largest value ofglycans.

ratio over 90%.

Hence, we conjecture that the valuesnagdxinc
andratio are independent from the value iokc and
depend on the forms of caterpillars in data.

On the other hand, Figure 4 illustrates an exam-
ple of P = CL33073 andl = CL30743 in CSLOGS.

Furthermore, Figure 5 illustrates an examplePof

ID-T10728005 andl = ID-T33084.006 in Proteiq .
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Table 6: The histograms di_inc(k,D) with maxinc(D),

pat(D) and ratio(D) (%) for Auction-, Nasg and
University, .
Auction™ Nasg University,
k h.inc(k,D)
1 5
2 3
3 3
k h.inc(k,D) 4 2 k h.inc(k,D)
S —— 5 2 i
36 259 6 5 1 1
36 maxinc 7 2 1 maxinc
259 pat 8 2 1 pat
100.00ratio (%) 9 2 3.85ratio (%)
10 1
10 maxinc
24 pat

72.73ratio (%)

P=G10338 T =G10334
Figure 2:P andT in N-glycans.

6 CONCLUSION

In this paper, we have designed the algorithaTGuc
to determine whether or n® C T in O((h+H)o)
time, whereh is the height ofP, H is the height of
T ando is the number of labels occurring i and

P = G00057 T =G00073
Figure 3:P andT in all-glycans.
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P=CL33073 T =CL00501
Figure 4:P andT in CSLOGS.

Cuid)
P =ID-T10728005

map-position mobile-element

T =1D-T33084006
Figure 5:P andT in Proteiry .

T. Also, we have given experimental results for the
algorithm GaTINC by using real caterpillar data.

Note that the algorithm £riNnc just determines
whether or noP C T but does not count the number
of matching positionswhelRC T. Then, itis a future
work to improve the algorithm £rinc to store the
matching positions and count them. Here, it is nec-
essary to count the correspondence between multisets
of labels in leaves carefully.

Since the tree inclusion is NP-complete, it is also
a future work to introduce the heuristic algorithm by
incorporating the algorithm & INC with the heavy
caterpillar of trees such as (Abe et al., 2020), for ex-
ample.
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