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Abstract: In this paper, we investigate an inclusion problem forrooted labeled caterpillars (resp., caterpillars, for short),
which we call acaterpillar inclusion. The caterpillar inclusion is to determine whether or not atext caterpillar
T achieves to apattern caterpillar P by deleting vertices inT . Then, we design the algorithm of the caterpillar
inclusion forP andT in O((h+H)σ) time, whereh is the height ofP, H is the height ofT and σ is the
number of labels occurring inP andT . Also we give experimental results for the algorithm by using real data
for caterpillars.

1 INTRODUCTION

The pattern matching for tree-structured data such
as HTML and XML documents for web mining or
DNA and glycan data for bioinformatics is one of the
fundamental tasks for information retrieval or query
processing. As such pattern matching forrooted la-
beled unordered trees, anunordered tree inclusion (an
inclusion, for short) is the problem of determining
whether or not an unordered treeP called apattern
tree is included in an unordered treeT called atext
tree, that is,T achieves toP by deleting vertices in
T . However, the inclusion is known to be intractable,
that is, NP-complete (Kilpeläinen and Mannila, 1995;
Matous̆ek and Thomas, 1992).

In order to overcome such intractability, several
researches have developed the tractable variations of
the inclusion such as atop-down inclusion (Shamir
and Tsur, 1999), abottom-up inclusion (Valiente,
2002), anLCA-preserving inclusion (Valiente, 2005)1

and anisolated-subtree inclusion (Hokazono et al.,
2012). The first three variations are formulated by
restricting the scope of the deletion of vertices to
just leaves, just roots and just either leaves or ver-
tices with one child, respectively. Also the top-down
(resp., bottom-up) inclusion coincides with the top-
down (resp., bottom-up) unordered subtree isomor-
phism (cf., (Valiente, 2002)). On the other hand, the

1While Valiente (Valiente, 2005) has called it acon-
strained inclusion, the definition of (Valiente, 2005) is cor-
responding to an LCA-preserving distance or a degree-2
distance (Zhang et al., 1996). Hence, we call it anLCA-
preserving inclusion.

several algorithms to compute unordered tree inclu-
sion have been designed as the exact exponential al-
gorithms (Akutsu et al., 2021; Kilpeläinen and Man-
nila, 1995).

Note that the proof of NP-completeness for the
inclusion implies the structural restriction of the
tractability for the inclusion that the height of a text
tree is at most 2 or the degree of a text tree is bounded
by some constant (Kilpeläinen and Mannila, 1995;
Matous̆ek and Thomas, 1992). In this paper, we give
another structural restriction providing the limitation
of the tractability for the inclusion as arooted la-
beled caterpillar (a caterpillar, for short) (cf., (Gal-
lian, 2007)). The caterpillar is an unordered tree
transformed to a rooted path after removing all the
leaves in it.

The caterpillar provides the structural restriction
of the tractability of computing theedit distance for
unordered trees (Muraka et al., 2018). It is known
that the problem of computing the edit distance be-
tween unordered trees is MAX SNP-hard (Zhang and
Jiang, 1994). This statement also holds even if two
trees are binary, the maximum height is at most 3
or the cost function is the unit cost function (Akutsu
et al., 2013; Hirata et al., 2011). On the other hand,
we can compute the edit distance between caterpil-
lars inO(h2λ3) time in the general cost function and
O(h2λ) time under the unit cost function, whereh is
the maximum height of the two caterpillars andλ is
the maximum number of leaves in the two caterpil-
lars (Muraka et al., 2018)2.

2This time complexity is different from the result in
(Muraka et al., 2018), because it contains some errors. See
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Hence, in this paper, we investigate acaterpil-
lar inclusion of determining whether or not a pat-
tern caterpillarP is included in a text caterpillarT .
Then, we design the algorithm CAT INC of determin-
ing whether or notP is included inT in O((h+H)σ)
time, whereh is the height ofP, H is the height ofT
andσ is the number of labels occurring inP andT .
Also, we give experimental results for the algorithm
CAT INC by using real caterpillar data.

2 PRELIMINARIES

A tree is a connected graph without cycles. For a tree
T = (V,E), we denoteV andE by V (T ) andE(T ).
We sometimes denotev ∈ V (T ) by v ∈ T . A rooted
tree is a tree with one vertexr chosen as itsroot,
which we denote byr(T ).

For each vertexv in a rooted tree with the root
r, let UPr(v) be the unique path fromv to r. The
parent of v(6= r) is its adjacent vertex onUPr(v) and
the ancestors of v(6= r) are the vertices onUPr(v)−
{v}. We denoteu < v if v is an ancestor ofu, and
we denoteu ≤ v if either u < v or u = v. The parent
and the ancestors of the rootr are undefined. Also we
say thatw is the least common ancestor of u andv,
denoted byu⊔v, if u≤w, v≤w and there exists now′

such thatu≤w′, v≤w′ andw′ ≤w. We say thatu is a
child of v if v is the parent ofu, andu is adescendant
of v if v is an ancestor ofu. We denote the set of
all children ofv by ch(v). Two vertices with the same
parent are calledsiblings. A leaf is a vertex having no
children and we denote the set of all the leaves inT
by lv(T ). We call a vertex that is neither the root nor
a leaf aninternal vertex. Theheight h(v) of a vertexv
is defined as|UPr(v)|−1 and theheight h(T ) of T is
the maximum height for every vertexv ∈ T .

We say that a rooted tree isordered if a left-to-
right order among siblings is given;Unordered other-
wise. For a fixed finite alphabetΣ, we say that a tree
is labeled overΣ if each vertex is assigned a symbol
from Σ. We denote the label of a vertexv by l(v), and
sometimes identifyv with l(v). In this paper, we call
a rooted labeled unordered tree overΣ a tree, simply.
Definition 1 (Isomorphic trees). Let T1 and T2 be
trees. Then, we say thatT1 and T2 are isomorphic,
denoted byT1 ∼= T2, if there exists a setF ⊆ V (T1)×
V (T2) satisfying the following conditions3.

1. ∀v ∈V (T1)∃w ∈V (T2)(
((v,w) ∈ F)∧ (l(v) = l(w))

)
.

(Ukita et al., 2021) in more detail.
3In this definition, we use the notion like a Tai mapping

as Definition 4.

(inclusion condition)

2. ∀w ∈V (T2)∃v ∈V (T1)(
((v,w) ∈ F)∧ (l(v) = l(w))

)
.

(exclusion condition)

3. ∀(v1,w1),(v2,w2) ∈ F(
(v1 = v2) ⇐⇒ (w1 = w2)

)
.

(one-to-one condition)

4. ∀(v1,w1),(v2,w2) ∈ F(
(v1≤ v2) ⇐⇒ (w1 ≤ w2)

)
.

(ancestor condition)

As the restricted form of trees, we introduce a
rooted labeled caterpillar (caterpillar, for short) as
follows.

Definition 2 (Caterpillar). We say that a tree is a
caterpillar (cf. (Gallian, 2007)) if it is transformed to
a rooted path after removing all the leaves in it. For a
caterpillarC, we call the remained rooted path aback-
bone of C and denote it bybb(C).

It is obvious thatr(C) = r(bb(C)) andV (C) =
V (bb(C))∪ lv(C) for a caterpillarC, that is, every ver-
tex in a caterpillar is either a leaf or an element of the
backbone.

3 TREE INCLUSION

In this section, we formulate a tree inclusion.
Throughout of this paper, we just deal with anun-
ordered tree inclusion, that is, the tree inclusion be-
tween unordered trees. Hence, we call anunordered
tree inclusion aninclusion simply.

For a treeT and a vertexv ∈ T , thedeletion of v
in T is to delete a non-root vertexv in T with a parent
v′, making the children ofv become the children of
v′ that are inserted in the place ofv as a subset of the
children ofv′. We denote the result of the deletion of
v in T by delete(T,v). See the following figure.

v

0

v

v

0

T delete(T,v)

Definition 3 (Inclusion). Let P andT be trees. We
sometimes callP a pattern tree andT a text tree.
Then, we say thatP is aninclusion of T , denoted by
P ⊑ T , if either P ∼= T or there exists a sequence of
verticesv1, . . . ,vk in T such thatT0 ∼= T , Tk

∼= P and
Ti+1∼= delete(Ti,vi+1) (0≤ i≤ k−1).
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We can characterize the tree inclusion by using the
following inclusion mapping (Hokazono et al., 2012),
which is a variant of a Tai mapping in the tree edit
distance (Tai, 1979).

Definition 4 (Inclusion mapping). Let P and T be
trees. Then, we say that the triple(I,P,T ) is an
(unordered) inclusion mapping from P to T if I ⊆
V (P)×V(T ) satisfies the conditions 1, 3 and 4 in Def-
inition 1, that is:

1. ∀v ∈V (P)∃w ∈V (T )(
((v,w) ∈ I)∧ (l(v) = l(w))

)
.

(inclusion condition)

2. ∀(v1,w1),(v2,w2) ∈ I(
(v1 = v2) ⇐⇒ (w1 = w2)

)
.

(one-to-one condition)

3. ∀(v1,w1),(v2,w2) ∈ I(
(v1 ≤ v2) ⇐⇒ (w1≤ w2)

)
.

(ancestor condition)

We will useI instead of(I,P,T ) when there is no con-
fusion.

It is obvious thatP⊑ T if and only if there exists
an inclusion mapping fromP to T , andP ∼= T if and
only if P⊑ T andT ⊑ P.

Theorem 1. (Kilpeläinen and Mannila, 1995)For
trees P and T , the problem of determining whether or
not P⊑ T is NP-complete. This statement also holds
even if the maximum height of T is at most 3.

4 CATERPILLAR INCLUSION

In this section, we investigate acaterpillar inclusion
as the inclusion such that both a pattern treeP and a
text treeT are caterpillars.

Let P and T be caterpillars such thatr(P) = v1
andr(T ) = w1. Then, we denotebb(P) = [v1, . . . ,vn]
for (vi,vi+1) ∈ E(P) and bb(T ) = [w1, . . . ,wm] for
(w j ,w j+1)∈ E(T ). AlsoLi (resp., M j) denotes the set
of leaves that are children ofvi (resp., w j) for 1≤ i≤ n
(resp., 1≤ j ≤ m).

In this section, we use amultiset of labels in order
to compare two sets of vertices. Amultiset on Σ is
a mappingS : Σ→ N. For a multisetS on Σ, we say
that a ∈ Σ is anelement of S if S(a) > 0. An empty
multiset is a multisetS such thatS(a) = 0 for every
a ∈ Σ and denote it by/0 (like as a standard set). Let
S1 andS2 be multisets onΣ. Then, we define theinter-
section S1⊓ S2 and thedifference S1 \ S2 as multisets
satisfying that(S1⊓ S2)(a) = min{S1(a),S2(a)} and
(S1\S2)(a) = max{S1(a)−S2(a),0} for everya∈ Σ.

Note thatS1\S2 = S1\S1⊓S2. For a setV of vertices,
we denote the multiset of labels occurring inV by Ṽ .

Then, we design the algorithm CAT INC in Algo-
rithm 1.

procedure CAT INC(P,T )
/ P : caterpillar,bb(P) = [v1, . . . ,vn] /
/ T : caterpillar,bb(T ) = [w1, . . . ,wm] /
if n > m then return “No”; halt;1

else2

j← 1;3

for i = 1 to n do4

while l(vi) 6= l(w j) do5

if j < m then j++;6

else return “No”; halt;7

/ l(vi) = l(w j) /

Ñi← L̃i \ M̃ j;8

while
(
(i < n and Ñi 6= /0) or9

(i = n and Ñn \ {̃w j+1} 6= /0)
)

do

if j < m then10

j++; Ñi← Ñi \ M̃ j;11

else return “No”; halt;12

j++;13

return “Yes”;14

Algorithm 1: CAT INC.

Example 1. Consider a pattern caterpillarP and a text
caterpillarT in Figure 1, wherebb(P) = [v1,v2,v3]
andbb(T ) = [w1, . . . ,w6]. Also we denote a multiset
as a string, that is, we denote a multiset{a,a,b,c,c}
as a stringa2bc2, for example. Then, we run the algo-
rithm CAT INC(P,T ).

First, the algorithm CAT INC(P,T ) finds w j such
that l(v1) = l(w j). Then, it setsj = 1 and computes
L̃1 \ M̃1 = bc \ b2 = c = Ñ1. SinceÑ1 6= /0, after in-
crementingj as 2 it computes̃N1 \ M̃2 = c \ c2 = /0,
which is set toÑ1. Since Ñ1 = /0, the algorithm
CAT INC(P,T ) incrementsj as 3 andi as 2.

Secondly, the algorithm CAT INC(P,T ) finds w j
such thatl(v2) = l(w j) for j ≥ 3. Then, it setsj = 3
and computes̃L2 \ M̃3 = b2 \ b2c = /0 = Ñ2. Since
Ñ2 = /0, the algorithm CAT INC(P,T ) incrementsj as
4 andi as 3.

Finally, the algorithm CAT INC(P,T ) findsw j such
that l(v3) = l(w j) for j ≥ 4. Then, it setsj = 4 and
computesL̃3 \ M̃4 = c3 \ b2c = c2 = Ñ3. SinceÑ3 6=

/0, after incrementingj as 5 it computes̃N3 \ M̃5 =

c2 \ c = c, which is set toÑ3. SinceÑ3 6= /0, after
incrementingj as 6 it computes̃N3 \ M̃6 = c \ bc =
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Figure 1: The pattern caterpillarP, the text caterpillarT and the inclusion mappingI from P to T in Example 1.

/0, which is set toÑ3. SinceÑ3 = /0, the algorithm
CAT INC(P,T ) returns “Yes”.

We can obtain the inclusion mappingI from P to
T consisting of the pairs(v1,w1),(v2,w3),(v3,w4) for
backbones such thatl(vi) = l(w j) at line 5, the cor-
respondences betweeñLi andM̃ j in line 8 such that
L̃i ⊓ M̃ j and the correspondences betweenÑi andM̃ j

in line 10 such that̃Ni ⊓ M̃ j. Figure 1 illustrates the
inclusion mappingI as the dashed line obtained by
applying the algorithm CAT INC(P,T ).

Then, we can obtain the following main theorem
of this paper.

Theorem 2. Let P and T be caterpillars, where h =
h(P), H = h(T ) and σ = |Σ|. Then, we can determine
whether or not P⊑ T in O((h+H)σ) time.

Proof. First, we show the correctness of the algorithm
CAT INC. Let i be a current index in the for-loop of the
algorithm CAT INC. Also suppose thatI is a mapping
from P to T implicitly obtained by CAT INC returned
to “Yes.”

Then, CAT INC first finds j such thatl(vi) = l(w j)
for vi ∈ bb(P) and w j ∈ bb(T ), which implies that
(vi,w j) ∈ I. Next, for i and j, CAT INC corresponds
the leaves inLi to the leaves inM j as possible, where
the corresponding pair(v,w) ∈ Li×M j are added to
I, and then store the remained (non-mapped) labels of
leaves inL̃i asÑi, which is realized as the line 8. Then,

until Ñi is empty, CAT INC incrementsj and finds the
corresponding leaves in the next setM j of leaves inT
to Ni, where the found pair(v,w) ∈ Ni×M j is added
to I. Finally, wheni = n, the condition in while-loop

is changed that̃Nn ∪ {̃w j+1} is empty. This means

that, wheñNn 6= /0 andÑn \ {̃w j+1} = /0, at most one
vertexw j+1 ∈ bb(T ) is corresponding to a leafv ∈ Ln
and(v,w j+1) is implicitly added toI. In this case, the
algorithm CAT INC finishes and there exists no pair
(v,w) ∈ I such thatw is a descendant ofw j+1.

For the obtained mappingI by the algorithm CAT-
INC, it is obvious thatI satisfies the inclusion con-
dition and the one-to-one condition. Also, for pairs
(vi,w j),(vi+1,wk) ∈ I such thatvi,vi+1 ∈ bb(P) and
w j,wk ∈ bb(T ) (1≤ i < n−1,1≤ j < k ≤ m), every
leaf inLi is corresponding to a leaf inM j∪·· ·∪Mk−1.
In other words, there exist no pairs(v,w),(v′,w′) ∈ I
such thatv ∈ Li, w ∈M j, v′ ∈ Li′ , w′ ∈M j′ , i < i′ and
j′ < j. Furthermore, fori = n, let In = {(v,w) ∈ I |
v ∈ Ln}. Note that at most one vertexw j+1 ∈ bb(T )
is corresponding to a leaf inLn. If such aw j+1 ex-
ists, then there exists no pair(v,w) ∈ In such thatw
is a descendant ofw j+1. This implies that neitherw
is an ancestor ofw′ nor w′ is an ancestor ofw for ev-
ery w andw′ such thatw 6= w′ and(v,w),(v′,w′) ∈ In.
Then,I satisfies the ancestor condition. Hence,I is an
inclusion mapping fromP to T .

Next, we show the time complexity of the algo-
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rithm CAT INC. By using the hash table ofΣ, we
can process̃Ni ← L̃i \ M̃ j andÑi ← Ñi \ M̃ j in O(σ)
time. Also we can determine whether or notÑi 6= /0
in O(σ) time. Furthermore,j changes from 1 tom in
the for-loop whilei changes from 1 ton in CAT INC.
Sincen = h andm = H, the algorithm CAT INC runs
in O((h+H)σ) time.

Theorem 2 also claims that the structural restric-
tion of caterpillars provides the limitation of tractabil-
ity of the tree inclusion problem. We say that a tree
is a generalized caterpillar if it is transformed to a
caterpillar after removing all the leaves in it. Then,
Theorem 1 implies the following theorem.

Theorem 3. (Kilpeläinen and Mannila, 1995)Let P
be a caterpillar and T a generalized caterpillar. Then,
the problem of determining whether or not P ⊑ T is
NP-complete. This statement also holds even if the
maximum height of T is at most 3.

Theorem 3 is similar that the structural restriction
of caterpillars provides the limitation of tractability
of computing the edit distance. Whereas the prob-
lem of computing the edit distance between caterpil-
lars is tractable as stated in Section 1, the problem
of computing the edit distance between generalized
caterpillars is MAX SNP-hard. This statement also
holds even if the maximum height is at most 3 or the
cost function is the unit cost function (Muraka et al.,
2018).

5 EXPERIMENTAL RESULTS

In this section, we give the experimental results of
computing CAT INC. Here, the computer environment
is that OS is Ubuntu 18.04.4, CPU is Intel Xeon E5-
1650 v3(3.50GHz) and RAM is 3.8GB.

We deal with caterpillars for N-glycans and all-
glycans from KEGG4, CSLOGS5, the largest 5,154
caterpillars (0.1%) in dblp6 (refer to dblp0.1%), Swis-
sProt and non-isomorphic caterpillars in TPC-H (re-
fer to TPC-H◦) from UW XML Repository7. Also
we deal with caterpillars obtained by deleting the root
in Auction (refer to Auction−) and non-isomorphic
caterpillars obtained by deleting the root in Nasa (re-
fer to NASA−◦ ), Protein (refer to Protein−◦ ) and Uni-

4Kyoto Encyclopedia of Genes and Genomes,
http://www.kegg.jp/

5http://www.cs.rpi.edu/˜zaki/www-
new/pmwiki.php/Software/Software

6http://dblp.uni-trier.de/
7http://aiweb.cs.washington.edu/research/projects/xmltk/

xmldata/www/repository.html

versity (refer to University−◦ ) from UW XML Reposi-
tory. Table 1 illustrates the information of such cater-
pillars. Here, #,n, d, h, λ andβ are the number of
caterpillars, the average number of vertices, the aver-
age degree, the average height, the average number of
leaves and the average number of labels.

Table 1: The information of caterpillars.

data # n d h λ β

N-glycans 514 6.40 1.84 4.22 2.18 4.50
all-glycans 7,984 4.74 1.49 3.02 1.72 2.84
CSLOGS 41,592 5.84 3.05 2.20 3.64 5.18
dblp0.1% 5,154 41.74 40.73 1.01 40.73 10.61
SwissProt 6,804 35.10 24.96 2.00 33.10 16.79
TPC-H◦ 8 8.63 7.63 1.00 7.63 8.63
Auction− 259 4.29 3.00 0.71 3.57 4.29
Nasa−◦ 33 7.27 5.15 1.64 5.64 3.18
Protein−◦ 5,150 4,97 3.63 1.16 3.81 4.57
University−◦ 26 1.35 0.35 0.19 1.15 1.35

We compare all the pairs(P,T ) in the caterpillars
in Table 1. The number of pairs is #× (#− 1), and
Table 2 summarizes such number as #pairs.

Table 2: The number (#pairs) of all the pairs in caterpillars
in Table 1.

data #pairs

N-glycans 263,682
all-glycans 63,736,272
CSLOGS 1,729,852,872
dblp0.1% 26,558,562
SwissProt 46,287,612

data #pairs

TPC-H◦ 56
Auction− 66,822
Nasa−◦ 1,056
Protein−◦ 26,517,350
University−◦ 650

Table 3 illustrates the number (#pairs) of pairs
(P,T ) such thatP ⊑ T with its ratio (%) in all the
pairs, and the total and average running time. Note
that we just apply the algorithm CAT INC to all the
pairs without pruning by the number of vertices, and
so on.

Table 3 shows that Auction− has the largest ra-
tio of 13.95% in all the data, and the ratio of Nasa−

◦
is also more than 10%. One of the reason is that their
data are obtained by deleting the root and the caterpil-
lars as the children of the root have similar structures.

On the other hand, Table 3 also shows that Swis-
sProt has the largest average running time in all the
data, which is more than twice to the average running
time of the other data. Also, dblp0.1% has the sec-
ond largest average running time. One of the reason
that the caterpillars in SwissProt and dblp0.1% have
the larger degree and the larger number of leaves than
the other data.
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Table 3: The number (#pairs) of pairs(P,T ) such thatP⊑ T
with its ratio (%) in all the pairs, the total running time (sec)
and average running time (msec).

data #pairs % total ave.
(sec) (msec)

N-glycans 8,773 3.33 15.980 0.0603
all-glycans 704,521 1.11 2,252.321 0.0353
CSLOGS 2,070,110 0.12 83,961.780 0.0485
dblp0.1% 1,855,880 6.99 2,045.844 0.0770
SwissProt 1,400,455 3.03 7,440.401 0.1607
TPC-H◦ 0 0 0.004 0.0714
Auction− 9,324 13.95 1.728 0.0259
Nasa−◦ 108 10.23 0.030 0.0284
Protein−◦ 3,701 0.01 587.739 0.0222
University−◦ 1 0.15 0.006 0.0092

Next, we investigate how many caterpillars are in-
cluded in another caterpillar in the set of caterpillars.
Let D be the set of caterpillars. ForP ∈D, we call the
number of text caterpillars inD which includesP the
inclusion number of P in D and denote it byincD(P).
Furthermore, we define the following formulas.

h inc(k,D) = |{P ∈D | incD(P) = k}|,
maxinc(D) = max{incD(P) | P ∈D},

pat(D) =
maxinc(D)

∑
k=1

h inc(k,D),

ratio(D) =
pat(D)

|D|
.

Since every pattern caterpillarP having T ∈ D
such thatP ⊑ T is counted just once inpat(D) for
D, pat(D) is the number of caterpillars inD included
in some caterpillar (without themselves) inD. Then,
ratio(D) is the ratio of such caterpillars inD.

Tables 4, 5 and 6 illustrate the histograms of
h inc(k,D) with maxinc(D), pat(D) and ratio(D)
for every D. Here, since Auction−, Nasa−◦ and
University−◦ have particular distributions, we summa-
rize them as Table 6.

Tables 4 and 5 (except Table 6) show that Swis-
sProt has the largest value ofmaxinc in all the data.
Also, all-glycans has the larger value ofmaxinc
than CSLOGS and dblp0.1%, whereas all-glycans
has the much smaller value of “#pairs” in Table 3
than CSLOGS and dblp0.1%. Furthermore, whereas
CSLOGS has the largest value ofpat, it also has the
largest value of “#” in Table 1 and “#pairs” in Table 3.
On the other hand, dblp0.1% has the largest value of
ratio and SwissProt has the second largest value of
ratio over 90%.

Hence, we conjecture that the values ofmaxinc
andratio are independent from the value ofinc and
depend on the forms of caterpillars in data.

Table 4: The histograms ofh inc(k,D) with maxinc(D),
pat(D) and ratio(D) (%) for N-glycans, all-glycans and
CSLOGS.

N-glycans all-glycans CSLOGS

k h inc(k,D)

1 69
2 33
3 20
4 22
5 11
6 16
7 16
8 16
9 8

10 9
≥ 11 174

220 maxinc
394 pat

76.65ratio (%)

k h inc(k,D)

1 681
2 462
3 370
4 275
5 184
6 209
7 154
8 167
9 119

10 127
≥ 11 4,105

2,938 maxinc
6,853 pat
85.83ratio (%)

k h inc(k,D)

1 4,772
2 2,377
3 1,524
4 1,038
5 884
6 641
7 534
8 454
9 429

10 330
≥ 11 13,215

1,702 maxinc
26,198 pat
62.99 ratio (%)

Table 5: The histograms ofh inc(k,D) with maxinc(D),
pat(D) and ratio(D) (%) for dblp0.1%, SwissProt and
Protein−◦ .

dblp0.1% SwissProt Protein−◦
k h inc(k,D)

1 42
2 38
3 32
4 29
5 34
6 26
7 27
8 26
9 25

10 19
≥ 11 4,794

1,939 maxinc
5,092 pat
98.80ratio (%)

k h inc(k,D)

1 361
2 250
3 202
4 166
5 153
6 141
7 101
8 98
9 85

10 116
≥ 11 4,488

5,666 maxinc
6,161 pat
90.55ratio (%)

k h inc(k,D)

1 494
2 43
3 28
4 26
5 17
6 12
7 16
8 15
9 10

10 8
≥ 11 93

149 maxinc
762 pat

14.80ratio (%)

Finally, we give the examples of a pattern cater-
pillar P and a text caterpillarT such thatincD(P) = 1.
for several dataD.

Figure 2 illustrates an example ofP=G00954 and
T = G04792 in N-glycans. Also Figure 3 illustrates
an example ofP = G10338 andT = G10334 in all-
glycans.

On the other hand, Figure 4 illustrates an exam-
ple of P = CL33073 andT = CL30743 in CSLOGS.
Furthermore, Figure 5 illustrates an example ofP =
ID-T10728005 andT = ID-T33084006 in Protein−◦ .
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Table 6: The histograms ofh inc(k,D) with maxinc(D),
pat(D) and ratio(D) (%) for Auction−, Nasa−◦ and
University−◦ .

Auction− Nasa−◦ University−◦

k h inc(k,D)

36 259

36 maxinc
259 pat

100.00ratio (%)

k h inc(k,D)

1 5
2 3
3 3
4 2
5 2
6 2
7 2
8 2
9 2

10 1

10 maxinc
24 pat

72.73ratio (%)

k h inc(k,D)

1 1

1 maxinc
1 pat

3.85 ratio (%)

I

C

D

D D

B D

I

B

C

D

D D

B D

P = G10338 T = G10334

Figure 2:P andT in N-glycans.

6 CONCLUSION

In this paper, we have designed the algorithm CAT INC

to determine whether or notP ⊑ T in O((h+H)σ)
time, whereh is the height ofP, H is the height of
T andσ is the number of labels occurring inP and

Cer

Glc

Gal

GlcNAc

Gal

Fuc GlcNAc

Gal

Cer

Glc

Gal

GlcNAc

Gal

GlcNAc

Gal

Fuc GlcNAc

Gal

P = G00057 T = G00073

Figure 3:P andT in all-glycans.

1

7

105 106

633

1

5

7

105 106

633

P = CL33073 T = CL00501

Figure 4:P andT in CSLOGS.

genetics

gene

uid

map-position mobile-element

P = ID-T10728005

genetics

gene

db uid

map-position mobile-element introns

T = ID-T33084006
Figure 5:P andT in Protein−◦ .

T . Also, we have given experimental results for the
algorithm CAT INC by using real caterpillar data.

Note that the algorithm CAT INC just determines
whether or notP ⊑ T but does not count the number
of matching positions whenP⊑ T . Then, it is a future
work to improve the algorithm CAT INC to store the
matching positions and count them. Here, it is nec-
essary to count the correspondence between multisets
of labels in leaves carefully.

Since the tree inclusion is NP-complete, it is also
a future work to introduce the heuristic algorithm by
incorporating the algorithm CAT INC with the heavy
caterpillar of trees such as (Abe et al., 2020), for ex-
ample.
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