identification based on EEG signal using RQA method. 
Advances in Medical Sciences, 64(1), 58-64. 
Hou,  Y.,  Aldrich,  C.,  Lepkova,  K.,  Machuca,  L.  L.,  & 
Kinsella, B. (2017). Analysis of electrochemical noise 
data by use of recurrence quantification analysis and  
Lyby, M. S., Mehlsen, M., Jensen, A. B., Bovbjerg, D. H.,   
Philipsen, J. S., & Wallot, S. (2019). Use of recurrence 
quantification analysis to examine associations between 
changes in text structure across an expressive writing 
intervention  and  reductions  in  distress  symptoms  in 
women  with  breast  cancer.  Frontiers in Applied 
Mathematics and Statistics,  5,  37.  machine  learning 
methods. Electrochimica Acta, 256, 337-347. 
Marwan,  N.,  Romano,  M.  C.,  Thiel,  M.,  &  Kurths,  J.       
(2007).  Recurrence  plots  for  the  analysis  of  complex 
systems. Physics Reports, 438(5-6), 237-329. 
Mengarelli, A., Tigrini, A., Fioretti, S., & Verdini, F. (2021, 
July). Recurrence quantification analysis of gait rhythm 
in  patients  affected  by  Parkinson’s  Disease.  In  2021 
IEEE EMBS International Conference on Biomedical 
and Health Informatics (BHI) (pp. 1-4). IEEE. 
Merkley, R., & Ansari, D. (2016). Why numerical symbols 
count  in  the  development  of  mathematical  skills: 
Evidence from brain and behavior. Current Opinion in 
Behavioral Sciences, 10, 14-20. 
Núñez, P., Poza, J., Gómez, C., Barroso-García, V., 
Maturana-Candelas, A., Tola-Arribas, M. A., Cano, M., 
& Hornero, R. (2020). Characterization of the dynamic 
behavior  of  neural  activity  in  Alzheimer’s  disease: 
Exploring the non-stationarity and recurrence structure 
of  EEG  resting-state  activity.  Journal of Neural 
Engineering, 17(1), 016071. 
Shabani,  H.,  Mikaili,  M.,  &  Noori,  S.  M.  R.  (2016). 
Assessment  of  recurrence  quantification  analysis 
(RQA) of EEG for development of a novel drowsiness 
detection  system.  Biomedical Engineering Letters, 
6(3), 196-204. 
Sharma, J., Giri, C., Granmo, O. C., & Goodwin, M. (2019). 
Multi-layer intrusion detection system with ExtraTrees 
feature selection, extreme learning machine ensemble, 
and  softmax  aggregation.  EURASIP Journal on 
Information Security, 2019(1), 1-16. 
Sharma, K., Niforatos, E., Giannakos, M., & Kostakos, V. 
(2020).  Assessing  cognitive  performance  using 
physiological and  facial  features: Generalizing across 
contexts.  Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technologies, 4(3), 
1-41. 
Takens,  F.  (1981).  Detecting  strange  attractors  in 
turbulence.  In  Dynamical systems and turbulence, 
Warwick 1980  (pp.  366-381).  Springer,  Berlin, 
Heidelberg. 
Timothy,  L.  T.,  Krishna,  B.  M.,  &  Nair,  U.  (2015, 
December). Combined recurrence and cross recurrence 
quantification  of  MCI  EEG.  In  2015 International 
Conference on Power, Instrumentation, Control and 
Computing (PICC) (pp. 1-5). IEEE. 
Turianikova, Z., Tonhajzerova, I., Czippelova, B., Javorka, 
K.,  Lazarova,  Z.,  &  Javorka,  M.  (2014,  September). 
Recurrence  Quantification  Analysis  of  heart  rate  and 
blood  pressure  variability  in  obese  children  and 
adolescents.  In  Computing in Cardiology 2014  (pp. 
445-448). IEEE. 
Vaidyanathan, P., Pelz, J., Alm, C., Shi, P., & Haake, A. 
(2014). Recurrence quantification analysis reveals eye-
movement  behavior  differences  between  experts  and 
novices.  In  Proceedings of the symposium on eye 
tracking research and applications (pp. 303-306). 
Wallot,  S.  (2017).  Recurrence  quantification  analysis  of 
processes  and  products  of  discourse:  A  tutorial  in  R. 
Discourse Processes, 54(5-6), 382-405. 
Wallot, S., & Leonardi, G. (2018). Analyzing multivariate 
dynamics  using  cross-recurrence  quantification 
analysis  (crqa),  diagonal-cross-recurrence  profiles 
(dcrp), and multidimensional recurrence quantification 
analysis  (mdrqa)  a  tutorial  in  R.  Frontiers in 
Psychology, 9, 2232. 
Wallot,  S.  (2019).  Multidimensional  Cross-Recurrence 
Quantification  Analysis  (MdCRQA)  a  method  for 
quantifying  correlation  between  multivariate  time-
series. Multivariate Behavioural Research, 54(2), 173-
191. 
Webber,  C.  L.,  &  Marwan,  N.  (2015).  Recurrence 
quantification analysis. Theory and Best Practices. 
Wildgen, W. (2020). Structures, Archetypes, and Symbolic 
Forms.  Applied  Mathematics  in  Linguistics  and 
Semiotics.  In  Structures Mères: Semantics, 
Mathematics, and Cognitive Science  (pp.  165-185). 
Springer, Cham. 
Ying, X. (2019, February). An overview of overfitting and 
its solutions. In Journal of Physics: Conference Series 
(Vol. 1168, No. 2, p. 022022). IOP Publishing. 
Zbilut,  J.  P.,  Thomasson,  N.,  &  Webber,  C.  L.  (2002). 
Recurrence  quantification  analysis  as  a  tool  for 
nonlinear exploration of nonstationary cardiac signals. 
Medical Engineering & Physics, 24(1), 53-60. 
Zbilut, J. P., & Webber, C. L. (2008). Laminar recurrences, 
maxline,  unstable  singularities  and  biological 
dynamics.  The European Physical Journal Special 
Topics, 164(1), 55-65. 
Zyma, I., Tukaev, S., Seleznov, I., Kiyono, K., Popov, A., 
Chernykh,  M.,  &  Shpenkov,  O.  (2019). 
Electroencephalograms  during  mental  arithmetic  task 
performance. Data, 4(1), 14.