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Abstract: In this paper, we provide a comprehensive study on evaluating two state-of-the-art deep metric learning meth-
ods for visual place recognition. Visual place recognition is an essential component in the visual localization
and the vision-based navigation where it provides an initial coarse location. It is used in variety of autonomous
navigation technologies, including autonomous vehicles, drones and computer vision systems. We study recent
visual place recognition and image retrieval methods and utilize them to conduct extensive and comprehensive
experiments on two diverse and large long-term indoor and outdoor robot navigation datasets, e.g., COLD
and Oxford Radar RobotCar along with ablation studies on the crucial parameters of the deep architectures.
Our comprehensive results indicate that the methods can achieve 5 m of outdoor and 50 cm of indoor place
recognition accuracy with high recall rate of 80 %.

1 INTRODUCTION

The question of “where this photo was taken?” has
been a widespread research interest in multiple fields,
including computer vision and robotics for many
years (Zhang et al., 2020). Recently, researchers
have employed advanced deep learning techniques to
address this question (Masone and Caputo, 2021).
The performance of a good navigation algorithm is
deeply incorporated with an accurate robot localiza-
tion which makes it an important research topic in
robotics.

Visual place recognition is the problem of recog-
nizing a previously visited place using the visual con-
tent and information. Similar to the image retrieval
problem, the visual content can be matched with the
places already stored in the gallery database. It is
the first step in hierarchical visual localization (Sarlin
et al., 2019; Xu et al., 2002) that consists of two steps:
(1) coarse localization and (2) pose refinement.
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Visual localization itself is a core component of
vision-based mobile robot navigation (DeSouza and
Kak, 2002; Bonin-Font et al., 2008). Our paper
presents and study an extensive evaluation of two
state-of-the-art deep learning methods for long-term
visual place recognition in indoor and outdoor envi-
ronments.

Two recent papers (Sattler et al., 2020; Pion et al.,
2020) demonstrate the superior localization perfor-
mance of approaches that are solely rely on deep met-
ric learning methods, compared with the conventional
engineered features or feature transforms. They mea-
sure the refined 6-Degree-of-Freedom localization ac-
curacy in 3D, but do not factorize the contributions of
(1) coarse localization and (2) pose refinement.

In this paper, we focus mainly on the coarse lo-
calization step for our contribution. In particular,
we define the coarse localization as place recogni-
tion problem and study the performance and settings
of two state-of-the-art deep metric learning architec-
tures with two diverse and large long-term indoor and
outdoor robot navigation datasets. We utilized one
of the best performing CNN architectures in deep vi-
sual place recognition, e.g., NetVLAD (Arandjelović
et al., 2018), and another in deep image retrieval by
Radenović et al. (Radenović et al., 2019).
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Both methods utilize the deep metric learning
methods to learn feature embedding and representa-
tion of images where the distance of images captured
in nearby places are clearly smaller than those from
the distant locations. We compare two methods us-
ing two largest available outdoor and indoor datasets:
Oxford Radar RobotCar (Barnes et al., 2020) and
CoSy Localization Database (COLD) (Pronobis and
Caputo, 2009). We also provide an ablation study on
the main performance factors of deep learning meth-
ods, the selection of the backbone network and the
amount of training data.

The rest of this paper is organized as follows.
Section 2 briefly discusses the related work in visual
place recognition. In section 3, we provide the base-
line methods utilized in our paper. Section 4 explains
two real-world indoor and outdoor datasets to address
the visual place recognition problem. In section 5,
we show the experimental results and finally, we con-
clude the paper in section 6.

2 RELATED WORK

Visual Place Recognition Methods. Given a query
image, an image retrieval system aims to retrieve all
images from a large database containing similar fea-
tures to the query image. Visual place recognition can
be also interpreted as an image retrieval system which
recognize a place by matching it with all places from
the reference dataset. Prior research has thoroughly
surveyed visual place recognition methods in recent
papers. Lowry et al. (Lowry et al., 2016) define the
problem and survey the classical hand-crafted or shal-
low learned descriptors. while Zhang et al. (Zhang
et al., 2020) and Masone et al. (Masone and Caputo,
2021) focus entirely on the deep learning approaches
incorporated with visual place recognition.

The conventional methods of place recognition
use mainly handcrafted local features and global de-
scriptors on their core to obtain feature descriptors.
Popular local feature descriptors are SIFT (Lowe,
2004), SURF (Bay et al., 2008) and HOG (Dalal and
Triggs, 2005). Commonly used global descriptors
including DBoW (Galvez-López and Tardos, 2012),
FAB-MAP (Cummins and Newman, 2008; Cummins
and Newman, 2011) and the landmark-based relocal-
ization approach (Williams et al., 2011), are all based
on handcrafted local image features and have been
widely used for visual SLAM or localization tasks.

Today, handcrafted features are being constantly
outperformed by deep features that can be trained
to be robust to geometric transformations and illu-
mination changes. The deep architectures often em-

ploy pre-trained backbone networks that extract pow-
erful semantic features. The backbone networks are
trained with image classification datasets such as Im-
ageNet (Russakovsky et al., 2015). By localization
specific fine-tuning the deep features are optimized
for image matching (Zhang et al., 2020; Radenovic
et al., 2018).

The main objective of utilizing deep architec-
tures for image retrieval and visual place recogni-
tion is to learn powerful and meaningful feature map-
ping which allows to compare images using similarity
measures such as Euclidean distance or cosine simi-
larity.

In this context, large number of architectures
have been proposed: MAC (Azizpour et al., 2015),
SPoC (Yandex and Lempitsky, 2015), CroW (Kalan-
tidis et al., 2016), GeM (Radenović et al., 2019), R-
MAC (Tolias et al., 2016b), modified R-MAC (Gordo
et al., 2017) and NetVLAD (Arandjelović et al.,
2018). For this paper, we selected two methods which
perform well with public benchmarks in which the
original code is publicly available: GeM (Raden-
ović et al., 2019) and NetVLAD (Arandjelović et al.,
2018).
Visual Place Recognition Datasets. For the past few
years, researchers have collected and published sev-
eral datasets for the problem of visual place recogni-
tion with various sensor modalities, including monoc-
ular and stereo cameras, LiDAR, IMU, radar and
GNSS/INS sensors. For example, Cummins and
Newman (Cummins and Newman, 2008) introduced
the New College and City Centre dataset. The other
popular datasets are the KITTI Odometry bench-
mark (Geiger et al., 2012), Canadian Adverse Driving
Conditions dataset (Pitropov et al., 2021), Ford cam-
pus vision and LiDAR dataset (Pandey et al., 2011),
InLoc dataset (Taira et al., 2021), extended CMU
seasons dataset (Badino et al., 2011; Sattler et al.,
2018), Málaga Urban dataset (Blanco-Claraco et al.,
2014), Alderley dataset (Milford and Wyeth, 2012),
Aachen dataset (Sattler et al., 2012) and Nordland
dataset (Olid et al., 2018).

Our objective is to address both outdoor and in-
door place recognition and focus more specifically on
long-term visual place recognition, i.e., how robust
the deep representations are to changes over time, in-
cluding illumination and weather. Therefore, we se-
lected the two challenging datasets, COLD (Pronobis
and Caputo, 2009) for indoor experiments and Oxford
Radar RobotCar (Barnes et al., 2020) for outdoor ex-
periments, that provide the same places captured in
various different conditions.
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3 METHODS

In this work, we concentrate on deep image repre-
sentation obtained by deep convolutional neural net-
work (CNN) architectures in which given an input
an image, it produces a global descriptor, feature
vector, to describe the visual content of the image.
In the following, we briefly explain the processing
pipelines of the Generalized Mean (GeM) by Rade-
nović et al. (Radenović et al., 2019) that obtains
good performance with image retrieval datasets and
NetVLAD (Arandjelović et al., 2018) that performs
well on place recognition datasets.

3.1 Radenović et al.

For training, Radenović et al. (Radenović et al., 2016;
Radenović et al., 2019) adopt the Siamese neural net-
work architecture. The Siamese architecture is trained
using positive and negative image pairs and the loss
function enforces large distances between negative
pairs (images from two distant places) and small dis-
tances between positive pairs (images from the same
place). Radenović et al. (Radenović et al., 2019) use
the contrastive loss (Chopra et al., 2005) that acts
on matching (positive) and non-matching (negative)
pairs and is defined as follows:

L =

{
l(~fa, ~fb) for matching images

max
(

0,M− l(~fa, ~fb)
)

otherwise
(1)

where l is the pair-wise distance term (Euclidean dis-
tance) and M is the enforced minimum margin be-
tween the negative pairs. ~fa and ~fb denote the deep
feature vectors of images Ia and Ib computed using
the convolutional head of a backbone network such
as AlexNet, VGGNet or ResNet.

The typical feature vector lengths K are 256, 512
or 2048, depending on the backbone. Feature vectors
are global descriptors of the input images and pooled
over the spatial dimensions. The feature responses
are computed from K convolutional layers Xk follow-
ing with max pooling layers that select the maximum
spatial feature response from each layer of MAC vec-
tor as follows:

~f = [ f1 f2 . . . fK ] , fk = max
x∈Xk

(x) . (2)

Radenović et al. originally used the MAC vec-
tors (Radenović et al., 2016), but in their more re-
cent paper (Radenović et al., 2019) compared MAC
vectors to average pooling SPoC vector and General-
ized Mean pooling (GeM) vector and found that GeM
pooling layer provides the best average retrieval accu-
racy.

Radenović et al. (Radenović et al., 2019) propose
GeM pooling layer to modify the MAC (Azizpour
et al., 2015; Tolias et al., 2016a) and SPoC (Yan-
dex and Lempitsky, 2015). This is a pooling layer
which takes χ as an input and produces a vector
f = [ f1, f2, fi, ..., fK ]

T as an output of the pooling pro-
cess which results in:

fi =

(
1
|χi| ∑

x∈χi

xpi

) 1
pi

(3)

MAC and SPoC pooling methods are special cases
of GeM depending on how pooling parameter pk is
derived in which pi → ∞ and pi = 1 correspond to
max-pooling and average pooling, respectively. The
GeM feature vector is a single value per feature map
and its dimension varies depending on different net-
works, i.e. K = [256, 512, 2048]. It also adopts a
Siamese architecture to train the networks for image
matching.

The Radenović et al. (Radenović et al., 2019) main
pipeline is shared by the most deep metric learning
approaches for image retrieval, but the unique com-
ponents are the proposed supervised whitening post-
processing and effective positive and negative sam-
ple mining. More details are described in (Radenović
et al., 2016) and (Radenović et al., 2018) and avail-
able in the code provided by the original authors.

3.2 NetVLAD

The main advantage of Radenović et al. (Radenović
et al., 2019) architecture is its straightforward imple-
mentation as it uses standard CNN layers available in
PyTorch and TensorFlow libraries: conv-layers, soft-
max, L2-normalization and the final aggregation lay-
ers MAC, SPoC and GeM. NetVLAD architecture,
on the contrary, contains special layer that provides
higher dimensional feature vector.

NetVLAD (Arandjelović et al., 2018) implements
a function f as a global feature vector for a given
image Ii as f (Ii). This function is used to ex-
tract the feature vectors from the entire database Ii,
identified as gallery set. Then visual search be-
tween f (q), query image, and f (Ii) takes place us-
ing Euclidean distance d(q, Ii) and to obtain the top-
N matches. NetVLAD is inspired by the conventional
VLAD (Jégou et al., 2010) which uses handcrafted
SIFT descriptors (Lowe, 2004) and uses VLAD en-
coding to form f (I). NetVLAD is a data optimized
version of VLAD for place recognition or image re-
trieval. NetVLAD is defined by a set of parame-
ters θ and identified as fθ(I) in which the Euclidean
distance dθ(Ii, I j) = || fθ(Ii)− fθ(I j)|| depends on the
same parameters.
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In order to learn the representation end-to-end,
NetVLAD contains two main building blocks. (1)
Cropped CNN at the last convolutional layer, iden-
tified as a dense descriptor with the output size of
H ×W ×D, correspond to set of D-dimensional de-
scriptors extracted at H ×W spatial locations. (2)
Trainable generalized VLAD layer, e.g., NetVLAD
which pools extracted descriptors into a fixed im-
age representation in which its parameters trained via
backpropagation.

The original VLAD image representation V is
D×K matrix in which D is the dimension of the input
local image descriptor~xi and K is the number of clus-
ters. It is reshaped into a vector after L2-normalization
and ( j,k) element of V is calculated as follows:

V ( j,k) =
N

∑
i=1

ak(~xi)(xi( j)− ck( j)), (4)

where xi( j) and ck( j) are the jth dimensions of the
ith descriptor and kth cluster centers, respectively. It
should be noted that ak(~xi) = 0 , 1 corresponds to
whether or not the descriptor ~xi belongs to kth visual
word. Compared to original VLAD, NetVLAD layer
is differentiable thanks to its soft assignment of de-
scriptors to multiple clusters:

V ( j,k) =
N

∑
i=1

ewT
k xi+bk

∑k′ e
wT

k′ xi+bk′
(xi( j)− ck′( j)) (5)

where wk, bk and ck are gradient descent optimized
parameters of the k-th cluster.

For our implementation, we obtain 64 clusters
with 512-dimensional VGG16 backbone and 2048-
dimensional ResNet50 backbones. Consequently, the
NetVLAD feature vector dimension becomes 512×
64 = 32,768 and 2048×64 = 131,072, respectively.
Arandjelović et al. (Arandjelović et al., 2018) used
PCA dimensionality reduction method as a post-
processing stage of the implementation. However,
we utilized the full size of feature vector. Since
NetVLAD layer can be easily plugged into any other
CNN architecture in an end-to-end manner, we in-
vestigate its performance with VGG16 and ResNet50
backbones and report the results in section 5.

Apart from designing a CNN architecture as an
image representation, obtaining enough annotated
training data and designing appropriate loss func-
tion for place recognition task is crucial. Follow-
ing (Arandjelović et al., 2018), we adopted a weakly
supervised triplet ranking loss Lθ for training. The
idea of triplet ranking loss is two folds: (1) to obtain
training dataset of tuples (q,{pi

q},{n j
q}) in which

for every query image q, there exists set of positives
{pi

q} with at least one image matching the query and
negatives {n j

q}, (2) to learn an image representation

fθ so that dθ(q, pi
q)< dθ(q,n j

q),∀ j. Lθ is defined as
a sum of individual losses for all nq

j and computed as
follows:

Lθ = ∑ j max(
(
| fθ(q)− fθ(pq

i )|2−| fθ(q)− fθ(n
q
j)|2 +α

)
,0), (6)

where α is the given margin in meter. If the margin
between the distance to the negative image and to the
best matching positive is violated, the loss is propor-
tional to the amount of violation.

4 DATASETS

For our experiments, we selected two publicly avail-
able and versatile outdoor and indoor datasets. We
assigned three different tests, as query sequences ac-
cording to their difficulty levels: (1) Test 01 with sim-
ilar set of images to the gallery set, but acquired at
different time; (2) Test 02 with moderately changed
conditions (e.g, time of day or illumination) and (3)
Test 03 with different set of images from the gallery
set. In the following, we briefly describe the datasets
and selection process of training, gallery and the three
query sequences. Training data is required to fine-
tune the networks for the indoor and outdoor datasets
by pairing positive and negative matches from train-
ing and gallery sets.

4.1 Oxford Radar RobotCar

The Oxford Radar RobotCar dataset (Barnes et al.,
2020) is a radar extension to the Oxford RobotCar
dataset (Maddern et al., 2017). The dataset pro-
vides optimized ground-truth data using a Navtech
CTS350-X Millimetre-Wave FMCW radar. The data
acquisition was performed in January 2019 over 32
traversals in central Oxford with a total route of
280 km of urban driving.

This dataset addresses a wide variety of challeng-
ing conditions including weather, traffic, and light-
ing alterations (Figure 1). The combination of one
Point Grey Bumblebee XB3 trinocular stereo and
three Point Grey Grasshopper2 monocular cameras
provide a 360 degree visual coverage of the scene
around the vehicle platform. The Bumblebee XB3 is
a 3-sensor multi-baseline IEEE-1394b stereo camera
designed for improved flexibility and accuracy. It fea-
tures 1.3 mega-pixel sensors with 66° horizontal FoV
and 1280×960 image resolution logged at maximum
frame rate of 16 Hz.

The three monocular Grasshopper2 cameras with
fish-eye lenses mounted on the back roof of the ve-
hicle are synchronized and obtained 1024×1024 im-
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(a) (b) (c) (d)

(e) (f)

Figure 1: Examples from the Oxford Radard RobotCar outdoor dataset. Top: Images from the same location in the three
selected test sequences: a) Gallery: cloudy b) Test 01: cloudy c) Test 02: sunny d) Test 03: rainy (Grasshopper2 left monocular
camera). Bottom: 19 km route of the test sequences, e) satellite view f) GNSS/INS.

ages at average frame rate of 11.1 Hz with 180° hori-
zontal FoV. To simplify our experiments, we selected
images from only one of the cameras. We selected
the Point Grey Grasshopper2 monocular camera, e.g.,
left, despite the fact that using multiple cameras could
potentially improve the results. The selected camera
points toward the left side of the road and thus en-
codes the stable urban environment such as the build-
ings, vehicles and traffic lights.

From the dataset, we selected sequences for a
training set, to perform network fine-tuning, a gallery
set against which the query images from the test se-
quence are matched and three distinct test sets: (1) the
same day but different time, (2) the different day but
approximately at same time and (3) the different day
and different time along with different weather con-
ditions. Table 1 summarizes different sets used for
training, gallery and testing sequences.

Table 1: The Oxford Radar RobotCar outdoor sequences
used in our experiments.

Sequence Size Date Start [GMT] Condition

Train 37,724 Jan. 10 2019 11:46 Sunny
Gallery 36,660 Jan. 10 2019 12:32 Cloudy
Test 01 29,406 Jan. 10 2019 14:50 Cloudy
Test 02 32,625 Jan. 11 2019 12:26 Sunny
Test 03 28,633 Jan. 16 2019 14:15 Rainy

4.2 COLD

The CoSy Localization Database (COLD) (Prono-
bis and Caputo, 2009) comprises annotated data se-
quences, acquired using visual and laser range sen-
sors on a mobile platform. The dataset provides a
large-scale, flexible testing environment for evaluat-
ing mainly vision-based topological localization and
semantic knowledge extraction methods aiming to
work on mobile robots in realistic indoor scenarios.

It consists of several video sequences collected
in three different indoor laboratory environments lo-
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cated in three different European cities: the Visual
Cognitive Systems Laboratory at the University of
Ljubljana, Slovenia; the Autonomous Intelligent Sys-
tems Laboratory at the University of Freiburg, Ger-
many; and the Language Technology Laboratory at
the German Research Center for Artificial Intelli-
gence in Saarbrücken, Germany.

The COLD data acquisition was performed using
three different mobile robotic platforms (an Activ-
Media People Bot, an ActiveMedia Pioneer-3 and an
iRobot ATRV-Mini) with two Videre Design MDCS2
digital cameras to obtain perspective and omnidirec-
tional views. Each frame is registered with the as-
sociated absolute position recovered using laser and
odometry data and annotated with a label represent-
ing the corresponding place.

The data was collected over a path when visit-
ing several rooms and office environments and under
different illumination conditions, including cloudy,
night and sunny.

For our experiments, we selected the extended,
e.g., long path on Map B of Saarbrücken labora-
tory. The training sequence is Sunny-seq3, gallery se-
quence is Cloudy-seq1, and the three test sequences
are (1) Sunny-seq1, (2) Cloudy-seq2 and (3) Night-
seq3. See Figure 2 for examples. We used the cap-
tured images acquired using the monocular center
camera form this setup. Table 1 summarizes differ-
ent sequences used for training, gallery and testing.

Table 2: The COLD indoor sequences used in our experi-
ments.

Sequence Size Date Start [GMT] Condition

Train 1036 July 7 2006 14:59 Sunny
Gallery 1371 July 7 2006 17:05 Cloudy
Test 01 1104 July 7 2006 14:28 Sunny
Test 02 1021 July 7 2006 18:59 Cloudy
Test 03 970 July 7 2006 20:34 Night

5 EXPERIMENTS

We organize our experiments such that they address
the following research questions: (1) how accurate lo-
calization can be achieved using image retrieval meth-
ods? (2) which of the two selected deep metric learn-
ing methods performs the best (NetVlad or Raden-
ović et al. in Section 3)? and (3) how much data
specific training data is required?
Performance Metric. Similar to (Arandjelović et al.,
2018), we measure the place recognition performance
by the fraction of correctly matched queries. Fol-
lowing (Chen et al., 2011), we denote the fraction of
top-N shortlisted correctly recognized candidates as

recall@N. Given the available ground-truth annota-
tions and thresholds for indoor and outdoor datasets,
recall@N varies accordingly. To evaluate the perfor-
mance of the methods, described in Section 3, we re-
port only the top-1 matches, i.e., recall@1 for multi-
ple thresholds τ.

The methods in Section 3 are used to compute
a feature vector representation for the given query
image f (q). After obtaining the image representa-
tion, a similarity score which indicates how precise
two images belong to the same location is crucial
to measure the performance. In this way, the fea-
ture vector is matched to all gallery image representa-
tions of f (Gi), i = 1,2, ...,M using Euclidean distance
dq,Gi = || f (q)− f (Gi)||2 and the smallest distance is
selected as the top-1 best match. If the best match
position is within the given distance threshold, e.g.,
dq,Gi ≤ τ, it is identified as true positive. In other
cases, it is identified as false positive. We then for-
mulate the recall as the ratio of true positive to the
total number of the query images.

To demonstrate the generalization of our observa-
tions, we report the results of experiments using two
backbones, e.g., ResNet50 and VGG16. ResNet50
is a deeper architecture which contains more convo-
lutional, pooling and fully connected layers with 50
weight layers, over 25 million parameters and 3.8 bil-
lion FLOPs (He et al., 2016). VGG16 backbone with
16 weight layers contains nearly 138 million param-
eters and 15.3 billion FLOPs (Simonyan and Zisser-
man, 2015).
Indoor Place Recognition. The results are presented
in Table 3. From the results of the indoor experi-
ments, we obtain the following findings: (1) Rade-
nović et al. method systematically obtains better ac-
curacy than NetVLAD method, (2) the testing perfor-
mance of ResNet50 backbone is slightly better than
VGG16, with a 4 % improvement on average accu-
racy of the recall@1 at Test 01, 2 % at Test 02, and
6.0 % at Test 03. However, Radenović et al. with
VGG16 backbone also performs relatively well con-
sidering less computational expenses, and (3) the in-
door precision drops rapidly when the threshold falls
below τ = 50.0 cm.

It simply indicates that the localization accuracy
of± 50.0 cm can be achieved with 80% recall@1 rate
even in conditions where the query dataset is substan-
tially different from the gallery dataset. This happens,
for instance, in day vs. night samples.
Outdoor Place Recognition. The results are sum-
marized in Table 4. Our findings from the outdoor
experiments of Oxford Radar RobotCar dataset are
similar to those of the indoor COLD database: Rade-
nović et al. method outperforms NetVLAD method.
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Figure 2: Examples of COLD indoor database (Pronobis and Caputo, 2009). Images of same location in different sequences:
a) Gallery: Cloudy-seq1 b) Test 01: Sunny-seq1, c) Test 02: Cloudy-seq2, d) Test 03: Night-seq3, e) Map view of the lab: blue
dashes: standard path consisting of rooms in most typical office environments, red dashes: extended path containing rooms
specific to this environment or its part, arrows: direction of driving the robot and f) Robot path of approximately 50 m.

ResNet50 provides better accuracy than the VGG16
backbone.

The higher recall@1 rates in Test 01, using both
methods, compared to Test 02 and Test 03 is due to
its high similarity to the gallery dataset, e.g., different
time during the same day. However, Radenović et al.
method performs relatively better in small threshold,
τ = 2 m, in Test 03 which indicates its robustness
even in extreme conditions, including night and rain.

The testing performance of ResNet50 backbone
achieves a 0.2 % improvement on average accuracy
of the recall@1 at Test 01, 4.6 % at Test 02, and 2.3 %
at Test 03 compared to VGG16 architecture in the cor-
responding tests. This surely comes with higher com-
putation for ResNet50 backbone.

The results of the Table 4 also demonstrate that lo-
calization accuracy of ± 5.0 m can be achieved with
the recall rate of 80% or greater for different illumina-
tion and weather conditions in an urban environment.
This is reasonable due to the more versatile features
of the outdoor environments, compared to the indoor
environments.

The results of both Table 3 and Table 4 demon-
strate that Radenović et al. method outperforms the
NetVLAD in both indoor and outdoor datasets. The
main clarification of better performance is the selec-
tion procedure of training image pairs for positives
and negatives samples with queries forming the train-
ing tuples.
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Table 3: Indoor place recognition results for the COLD Saarbrücken sequences, given various distance thresholds τ.

COLD recall@1
Method BB τ = 100 cm τ = 75 cm τ = 50 cm τ = 25 cm

Test 01 (sunny)
Radenović (Radenović et al., 2019) VGG16 93.03 91.49 78.26 43.12

ResNet50 97.19 95.74 82.43 43.39
NetVLAD (Arandjelović et al., 2018) VGG16 92.30 89.58 76.36 41.85

ResNet50 91.94 91.76 78.35 44.75

Test 02 (cloudy)
Radenović (Radenović et al., 2019) VGG16 94.32 92.75 84.62 46.13

ResNet50 95.20 91.67 80.12 46.62
NetVLAD (Arandjelović et al., 2018) VGG16 90.70 87.37 78.45 46.33

ResNet50 93.44 89.72 79.63 45.05

Test 03 (night)
Radenović (Radenović et al., 2019) VGG16 82.99 82.06 75.36 44.64

ResNet50 91.13 88.97 80.72 47.32
NetVLAD (Arandjelović et al., 2018) VGG16 81.03 78.66 70.52 45.05

ResNet50 82.06 79.90 71.34 44.43

In NetVLAD method, the image with the lowest
descriptor distance to the query is chosen as posi-
tive pairs. In this naive approach, the network is not
capable of sufficient learning from positive samples
given only the GPS coordinates and camera orienta-
tion is not available. In Radenović et al. method, on
the contrary, the positive samples are chosen at ran-
dom from a pool of images with similar camera posi-
tions. This ensures selecting harder matching exam-
ples along with increasing variability of viewpoints.
Negative samples are selected from clusters different
that the cluster of the query images as clusters are
non-overlapping. Non matching images with similar
descriptors are selected as hard negatives.
Amount of Training Data. Finally, in this exper-
iment we investigate to what extent the data spe-
cific fine-tuning can further improve the visual place
recognition performance results. Based on the ob-
tained results of the Table 3 and the Table 4, we assign
the fixed indoor distance threshold to τ = 50 cm and
outdoor threshold to τ = 5 m. We evaluate the most
challenging test sequence, Test 03, for both indoor and
outdoor datasets.

In our experiments, we compared ResNet50 and
VGG16 backbones in terms of training time using
NVIDIA V100 Tensor core GPU with 32 GB of mem-
ory for the outdoor and indoor datasets. Our find-
ings indicated that VGG16 is less computationally
expensive and less prone to overfitting. The fine-
tuning of CNN using ResNet50 backbone took ap-
proximately 9 hours and 45 minutes for the Oxford
Radar RobotCar dataset with ≈ 37k images with size
of 1024× 1024 pixels and roughly 85 minutes for

COLD dataset with 1036 training images of 640×480
pixels for 50 epochs and mini-batch of 5 images.
However, VGG16 was slightly lighter since it took ap-
proximately 8 hours and 25 minutes for Oxford Radar
RobotCar and 73 minutes for the COLD dataset.

Despite the high similarity of two backbones in
the performance, we utilized VGG16 backbone. Con-
sequently, we repeat the experiment with different
amounts of training data to study how much and
to what extent, the fine-tuning improves the perfor-
mance. The results are presented in Table 5.

Table 5 demonstrates the absolute outperforming
results of Radenović et al. method over NetVLAD
with VGG16 backbone in both indoor and outdoor
datasets. The accomplished performance results is
regardless of how much training data is utilized for
fine-tuning with new datasets. Interestingly, there is
a substantial improvement from absolute zero fine-
tuning data to the full training dataset (37k images)
for the outdoor Oxford Radar RootCar dataset. How-
ever, there is not a significant difference for the indoor
COLD dataset. This can partly be due to the fact that
there are not enough training samples in the indoor
dataset (approximately 1000 samples per sequence).

According to Table 5, there is also a significant
improvement of the results (approximately 50 %) for
the outdoor Oxford Radar RobotCar dataset when
Radenović et al. method is utilized considering all
the versatile characteristics of an urban environment.
This is similar for the indoor COLD database even
though the results of Radenović et al. method indi-
cates approximately 10% of improvement compared
to the outdoor dataset.
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Table 4: Outdoor place recognition results for the Oxford Radar RobotCar dataset, given various distance thresholds τ.

Oxford Radar RobotCar recall@1
Method BB τ = 25 m τ = 10 m τ = 5 m τ = 2 m

Test 01 (later time of day)
Radenović (Radenović et al., 2019) VGG16 98.39 97.42 95.82 59.86

ResNet50 98.01 97.23 95.96 59.94
NetVLAD (Arandjelović et al., 2018) VGG16 80.14 76.81 72.29 44.25

ResNet50 92.67 89.60 84.24 52.14

Test 02 (diff. day, same time)
Radenović (Radenović et al., 2019) VGG16 91.37 89.37 82.16 42.02

ResNet50 95.11 93.43 86.91 48.09
NetVLAD (Arandjelović et al., 2018) VGG16 36.11 29.32 22.40 9.65

ResNet50 70.54 63.35 52.42 23.83

Test 03 (diff. day and time)
Radenović (Radenović et al., 2019) VGG16 89.64 86.63 82.83 62.42

ResNet50 92.00 89.00 84.62 65.08
NetVLAD (Arandjelović et al., 2018) VGG16 33.58 28.05 23.12 13.36

ResNet50 49.68 44.46 38.07 22.23

Furthermore, we evaluated the pre-trained mod-
els of both Radenović et al. and NetVLAD meth-
ods to investigate how much fine-tuning with our
custom indoor and outdoor datasets could improve
the visual place recognition performance. For both
datasets, there is a significant improvement of the re-
sults. For instance, we find out that considering nearly
20− 50 % of queries which are randomly drawn per
one training epoch in the indoor COLD database
could potentially enhance the performance results up
to approximately 80 % during fine-tuning.

6 CONCLUSIONS

In this paper, we evaluated the performance of two
state-of-the-art deep metric learning methods for the
problem of visual place recognition. We used both
indoor and outdoor datasets with diverse and large
long-term variations, including time, illumination and
weather to investigate the performance results of
these methods. Our evaluation results indicate that
fine-tuning the Radenović et al. (Radenović et al.,
2019) method with visual place recognition datasets
achieves recall rate of 80 % or greater for a given lo-
calization accuracy in the indoor and outdoor datasets,
respectively.

As an alternative, we compared the obtained re-
sults of the NetVLAD (Arandjelović et al., 2018)
method which is trained and fine-tuned for our cus-
tom indoor and outdoor datasets. Compared to Rade-

nović et al. (Radenović et al., 2019) method, it re-
vealed less robust performance due to challenging
illumination and weather conditions in both indoor
and outdoor datasets. Our findings from the two
state-of-the-art deep learning architectures confirms
that ResNet50 performs slightly better than VGG16
backbones considering the larger computational ex-
penses. Therefore, we adopt VGG16 backbone since
it is more computationally affordable.

Based on our findings from multiple experiments
for both indoor and outdoor datasets, the deep archi-
tecture by Radenović et al. (Radenović et al., 2019)
outperforms the NetVLAD architecture by Arand-
jelović et al. (Arandjelović et al., 2018) with a clear
margin. The reason to clarify the better perfor-
mance of Radenović et al. method lies in selection
of training image pairs for the positives and the neg-
atives samples with queries forming the training tu-
ples. NetVLAD method suffers from the insufficient
learning of the positive and the negative pairs which
are selected based on the lowest and the highest de-
scriptor distance to the query, respectively. Further-
more, our comprehensive study confirms that both
deep learning architectures obtain the best results with
ResNet50 backbone and by fine-tuning the architec-
ture with data specific training data.

One possible direction for the future work can be
an indoor data acquisition to a larger extent with more
challenging illumination conditions, suitable for the
problem of visual place recognition with more pre-
cise ground-truth and complementary sensors, e.g.,
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Table 5: Results for different number of queries randomly drawn per one training epoch using the most challenging test
sequences, Test 03, in both indoor and outdoor datasets. The gallery and test sets contain all images. “0” indicates that the
dataset specific fine-tuning is skipped.

Oxford Radar RobotCar (τ = 5 m)
recall@1

Method BB 37k (all) 10k 5k 2k 0

Test 03 (diff. day and time)
Radenović (Radenović et al., 2019) VGG16 95.82 86.10 87.53 88.91 72.62
NetVLAD (Arandjelović et al., 2018) VGG16 80.14 13.82 20.48 21.83 23.35

COLD (τ = 50 cm)
recall@1

Method BB 1k (all) 500 250 100 0

Test 03 (diff. day and time)
Radenović (Radenović et al., 2019) VGG16 77.73 78.35 80.10 77.53 77.22
NetVLAD (Arandjelović et al., 2018) VGG16 66.80 70.52 71.86 71.13 71.55

LiDAR. It is useful to (1) investigate to what ex-
tent and how number of queries randomly drawn per
one train epoch could potentially influence the re-
call@1 rate within certain localization accuracy and
(2) whether or not sensor fusion of RGB and LiDAR
could further improve the performance results in the
indoor environment.
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Aggregating local descriptors into a compact image
representation. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 3304–3311.

Kalantidis, Y., Mellina, C., and Osindero, S. (2016). Cross-
Dimensional Weighting for Aggregated Deep Convo-
lutional Features. In Computer Vision – ECCV 2016
Workshops, pages 685–701. Springer, Cham, Switzer-
land.

Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. Int. J. Comput. Vision, 60(2):91–
110.

Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J.,
Cox, D., Corke, P., and Milford, M. J. (2016). Vi-
sual place recognition: A survey. IEEE Transactions
on Robotics, 32(1):1–19.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P.
(2017). 1 year, 1000 km: The oxford robotcar
dataset. The International Journal of Robotics Re-
search, 36(1):3–15.

Masone, C. and Caputo, B. (2021). A survey on deep visual
place recognition. IEEE Access, 9:19516–19547.

Milford, M. J. and Wyeth, G. F. (2012). Seqslam: Vi-
sual route-based navigation for sunny summer days
and stormy winter nights. In 2012 IEEE International
Conference on Robotics and Automation, pages 1643–
1649.
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