setting of the pseudo-whitening space according to
the data set.
REFERENCES
An, X., Zhu, X., Gao, Y., Xiao, Y., Zhao, Y., Feng, Z., Wu,
L., Qin, B., Zhang, M., Zhang, D., and Fu, Y. (2021).
Partial fc: Training 10 million identities on a single
machine. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV) Work-
shops, pages 1445–1449.
Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A.,
and Carlsson, S. (2016). Factors of transferability
for a generic convnet representation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
38(9):1790–1802.
Benitez-Garcia, G., Olivares Mercado, J., Sanchez-Perez,
G., and Yanai, K. (2021). Ipn hand: A video dataset
and benchmark for real-time continuous hand gesture
recognition. Proc. of IAPR International Conference
on Pattern Recognition (ICPR), pages 4340–4347.
Breiman, L. (1996). Bagging predictors. Machine Learn-
ing, 24(2):123–140.
Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cface: Additive angular margin loss for deep face
recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4690–
4699.
Fukui, K. and Maki, A. (2015). Difference subspace and
its generalization for subspace-based methods. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 37(11):2164–2177.
Fukui, K. and Yamaguchi, O. (2003). Face recognition us-
ing multi-viewpoint patterns for robot vision. 11th In-
ternational Symposium of Robotics Research (ISRR),
pages 192–201.
Fukui, K. and Yamaguchi, O. (2006). Comparison between
constrained mutual subspace method and orthogonal
mutual subspace method. Proc. of Subspace 2006,
pages 63–71. (In Japanese).
Fukui, K. and Yamaguchi, O. (2007). The kernel orthogo-
nal mutual subspace method and its application to 3d
object recognition. Proc. of ACCV07, pages 467–476.
Hu, W., Huang, Y., Zhang, F., Li, R., Li, W., and Yuan, G.
(2018). Seqface: Make full use of sequence informa-
tion for face recognition. CoRR, abs/1803.06524.
InsightFace (2021). Insightface model zoo. GitHub reposi-
tory.
Jiang, X., Mandal, B., and Kot, A. (2008). Eigenfeature reg-
ularization and extraction in face recognition. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 30(3):383–394.
Kawahara, T., Nishiyama, M., Kozakaya, T., and Yam-
aguchi, O. (2007). Face recognition based on whiten-
ing transformation of distribution of subspaces. In
ACCV’07 Workshop Subspace 2007.
Leibe, B. and Schiele, B. (2003). Analyzing appearance
and contour based methods for object categorization.
Proc. of IEEE Conference on Computer Vision and
Pattern Recognition, pages 409–415.
Maeda, K. and Watanabe, S. (1985). A pattern matching
mathod with local structure. Trans. IEICE(D), J68-
D(3):345–352. (In Japanese).
Nishiyama, M., Yamaguchi, O., and Fukui, K. (2005). Face
recognition with the multiple constrained mutual sub-
space method. In AVBPA.
Oja, E. (1983). Subspace Methods of Pattern Recognition.
Research Studies Press, England.
Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). Cnn features off-the-shelf: an astound-
ing baseline for recognition. In IEEE Conference on
Computer Vision and Pattern Recognition workshops,
pages 806–813.
Sakai, A., Sogi, N., and Fukui, K. (2019). Gait recognition
based on constrained mutual subspace method with
cnn features. In 2019 16th International Conference
on Machine Vision Applications (MVA), pages 1–6.
Sogi, N., Nakayama, T., and Fukui, K. (2018). A method
based on convex cone model for image-set classifica-
tion with cnn features. International Joint Conference
on Neural Networks (IJCNN), pages 1–8.
Tan, H., Gao, Y., and Ma, Z. (2018). Regularized constraint
subspace based method for image set classification.
Pattern Recognition, 76:434–448.
Taskiran, M., Kahraman, N., and Erdem, C. E. (2020). Face
recognition: Past, present and future (a review). Digi-
tal Signal Processing, 106:102809.
Wang, D., Wang, B., Zhao, S., Yao, H., and Liu, H. (2018a).
Off-the-shelf cnn features for 3d object retrieval. Mul-
timedia Tools Appl., 77(15):1983319849.
Wang, T., Li, Y., Hu, J., Khan, A., Liu, L., Li, C.,
Hashmi, A., and Ran, M. (2018b). A Survey on
Vision-Based Hand Gesture Recognition: First Inter-
national Conference, ICSM 2018, Toulon, France, Au-
gust 2426, 2018, Revised Selected Papers, pages 219–
231. Springer.
Yamaguchi, O., Fukui, K., and Maeda, K. (1998). Face
recognition using temporal image sequence. In Pro-
ceedings of the 3rd. International Conference on Face
and Gesture Recognition.
Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499–1503.
Zhao, Z.-Q., Xu, S.-T., Liu, D., Tian, W.-D., and Jiang, Z.-
D. (2019). A review of image set classification. Neu-
rocomputing, 335:251–260.
ICPRAM 2022 - 11th International Conference on Pattern Recognition Applications and Methods
306